Cristinziano L, Modestino L, Antonelli A, Marone G, Simon HU, Varricchi G, et al. Neutrophil extracellular traps in cancer. Semin Cancer Biol. 2022;79:91–104. https://doi.org/10.1016/j.semcancer.2021.07.011 (Epub 2021/07/20).
Article
CAS
PubMed
Google Scholar
Shao BZ, Yao Y, Li JP, Chai NL, Linghu EQ. The role of neutrophil extracellular traps in cancer. Front Oncol. 2021;11:714357. https://doi.org/10.3389/fonc.2021.714357 (Epub 2021/09/04).
Article
PubMed
PubMed Central
Google Scholar
Chen Q, Zhang L, Li X, Zhuo W. Neutrophil extracellular traps in tumor metastasis: pathological functions and clinical applications. Cancers. 2021;13(11):2832. https://doi.org/10.3390/cancers13112832 (Epub 2021/07/03).
Article
CAS
PubMed
PubMed Central
Google Scholar
Snoderly HT, Boone BA, Bennewitz MF. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on net stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment. Breast Cancer Res. 2019;21(1):145. https://doi.org/10.1186/s13058-019-1237-6 (Epub 2019/12/20).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang H, Zhang Y, Wang Q, Wei X, Wang H, Gu K. The regulatory mechanism of neutrophil extracellular traps in cancer biological behavior. Cell Biosci. 2021;11(1):193. https://doi.org/10.1186/s13578-021-00708-z (Epub 2021/11/12).
Article
CAS
PubMed
PubMed Central
Google Scholar
Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–91. https://doi.org/10.1083/jcb.201006052 (Epub 2010/10/27).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang D, Liu J. Neutrophil extracellular traps: a new player in cancer metastasis and therapeutic target. J Exp Clin Cancer Res. 2021;40(1):233. https://doi.org/10.1186/s13046-021-02013-6 (Epub 2021/07/18).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Han L, Qiu X, Wang G, Zheng J. Neutrophil extracellular traps in digestive cancers: warrior or accomplice. Front Oncol. 2021;11:766636. https://doi.org/10.3389/fonc.2021.766636 (Epub 2021/12/07).
Article
PubMed
PubMed Central
Google Scholar
Cedervall J, Hamidi A, Olsson AK. Platelets, nets and cancer. Thromb Res. 2018;164(Suppl 1):S148–52. https://doi.org/10.1016/j.thromres.2018.01.049 (Epub 2018/04/29).
Article
CAS
PubMed
Google Scholar
Masucci MT, Minopoli M, Del Vecchio S, Carriero MV. The emerging role of neutrophil extracellular traps (nets) in tumor progression and metastasis. Front Immunol. 2020;11:1749. https://doi.org/10.3389/fimmu.2020.01749 (Epub 2020/10/13).
Article
CAS
PubMed
PubMed Central
Google Scholar
Governa V, Trella E, Mele V, Tornillo L, Amicarella F, Cremonesi E, et al. The interplay between neutrophils and Cd8(+) T cells improves survival in human colorectal cancer. Clin Cancer Res. 2017;23(14):3847–58. https://doi.org/10.1158/1078-0432.CCR-16-2047 (Epub 2017/01/22).
Article
CAS
PubMed
Google Scholar
Yipp BG, Kubes P. Netosis: How Vital Is It? Blood. 2013;122(16):2784–94. https://doi.org/10.1182/blood-2013-04-457671 (Epub 2013/09/07).
Article
CAS
PubMed
Google Scholar
Yousefi S, Morshed M, Amini P, Stojkov D, Simon D, von Gunten S, et al. Basophils exhibit antibacterial activity through extracellular trap formation. Allergy. 2015;70(9):1184–8. https://doi.org/10.1111/all.12662 (Epub 2015/06/05).
Article
CAS
PubMed
Google Scholar
Li T, Zhang Z, Li X, Dong G, Zhang M, Xu Z, et al. Neutrophil extracellular traps: signaling properties and disease relevance. Mediators Inflamm. 2020;2020:9254087. https://doi.org/10.1155/2020/9254087 (Epub 2020/08/11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–41. https://doi.org/10.1083/jcb.200606027 (Epub 2007/01/11).
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamam HJ, Khan MA, Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation. Biomolecules. 2019;9(1):32. https://doi.org/10.3390/biom9010032 (Epub 2019/01/24).
Article
CAS
PubMed Central
Google Scholar
Tsourouktsoglou TD, Warnatsch A, Ioannou M, Hoving D, Wang Q, Papayannopoulos V. Histones, DNA, and citrullination promote neutrophil extracellular trap inflammation by regulating the localization and activation of Tlr4. Cell Rep. 2020;31(5):107602. https://doi.org/10.1016/j.celrep.2020.107602 (Epub 2020/05/07).
