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Abstract 

Myelodysplastic syndromes (MDS) are generally considered as a group of clonal diseases derived from hematopoietic 
stem cells, but a number of studies have suggested that they are derived from myeloid progenitor cells. We aimed to 
identify the cell of origin in MDS by single-cell analyses. Targeted single-cell RNA sequencing, covering six frequently 
mutated genes (U2AF1, SF3B1, TET2, ASXL1, TP53, and DNMT3A) in MDS, was developed and performed on individual 
cells isolated from the CD34+ and six lineage populations in the bone marrow of healthy donors (HDs) and patients 
with MDS. The detected mutations were used as clonal markers to define clones. By dissecting the distribution of 
clones in six lineages, the clonal origin was determined. We identified three mutations both in HDs and patients with 
MDS, termed clonal hematopoiesis (CH) mutations. We also identified fifteen mutations only detected in patients 
with MDS, termed MDS mutations. Clonal analysis showed that CH clones marked by CH mutations and MDS clones 
marked by MDS mutations were derived from hematopoietic stem cells as well as various hematopoietic progenitor 
cells. Most patients with MDS showed the chimeric state with CH clones and MDS clones. Clone size analysis sug-
gested that CH mutations may not contribute to clonal expansion of MDS. In conclusion, MDS comprise multiple 
clones derived from hematopoietic stem and progenitor cells.
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To the editor,
Myelodysplastic syndromes (MDS) were proposed to arise 
from a stepwise acquisition of mutations [1, 2] and are 
reported as hematopoietic stem cells (HSCs)-origin dis-
eases [3]. However, an increasing number of studies have 
suggested myeloid progenitor cells are the cell of origin 
[4, 5]. Additional mutations can be acquired and confer 

the self-renewal ability to hematopoietic progenitor cells 
(HPCs) in the progression of MDS [3, 4]. Thus, the cell of 
origin in MDS remains controversial. In principle, mutant 
clones that originate from HSCs should be detected in all 
their descendent blood lineages, enabling the reconstruc-
tion of clonal structures in cancer [6]. Single-cell sequenc-
ing but not bulk sequencing detects the co-occurrence 
of mutations in the same cells, permitting to distinguish 
individual clones from one another. In this study, we took 
advantage of lineage tracing techniques by using targeted 
single-cell RNA sequencing to address this issue [7].

BM cells were obtained from five healthy donors 
(HDs) and two AML patients in complete remission (HD 
group), as well as fourteen MDS patients (MDS group) 
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Fig. 1  Comparison of mutations and clones between HD and MDS groups. A Data include all single cells analyzed by single-cell RNA-seq. Data 
of single cells in the HPCs (H), neutrophils (n), monocytes (m), erythroblasts (E), megakaryocytes (M), B cells (B), and T cells (T) populations from 
individual donors are shown in columns. Detected mutations are shown in rows. Mutations are shown in red. WT is shown as blank. When mutation 
sites had <10 reads, we could not determine whether mutations exist and data are shown in gray as NA (not available). B The percentage of 
mutant cells among the total single cells examined per donor. Data are presented as the medians with interquartile ranges. C Number of identified 
mutations per donor. Data are presented as the mean ± S.E. D The clonal analysis of PT2.7 is shown as an example. Eleven distinct clones were 
detected based on combinations of four mutations and some clones were detected in multiple populations. The upper panel shows the number of 
cells detected in a clone. Clones are identified with the combination of mutations. The lower panel shows the combinations of mutations detected 
in each clone. E Number of clones per donor in the HD group and MDS group. F Clonal diversity examined using the Shannon diversity index. 
Mann–Whitney U test was used in Fig. 1B, E, F, and two-sided Student’s t test was used in Fig. 1C. ns, p > 0.05; *, p < 0.05; **, p < 0.01; and ***, p < 
0.001. D–F Wild type (WT) clones without mutations were excluded
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(Additional file  1: Table  S1). Single cells were sorted 
from CD34+ HPCs and six lineage populations: neutro-
phils, monocytes, erythroblasts, megakaryocytes, B cells, 
and T cells (Additional file  2: Fig. S1). These popula-
tions were then subjected to a targeted single-cell RNA-
sequencing mutation analysis, covering U2AF1, SF3B1, 
TET2, ASXL1, TP53, and DNMT3A, the most frequently 
mutated genes in MDS [1, 2] (Additional file  2: Fig. 
S2A–C). After filtration, we obtained 3,549 single cells 
(Additional file 2: Fig. S3A–C). A total of eighteen muta-
tions were detected from all donors. All mutations were 
reported in COSMIC database. Three mutations detected 
in both the HD and MDS groups were termed CH muta-
tions while the remaining fifteen mutations only detected 
in MDS group were termed MDS mutations (Fig.  1A, 
Additional file 1: Table S2), although the border between 
CH related mutations and MDS/AML related muta-
tions is still blurry [8]. The fraction of cells carrying CH 
mutations was similar to that carrying MDS mutations 
(Fig.  1B). Greater mutation number in the MDS group 
than that in the HD group was observed (Fig. 1C).