Article
CAS
PubMed
Google Scholar
Boeltz S, Amini P, Anders HJ, Andrade F, Bilyy R, Chatfield S, et al. To net or not to net: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 2019;26(3):395–408. https://doi.org/10.1038/s41418-018-0261-x (Epub 2019/01/10).
Article
PubMed
PubMed Central
Google Scholar
Ravindran M, Khan MA, Palaniyar N. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules. 2019;9(8):365. https://doi.org/10.3390/biom9080365 (Epub 2019/08/17).
Article
CAS
PubMed Central
Google Scholar
Khan MA, Farahvash A, Douda DN, Licht JC, Grasemann H, Sweezey N, et al. Jnk activation turns on lps- and gram-negative bacteria-induced nadph oxidase-dependent suicidal netosis. Sci Rep. 2017;7(1):3409. https://doi.org/10.1038/s41598-017-03257-z (Epub 2017/06/15).
Article
CAS
PubMed
PubMed Central
Google Scholar
Efrimescu CI, Buggy PM, Buggy DJ. Neutrophil extracellular trapping role in cancer, metastases, and cancer-related thrombosis: a narrative review of the current evidence base. Curr Oncol Rep. 2021;23(10):118. https://doi.org/10.1007/s11912-021-01103-0 (Epub 2021/08/04).
Article
PubMed
PubMed Central
Google Scholar
Leshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, et al. Pad4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap-like structures. Front Immunol. 2012;3:307. https://doi.org/10.3389/fimmu.2012.00307 (Epub 2012/10/13).
Article
PubMed
PubMed Central
Google Scholar
Raup-Konsavage WM, Wang Y, Wang WW, Feliers D, Ruan H, Reeves WB. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93(2):365–74. https://doi.org/10.1016/j.kint.2017.08.014 (Epub 2017/10/25).
Article
CAS
PubMed
Google Scholar
Rabadi M, Kim M, D’Agati V, Lee HT. Peptidyl arginine deiminase-4-deficient mice are protected against kidney and liver injury after renal ischemia and reperfusion. Am J Physiol Renal Physiol. 2016;311(2):F437–49. https://doi.org/10.1152/ajprenal.00254.2016 (Epub 2016/06/24).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenny EF, Herzig A, Kruger R, Muth A, Mondal S, Thompson PR, et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017;6:e24437. https://doi.org/10.7554/eLife.24437 (Epub 2017/06/03).
Article
PubMed
PubMed Central
Google Scholar
Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R, Kordes S, et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018;3(26):eaar6689. https://doi.org/10.1126/sciimmunol.aar6689 (Epub 2018/08/26).
Article
PubMed
Google Scholar
Tall AR, Westerterp M. Inflammasomes, neutrophil extracellular traps, and cholesterol. J Lipid Res. 2019;60(4):721–7. https://doi.org/10.1194/jlr.S091280 (Epub 2019/02/21).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, et al. Overexpression of Cxcl5 Mediates Neutrophil Infiltration and Indicates Poor Prognosis for Hepatocellular Carcinoma. Hepatology. 2012;56(6):2242–54. https://doi.org/10.1002/hep.25907 (Epub 2012/06/20).
Article
CAS
PubMed
Google Scholar
Yu PF, Huang Y, Han YY, Lin LY, Sun WH, Rabson AB, et al. Tnfalpha-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting Cxcr2(+) Neutrophils. Oncogene. 2017;36(4):482–90. https://doi.org/10.1038/onc.2016.217 (Epub 2016/07/05).
Article
CAS
PubMed
Google Scholar
De Larco JE, Wuertz BR, Furcht LT. The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res. 2004;10(15):4895–900. https://doi.org/10.1158/1078-0432.CCR-03-0760 (Epub 2004/08/07).
Article
PubMed
Google Scholar
Yang L, Liu L, Zhang R, Hong J, Wang Y, Wang J, et al. Il-8 mediates a positive loop connecting increased neutrophil extracellular traps (nets) and colorectal cancer liver metastasis. J Cancer. 2020;11(15):4384–96. https://doi.org/10.7150/jca.44215 (Epub 2020/06/04).
Article
CAS
PubMed
PubMed Central
Google Scholar
Peng ZP, Jiang ZZ, Guo HF, Zhou MM, Huang YF, Ning WR, et al. Glycolytic activation of monocytes regulates the accumulation and function of neutrophils in human hepatocellular carcinoma. J Hepatol. 2020;73(4):906–17. https://doi.org/10.1016/j.jhep.2020.05.004 (Epub 2020/05/15).
Article
CAS
PubMed
Google Scholar
Yan B, Wei JJ, Yuan Y, Sun R, Li D, Luo J, et al. Il-6 Cooperates with G-Csf to induce protumor function of neutrophils in bone marrow by enhancing Stat3 activation. J Immunol. 2013;190(11):5882–93. https://doi.org/10.4049/jimmunol.1201881 (Epub 2013/05/01).
Article
CAS
PubMed
Google Scholar
Zhu Q, Zhang X, Zhang L, Li W, Wu H, Yuan X, et al. The Il-6-Stat3 axis mediates a reciprocal crosstalk between cancer-derived mesenchymal stem cells and neutrophils to synergistically prompt gastric cancer progression. Cell Death Dis. 2014;5:e1295. https://doi.org/10.1038/cddis.2014.263 (Epub 2014/06/20).
Article
CAS
PubMed
PubMed Central
Google Scholar
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. Il-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522(7556):345–8. https://doi.org/10.1038/nature14282 (Epub 2015/03/31).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 2011;54(5):948–55. https://doi.org/10.1016/j.jhep.2010.08.041 (Epub 2010/12/15).
Article
CAS
PubMed
Google Scholar
Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, et al. Gammadeltat17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 2014;40(5):785–800. https://doi.org/10.1016/j.immuni.2014.03.013 (Epub 2014/05/13).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Wang K, Han GC, Wang RX, Xiao H, Hou CM, et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (Il-1)/Il-6 axis. Mucosal Immunol. 2014;7(5):1106–15. https://doi.org/10.1038/mi.2013.126 (Epub 2014/01/16).
Article
CAS
PubMed
Google Scholar
Wislez M, Fleury-Feith J, Rabbe N, Moreau J, Cesari D, Milleron B, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor prolong the survival of neutrophils infiltrating bronchoalveolar subtype pulmonary adenocarcinoma. Am J Pathol. 2001;159(4):1423–33. https://doi.org/10.1016/S0002-9440(10)62529-1 (Epub 2001/10/05).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6g+Ly6c+ granulocytes. Proc Natl Acad Sci USA. 2010;107(50):21248–55. https://doi.org/10.1073/pnas.1015855107 (Epub 2010/11/18).
Article
PubMed
PubMed Central
Google Scholar
Tadie JM, Bae HB, Jiang S, Park DW, Bell CP, Yang H, et al. Hmgb1 promotes neutrophil extracellular trap formation through Interactions with Toll-like receptor 4. Am J Physiol Lung Cell Mol Physiol. 2013;304(5):L342–9. https://doi.org/10.1152/ajplung.00151.2012 (Epub 2013/01/15).
Article
CAS
PubMed
PubMed Central
Google Scholar
Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507(7490):109–13. https://doi.org/10.1038/nature13111 (Epub 2014/02/28).
Article
CAS
PubMed
Google Scholar
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by Tgf-Beta: “N1” Versus “N2” Tan. Cancer Cell. 2009;16(3):183–94. https://doi.org/10.1016/j.ccr.2009.06.017 (Epub 2009/09/08).
Article
CAS
PubMed
PubMed Central
Google Scholar
SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting Tgf-beta and Cxcr2 ligands. Front Immunol. 2021;12:659996. https://doi.org/10.3389/fimmu.2021.659996 (Epub 2021/04/30).
Article
CAS
PubMed
PubMed Central
Google Scholar
Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018. https://doi.org/10.1126/science.aao4227 (Epub 2018/09/29).
Article
PubMed
PubMed Central
Google Scholar
Jin L, Kim HS, Shi J. Neutrophil in the pancreatic tumor microenvironment. Biomolecules. 2021;11(8):1170. https://doi.org/10.3390/biom11081170 (Epub 2021/08/28).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazdani HO, Roy E, Comerci AJ, van der Windt DJ, Zhang H, Huang H, et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. 2019;79(21):5626–39. https://doi.org/10.1158/0008-5472.CAN-19-0800 (Epub 2019/09/15).
Article
CAS
PubMed
PubMed Central
Google Scholar
Douda DN, Khan MA, Grasemann H, Palaniyar N. Sk3 Channel and Mitochondrial ros mediate nadph oxidase-independent netosis induced by calcium influx. Proc Natl Acad Sci USA. 2015;112(9):2817–22. https://doi.org/10.1073/pnas.1414055112 (Epub 2015/03/03).
Article
CAS
PubMed
PubMed Central
Google Scholar
Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to staphylococcus aureus. J Immunol. 2010;185(12):7413–25. https://doi.org/10.4049/jimmunol.1000675 (Epub 2010/11/26).
Article
CAS
PubMed
Google Scholar
Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–16. https://doi.org/10.1016/j.chom.2012.05.015 (Epub 2012/07/24).