Clones were defined as cells with identical combina-
tions of mutations [9] (Fig.  1D). A total of eighty-nine 
clones were detected in all donors. CH clones were 
marked with CH mutations while MDS clones were 
marked with MDS mutations alone or both CH muta-
tions and MDS mutations (Additional file  2: Fig. S4A). 
Greater clone number and clonal diversity in the MDS 
group than that in the HD group were observed (Fig. 1E, 
F), suggesting the accumulation of genetic lesions with 
more complexity during the progression to malignant 
diseases [10].

Most patients with MDS presented the mixture of mul-
tiple CH clones and MDS clones (Fig. 2A). The clone size 
of CH clones was significantly greater than that of MDS 
clones (Additional file 2: Fig. S4B), even within the MDS 

group (Fig. 2B), suggesting the acquisition of CH muta-
tions occurs earlier than that of MDS mutations [11]. 
No statistical difference in the clone size of CH clones 
between HD and MDS groups was observed (Fig.  2C). 
Both CH mutant clones and MDS mutant clones were 
larger in clone size than double mutant clones from 
MDS group, suggesting that CH mutations do not pro-
vide a significant growth advantage to MDS mutations 
(Fig. 2D).

CH clones and MDS clones were detected in a vari-
ety of lineage combinations (Fig.  2E). The number of 
cell populations involved in CH clones was significantly 
greater than that in MDS clones (Fig. 2F). When the same 
clones were detected in all six lineage populations regard-
less of H population, they were considered to originate 
from HSCs, otherwise from HPCs. 27% CH clones were 
derived from HSCs while 10% MDS clones were derived 
from HSCs (Fig.  2G). Of note, exact HPC types could 
not be defined by our strategy. 10 out of 37 HPC-derived 
MDS clones were found in MDS-EB1 patients and 19 out 
of 37 HPC-derived MDS clones was found in MDS-EB2 
and sAML  patients. MDS with higher blasts seems to 
have more chance to have HPC origin (Additional file 1: 
Table S3). But the percentage of blasts was not related to 
clone distribution (Additional file  2: Fig. S4C). A small 
number of single cells such as 18–26 cells per population 
were examined in previous single-cell analysis of MDS/
AML [12]. In two MDS patients (PT2.13 and PT2.14), 
more single cells were analyzed, confirming the HSC and 
HPC origins for most MDS clones.

The number of HSC-derived clones might be underes-
timated, because a limited number of cells per population 
was analyzed. Nevertheless, if not all, MDS appeared to 
be the mixture of CH clones and MDS clones originating 
from HSCs and HPCs.