Article
CAS
PubMed
Google Scholar
Byrd AS, O’Brien XM, Johnson CM, Lavigne LM, Reichner JS. An extracellular matrix-based mechanism of rapid neutrophil extracellular trap formation in response to candida albicans. J Immunol. 2013;190(8):4136–48. https://doi.org/10.4049/jimmunol.1202671 (Epub 2013/03/20).
Article
CAS
PubMed
Google Scholar
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4 (Epub 2018/01/25).
Article
PubMed
PubMed Central
Google Scholar
White PC, Chicca IJ, Cooper PR, Milward MR, Chapple IL. Neutrophil extracellular traps in periodontitis: a web of intrigue. J Dent Res. 2016;95(1):26–34. https://doi.org/10.1177/0022034515609097 (Epub 2015/10/08).
Article
CAS
PubMed
Google Scholar
Parker H, Dragunow M, Hampton MB, Kettle AJ, Winterbourn CC. Requirements for nadph oxidase and myeloperoxidase in neutrophil extracellular trap formation differ depending on the stimulus. J Leukoc Biol. 2012;92(4):841–9. https://doi.org/10.1189/jlb.1211601 (Epub 2012/07/18).
Article
CAS
PubMed
Google Scholar
Fay AJ, Qian X, Jan YN, Jan LY. Sk channels mediate nadph oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc Natl Acad Sci USA. 2006;103(46):17548–53. https://doi.org/10.1073/pnas.0607914103 (Epub 2006/11/07).
Article
CAS
PubMed
PubMed Central
Google Scholar
Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146–53. https://doi.org/10.1038/nm.4027 (Epub 2016/01/19).
Article
CAS
PubMed
PubMed Central
Google Scholar
Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 2012;109(32):13076–81. https://doi.org/10.1073/pnas.1200419109 (Epub 2012/07/25).
Article
PubMed
PubMed Central
Google Scholar
Arelaki S, Arampatzioglou A, Kambas K, Papagoras C, Miltiades P, Angelidou I, et al. Gradient infiltration of neutrophil extracellular traps in colon cancer and evidence for their involvement in tumour growth. PLoS ONE. 2016;11(5):e0154484. https://doi.org/10.1371/journal.pone.0154484 (Epub 2016/05/03).
Article
CAS
PubMed
PubMed Central
Google Scholar
Millrud CR, Kagedal A, Kumlien Georen S, Winqvist O, Uddman R, Razavi R, et al. Net-producing Cd16(High) Cd62l(Dim) neutrophils migrate to tumor sites and predict improved survival in patients with Hnscc. Int J Cancer. 2017;140(11):2557–67. https://doi.org/10.1002/ijc.30671 (Epub 2017/03/02).
Article
CAS
PubMed
Google Scholar
Muqaku B, Pils D, Mader JC, Aust S, Mangold A, Muqaku L, et al. Neutrophil extracellular trap formation correlates with favorable overall survival in high grade ovarian cancer. Cancers. 2020;12(2):505. https://doi.org/10.3390/cancers12020505 (Epub 2020/02/27).
Article
CAS
PubMed Central
Google Scholar
Schedel F, Mayer-Hain S, Pappelbaum KI, Metze D, Stock M, Goerge T, et al. Evidence and impact of neutrophil extracellular traps in malignant melanoma. Pigment Cell Melanoma Res. 2020;33(1):63–73. https://doi.org/10.1111/pcmr.12818 (Epub 2019/08/14).
Article
CAS
PubMed
Google Scholar
Liu Y, Liu L. The pro-tumor effect and the anti-tumor effect of neutrophils extracellular traps. Biosci Trends. 2020;13(6):469–75. https://doi.org/10.5582/bst.2019.01326.
Article
CAS
PubMed
Google Scholar
Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012 (Epub 2011/09/13).
Article
CAS
PubMed
PubMed Central
Google Scholar
Wolach O, Sellar RS, Martinod K, Cherpokova D, McConkey M, Chappell RJ, et al. Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med. 2018;10(436):8292. https://doi.org/10.1126/scitranslmed.aan8292 (Epub 2018/04/13).
Article
CAS
Google Scholar
Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, et al. Neutrophil elastase-mediated degradation of Irs-1 accelerates lung tumor growth. Nat Med. 2010;16(2):219–23. https://doi.org/10.1038/nm.2084 (Epub 2010/01/19).
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins-Cardoso K, Almeida VH, Bagri KM, Rossi MID, Mermelstein CS, Konig S, et al. Neutrophil extracellular traps (nets) promote pro-metastatic phenotype in human breast cancer cells through epithelial-mesenchymal transition. Cancers (Basel). 2020;12(6):1542. https://doi.org/10.3390/cancers12061542 (Epub 2020/06/18).
Article
CAS
Google Scholar
Mahmud Z, Rahman A, Mishu ID, Kabir Y. Mechanistic insights into the interplays between neutrophils and other immune cells in cancer development and progression. Cancer Metastasis Rev. 2022;41(2):405–32. https://doi.org/10.1007/s10555-022-10024-8 (Epub 2022/03/23).
Article
CAS
PubMed
Google Scholar
Kessenbrock K, Plaks V, Werb Z. Matrix Metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015 (Epub 2010/04/08).
Article
CAS
PubMed
PubMed Central
Google Scholar
Shaul ME, Levy L, Sun J, Mishalian I, Singhal S, Kapoor V, et al. Tumor-associated neutrophils display a distinct N1 profile following Tgfbeta modulation: a transcriptomics analysis of pro- Vs. Antitumor Tans Oncoimmunology. 2016;5(11):e1232221. https://doi.org/10.1080/2162402X.2016.1232221 (Epub 2016/12/22).
Article
CAS
PubMed
Google Scholar
Gomes T, Varady CBS, Lourenco AL, Mizurini DM, Rondon AMR, Leal AC, et al. Il-1beta blockade attenuates thrombosis in a neutrophil extracellular trap-dependent breast cancer model. Front Immunol. 2019;10:2088. https://doi.org/10.3389/fimmu.2019.02088 (Epub 2019/09/26).
Article
CAS
PubMed
PubMed Central
Google Scholar
Munir H, Jones JO, Janowitz T, Hoffmann M, Euler M, Martins CP, et al. Stromal-driven and amyloid beta-dependent induction of neutrophil extracellular traps modulates tumor growth. Nat Commun. 2021;12(1):683. https://doi.org/10.1038/s41467-021-20982-2 (Epub 2021/01/31).
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Aparicio M, Alfaro C. Influence of interleukin-8 and neutrophil extracellular trap (Net) formation in the tumor microenvironment: is there a pathogenic role? J Immunol Res. 2019;2019:6252138. https://doi.org/10.1155/2019/6252138 (Epub 2019/05/17).
Article
CAS
PubMed
PubMed Central
Google Scholar
De Meo ML, Spicer JD. The Role of Neutrophil Extracellular Traps in Cancer Progression and Metastasis. Semin Immunol. 2021;57:101595. https://doi.org/10.1016/j.smim.2022.101595.
Article
CAS
PubMed
Google Scholar
Gago-Dominguez M, Matabuena M, Redondo CM, Patel SP, Carracedo A, Ponte SM, et al. Neutrophil to lymphocyte ratio and breast cancer risk: analysis by subtype and potential interactions. Sci Rep. 2020;10(1):13203. https://doi.org/10.1038/s41598-020-70077-z (Epub 2020/08/09).
Article
CAS
PubMed
PubMed Central
Google Scholar
Podaza E, Sabbione F, Risnik D, Borge M, Almejun MB, Colado A, et al. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (Nets). Cancer Immunol Immunother. 2017;66(1):77–89. https://doi.org/10.1007/s00262-016-1921-7 (Epub 2016/11/01).
Article
CAS
PubMed
Google Scholar
Nie M, Yang L, Bi X, Wang Y, Sun P, Yang H, et al. Neutrophil extracellular traps induced by Il8 promote diffuse large B-cell lymphoma progression via the Tlr9 signaling. Clin Cancer Res. 2019;25(6):1867–79. https://doi.org/10.1158/1078-0432.CCR-18-1226 (Epub 2018/11/18).
Article
CAS
PubMed
Google Scholar
Sun N, Li X, Wang Z, Zhang R, Wang J, Wang K, et al. A Multiscale Tio2 nanorod array for ultrasensitive capture of circulating tumor cells. ACS Appl Mater Interfaces. 2016;8(20):12638–43. https://doi.org/10.1021/acsami.6b02178 (Epub 2016/05/14).
Article
CAS
PubMed
Google Scholar
Mao Z, Zhang J, Shi Y, Li W, Shi H, Ji R, et al. Cxcl5 Promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis. 2020;9(7):63. https://doi.org/10.1038/s41389-020-00249-z (Epub 2020/07/08).
Article
CAS
PubMed
PubMed Central
Google Scholar
Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80. https://doi.org/10.1158/0008-5472.CAN-15-1591 (Epub 2016/01/14).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zha C, Meng X, Li L, Mi S, Qian D, Li Z, et al. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the Hmgb1/Rage/Il-8 axis. Cancer Biol Med. 2020;17(1):154–68. https://doi.org/10.20892/j.issn.2095-3941.2019.0353 (Epub 2020/04/17).