(See figure on next page.)
Fig. 2  Donor and lineage distributions of CH clones and MDS clones. A Donor distributions of CH clones and MDS clones. Each column represents 
a donor. Each row represents a clone. The mutation composition per clone is shown on the far left. The presence of the clone in donors is shown 
as a yellow grid. Data of HD3 and HD5 were excluded since neither mutations nor clones were detected. B Comparison of the clone size between 
CH clones and MDS clones from the MDS group. C Comparison of the clone size of CH clones between the HD and MDS groups. D Comparison 
of the clone size among MDS clones marked with both CH mutations and MDS mutations (Double mutant clones), CH clones with the same 
CH mutations alone (CH mutant clones) and MDS clones with the same MDS mutations alone (MDS mutant clones) in eleven cases of four MDS 
patients. Clones from the same donors were connected with the line and shown in the same color. E Lineage distributions of CH clones and 
MDS clones. Each column represents one clone. The same clones were grouped under the same number. Clones not shared by two or more 
donors (Clones not shared) and clones shared by two or more donors (Clones shared) are separately shown. The presence of a clone in seven 
populations is shown as a yellow grid. The mutation composition per clone is shown on the bottom panel (see legends in part figure A). F Number 
of populations involved in CH clones and MDS clones. Each dot represents a clone. G Number of clones originating from HSCs and HPCs. (A-G) 
Mann–Whitney U test was used in all comparison analysis. ns, p > 0.05; **, p < 0.01; and ***, p < 0.001. Clones without any mutations and clones with 
uncertain mutations (NA) were excluded from these analyses
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Fig. 2  (See legend on previous page.)
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transcription-polymerase chain reaction.
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Additional file 2: Figure S1. Gating strategy for seven cell popu-
lations. FACS strategy used to isolate single cells from the seven 
populations: H, CD34+CD45low cells; E, CD45−CD235a+CD71+ cells; M, 
CD45−CD235a−CD41+ cells; m, CD45+CD33+CD14+CD16− cells; n, 
CD45+CD33+CD14−CD16+ cells; B, CD45+CD19+CD20+ cells; and T, 
CD45+CD3+ cells. The upper panels represent HD data, and the lower 
panels represent data from a patient with MDS. Figure S2. Targeted 
single-cell RNA-seq method. A Schematic diagram of the targeted single-
cell RNA-seq method. Single H, n, m, E, M, B, and T were sorted by flow 
cytometry into a 96-well plate. One-step RT-PCR was performed with the 
first-round primer mix. The second round of PCR was performed with PCR 
primer mix 1 or mix 2. Finally, a sequencing library was constructed with 
p5 and p7 adaptors. B Frequency at which the DNMT3A p.R301W mutation 
was detected in 32 single JURKAT cells. The positive rate was 78.1%. C 
Electrophoretogram of the representative libraries from single cells and 
20 cells from a patient with MDS. One pair of each primer (U2AF1, SF3B1, 
ASXL1, TP53, TET2, and DNMT3A) from the PCR primer mix (PCR primer mix 
1 or PCR primer mix 2) was used for the second round of PCR, followed 
by library construction. PCR products were separated on a gel. Library 
construction performed without cells served as a negative control (neg). 
Figure S3. Qualification of single cell RNA-seq data. A The results of 
single-cell filtration. The number of qualified and unqualified single cells 
is shown for individual donors. Only qualified cell data were used in the 
analysis. B Coverage of each mutation in single cells after filtration. The 
total number of reads covering each mutation site in qualified single 
cells is shown as the coverage. The threshold of coverage was 10x and is 
marked by a horizontal dotted line. Data are presented as the medians 
with interquartile ranges. Data points that fell outside of the upper and 
lower whiskers were considered outliers and are not shown. C Variant 
allele frequency (VAF) of mutations after filtration. Each dot represents 
the VAF of each mutation from single cells of donors carrying this muta-
tion after filtration. Figure S4. The clone landscape in all donors. A Data 
include all clones identified. Eighteen identified mutations were used 
to detect eighty-nine clones from all donors. Each column represents a 
clone. CH clones were identified with CH mutations. MDS clones were 
identified with MDS mutations regardless of the coexistence of CH muta-
tions. The lineage distributions of clones are shown in orange in the upper 
panel. The composition of mutations in each clone is shown in the lower 
panel. The presence of mutations is shown in red. WT is shown as blank. 
Mutation sites without enough reads to determine genotypes are shown 
in gray as not available (NA). The bottom panel shows the clone size. Wild 
type (WT) clones without mutations were excluded. Data of HD3 and 
HD5 are not shown since neither mutations nor clones were detected. 
B Clone size of CH clones and MDS clones from all donors. ***, p < 0.001 
(Mann–Whitney U test). C Clone size and number of populations involved 
in clones were compared between low blasts and high blasts groups. 
Fourteen patients with MDS were classified into low blasts (1%-9%) group 
(n = 8) mainly consisting of EB1 and high blasts (>9%) group (n = 6) 
mainly consisting of EB2. ns, p > 0.05 (Mann–Whitney U test).
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