Article
CAS
PubMed
PubMed Central
Google Scholar
Teijeira A, Garasa S, Gato M, Alfaro C, Migueliz I, Cirella A, et al. Cxcr1 and Cxcr2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856-71 e8. https://doi.org/10.1016/j.immuni.2020.03.001 (Epub 2020/04/15).
Article
CAS
PubMed
Google Scholar
Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529(7586):298–306. https://doi.org/10.1038/nature17038 (Epub 2016/01/23).
Article
CAS
PubMed
PubMed Central
Google Scholar
Kajioka H, Kagawa S, Ito A, Yoshimoto M, Sakamoto S, Kikuchi S, et al. Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis. Cancer Lett. 2021;497:1–13. https://doi.org/10.1016/j.canlet.2020.10.015 (Epub 2020/10/17).
Article
CAS
PubMed
Google Scholar
Pieterse E, Rother N, Garsen M, Hofstra JM, Satchell SC, Hoffmann M, et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler Thromb Vasc Biol. 2017;37(7):1371–9. https://doi.org/10.1161/ATVBAHA.117.309002 (Epub 2017/05/13).
Article
CAS
PubMed
Google Scholar
Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, et al. DNA of neutrophil extracellular traps promotes cancer metastasis via Ccdc25. Nature. 2020;583(7814):133–8. https://doi.org/10.1038/s41586-020-2394-6 (Epub 2020/06/13).
Article
CAS
PubMed
Google Scholar
Bekes EM, Schweighofer B, Kupriyanova TA, Zajac E, Ardi VC, Quigley JP, et al. Tumor-recruited neutrophils and neutrophil timp-free Mmp-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol. 2011;179(3):1455–70. https://doi.org/10.1016/j.ajpath.2011.05.031 (Epub 2011/07/12).
Article
CAS
PubMed
PubMed Central
Google Scholar
Marone G, Varricchi G, Loffredo S, Granata F. Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Eur J Pharmacol. 2016;778:146–51. https://doi.org/10.1016/j.ejphar.2015.03.088 (Epub 2015/05/06).
Article
CAS
PubMed
Google Scholar
Kusumanto YH, Dam WA, Hospers GA, Meijer C, Mulder NH. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis. 2003;6(4):283–7. https://doi.org/10.1023/B:AGEN.0000029415.62384.ba (Epub 2004/05/29).
Article
CAS
PubMed
Google Scholar
Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, et al. Requisite role of angiopoietin-1, a ligand for the Tie2 receptor. During Embryonic Angiogenesis Cell. 1996;87(7):1171–80. https://doi.org/10.1016/s0092-8674(00)81813-9 (Epub 1996/12/27).
Article
CAS
PubMed
Google Scholar
Lavoie SS, Dumas E, Vulesevic B, Neagoe PE, White M, Sirois MG. Synthesis of human neutrophil extracellular traps contributes to angiopoietin-mediated in vitro proinflammatory and proangiogenic activities. J Immunol. 2018;200(11):3801–13. https://doi.org/10.4049/jimmunol.1701203 (Epub 2018/04/25).
Article
CAS
PubMed
Google Scholar
Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019;45(1):86–93. https://doi.org/10.1055/s-0038-1677040 (Epub 2019/01/12).
Article
CAS
PubMed
Google Scholar
Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis. 2019;288:9–16. https://doi.org/10.1016/j.atherosclerosis.2019.06.919 (Epub 2019/07/08).
Article
CAS
PubMed
Google Scholar
Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107 (Epub 2010/08/28).
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Tao W, Shen F, Du W, Xu Z, Liu Z. The emerging role of neutrophil extracellular traps in arterial, venous and cancer-associated thrombosis. Front Cardiovasc Med. 2021;8:786387. https://doi.org/10.3389/fcvm.2021.786387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdol Razak N, Elaskalani O, Metharom P. Pancreatic cancer-induced neutrophil extracellular traps: a potential contributor to cancer-associated thrombosis. Int J Mol Sci. 2017;18(3):487. https://doi.org/10.3390/ijms18030487 (Epub 2017/03/02).
Article
CAS
PubMed Central
Google Scholar
Thalin C, Hisada Y, Lundstrom S, Mackman N, Wallen H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis. Arterioscler Thromb Vasc Biol. 2019;39(9):1724–38. https://doi.org/10.1161/ATVBAHA.119.312463 (Epub 2019/07/19).
Article
CAS
PubMed
PubMed Central
Google Scholar
Craver BM, Ramanathan G, Hoang S, Chang X, Mendez Luque LF, Brooks S, et al. N-acetylcysteine inhibits thrombosis in a murine model of myeloproliferative neoplasm. Blood Adv. 2020;4(2):312–21. https://doi.org/10.1182/bloodadvances.2019000967 (Epub 2020/01/25).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484 (Epub 2013/07/19).
Article
CAS
PubMed Central
Google Scholar
Leal AC, Mizurini DM, Gomes T, Rochael NC, Saraiva EM, Dias MS, et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps: implications for the establishment of cancer-associated thrombosis. Sci Rep. 2017;7(1):6438. https://doi.org/10.1038/s41598-017-06893-7 (Epub 2017/07/27).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. 2019;5(16):e128008. https://doi.org/10.1172/jci.insight.128008 (Epub 2019/07/26).
Article
Google Scholar
Cedervall J, Dragomir A, Saupe F, Zhang Y, Arnlov J, Larsson E, et al. Pharmacological targeting of peptidylarginine deiminase 4 prevents cancer-associated kidney injury in mice. Oncoimmunology. 2017;6(8):e1320009. https://doi.org/10.1080/2162402X.2017.1320009 (Epub 2017/09/19).
Article
PubMed
PubMed Central
Google Scholar
Doyle K, Lonn H, Kack H, Van de Poel A, Swallow S, Gardiner P, et al. Discovery of second generation reversible covalent Dpp1 inhibitors leading to an oxazepane amidoacetonitrile based clinical candidate (Azd7986). J Med Chem. 2016;59(20):9457–72. https://doi.org/10.1021/acs.jmedchem.6b01127 (Epub 2016/10/04).
Article
CAS
PubMed
Google Scholar
Hisada Y, Grover SP, Maqsood A, Houston R, Ay C, Noubouossie DF, et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica. 2020;105(1):218–25. https://doi.org/10.3324/haematol.2019.217083 (Epub 2019/05/03).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu T, Zou X, Yang C, Li L, Wang B, Li R, et al. Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelialmesenchymal transition. Int J Mol Med. 2021;48(1):127. https://doi.org/10.3892/ijmm.2021.4960 (Epub 2021/05/21).
Article
CAS
PubMed
PubMed Central
Google Scholar
Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, Jorns J, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med. 2016;8(361):361ra138. https://doi.org/10.1126/scitranslmed.aag1711 (Epub 2016/11/01).
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi L, Yao H, Liu Z, Xu M, Tsung A, Wang Y. Endogenous Pad4 in breast cancer cells mediates cancer extracellular chromatin network formation and promotes lung metastasis. Mol Cancer Res. 2020;18(5):735–47. https://doi.org/10.1158/1541-7786.MCR-19-0018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu B, Zhang X, Sun S, Fu Y, Xie L, Ai P. Nf-kappab and neutrophil extracellular traps cooperate to promote breast cancer progression and metastasis. Exp Cell Res. 2021;405(2):112707. https://doi.org/10.1016/j.yexcr.2021.112707 (Epub 2021/06/22).
Article
CAS
PubMed
Google Scholar
Gray RD, McCullagh BN, McCray PB. Nets and Cf lung disease: current status and future prospects. Antibiotics. 2015;4(1):62–75. https://doi.org/10.3390/antibiotics4010062 (Epub 2015/01/01).
Article
CAS
PubMed
PubMed Central
Google Scholar
Volkov DV, Tetz GV, Rubtsov YP, Stepanov AV, Gabibov AG. Neutrophil extracellular traps (nets): opportunities for targeted therapy. Acta Naturae. 2021;13(3):15–23. https://doi.org/10.32607/actanaturae.11503 (Epub 2021/10/29).
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen J, Hou S, Liang Q, He W, Li R, Wang H, et al. Localized degradation of neutrophil extracellular traps by photoregulated enzyme delivery for cancer immunotherapy and metastasis suppression. ACS Nano. 2022;16(2):2585–97. https://doi.org/10.1021/acsnano.1c09318 (Epub 2022/01/27).
Article
CAS
PubMed
Google Scholar
Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, et al. Interleukin-17-Induced Neutrophil Extracellular Traps Mediate Resistance to Checkpoint Blockade in Pancreatic Cancer. J Exp Med. 2020;217(12):e20190354. https://doi.org/10.1084/jem.20190354 (Epub 2020/08/30).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schalper KA, Carleton M, Zhou M, Chen T, Feng Y, Huang SP, et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 2020;26(5):688–92. https://doi.org/10.1038/s41591-020-0856-x (Epub 2020/05/15).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schott AF, Goldstein LJ, Cristofanilli M, Ruffini PA, McCanna S, Reuben JM, et al. Phase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with Her-2-negative metastatic breast cancer. Clin Cancer Res. 2017;23(18):5358–65. https://doi.org/10.1158/1078-0432.CCR-16-2748 (Epub 2017/05/26).
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia Y, He J, Zhang H, Wang H, Tetz G, Maguire CA, et al. Aav-mediated gene transfer of dnase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response. Mol Oncol. 2020;14(11):2920–35. https://doi.org/10.1002/1878-0261.12787 (Epub 2020/08/20).
Article
CAS
PubMed
PubMed Central
Google Scholar
Rayes RF, Vourtzoumis P, Bou Rjeily M, Seth R, Bourdeau F, Giannias B, et al. Neutrophil extracellular trap-associated ceacam1 as a putative therapeutic target to prevent metastatic progression of colon carcinoma. J Immunol. 2020;204(8):2285–94. https://doi.org/10.4049/jimmunol.1900240 (Epub 2020/03/15).
Article
CAS
PubMed
Google Scholar
Jiang KL, Ma PP, Yang XQ, Zhong L, Wang H, Zhu XY, et al. Neutrophil elastase and its therapeutic effect on leukemia cells. Mol Med Rep. 2015;12(3):4165–72. https://doi.org/10.3892/mmr.2015.3946 (Epub 2015/06/18).
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng W, Warner R, Ruggeri R, Su C, Cortes C, Skoura A, et al. Pf-1355, a mechanism-based myeloperoxidase inhibitor, prevents immune complex vasculitis and anti-glomerular basement membrane glomerulonephritis. J Pharmacol Exp Ther. 2015;353(2):288–98. https://doi.org/10.1124/jpet.114.221788 (Epub 2015/02/24).
Article
CAS
PubMed
Google Scholar
Knight JS, Subramanian V, O’Dell AA, Yalavarthi S, Zhao W, Smith CK, et al. Peptidylarginine deiminase inhibition disrupts net formation and protects against kidney, skin and vascular disease in Lupus-Prone Mrl/Lpr mice. Ann Rheum Dis. 2015;74(12):2199–206. https://doi.org/10.1136/annrheumdis-2014-205365 (Epub 2014/08/12).
Article
CAS
PubMed
Google Scholar
Greene S, Robbins Y, Mydlarz WK, Huynh AP, Schmitt NC, Friedman J, et al. Inhibition of Mdsc trafficking with Sx-682, a Cxcr1/2 inhibitor, enhances Nk-cell immunotherapy in head and neck cancer models. Clin Cancer Res. 2020;26(6):1420–31. https://doi.org/10.1158/1078-0432.CCR-19-2625 (Epub 2019/12/19).
Article
CAS
PubMed
Google Scholar
Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, et al. Targeting both tumour-associated Cxcr2(+) neutrophils and Ccr2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 2018;67(6):1112–23. https://doi.org/10.1136/gutjnl-2017-313738 (Epub 2017/12/03).
Article
CAS
PubMed
Google Scholar
Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, et al. Cxcr2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell. 2016;29(6):832–45. https://doi.org/10.1016/j.ccell.2016.04.014 (Epub 2016/06/07).
Article
CAS
PubMed
PubMed Central
Google Scholar
Skov L, Beurskens FJ, Zachariae CO, Reitamo S, Teeling J, Satijn D, et al. Il-8 as antibody therapeutic target in inflammatory diseases: reduction of clinical activity in palmoplantar pustulosis. J Immunol. 2008;181(1):669–79. https://doi.org/10.4049/jimmunol.181.1.669 (Epub 2008/06/21).
Article
CAS
PubMed
Google Scholar
Pastille E, Fassnacht T, Adamczyk A, Ngo TPN, Buer J, Westendorf AM. Inhibition of Tlr4 signaling impedes tumor growth in colitis-associated colon cancer. Front Immunol. 2021;12:66. https://doi.org/10.3389/fimmu.2021.669747 (Epub 2021/05/25).
Article
CAS
Google Scholar
Zhang S, Zhang Q, Wang F, Guo X, Liu T, Zhao Y, et al. Hydroxychloroquine inhibiting neutrophil extracellular trap formation alleviates hepatic ischemia/reperfusion injury by blocking Tlr9 in mice. Clin Immunol. 2020;216:108461. https://doi.org/10.1016/j.clim.2020.108461 (Epub 2020/05/22).
Article
CAS
PubMed
Google Scholar
Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, et al. Local release of Tgf-beta inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. Adv Sci. 2022;9(10):e2105240. https://doi.org/10.1002/advs.202105240 (Epub 2022/02/08).
Article
CAS
Google Scholar
Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (nets) in disease: potential anti-nets therapeutics. Clin Rev Allergy Immunol. 2021;61(2):194–211. https://doi.org/10.1007/s12016-020-08804-7 (Epub 2020/08/03).
Article
CAS
PubMed
Google Scholar