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Abstract 

Background:  MET amplification plays an important role in the development of non-small-cell lung cancer (NSCLC) 
either de novo or in resistance to epidermal growth factor receptor tyrosine–kinase inhibitor (EGFR-TKI) settings. Fluo‑
rescence in situ hybridization (FISH) is the standard method for MET amplification. With more and more discoveries of 
oncogenic driver genes, next-generation sequencing (NGS) plays a significant role in precision oncology. Meanwhile, 
the role of NGS in MET amplification remains uncertain.

Methods:  Forty patients diagnosed with advanced NSCLC were included. FISH and NGS were conducted prior to 
MET inhibitors treatment. MET amplification by FISH was defined as a MET/CEP7 ratio of  >  2.0 and/or copy number 
(CN)  >  5. MET amplification by NGS was defined as gene copy number (GCN)  ≥  5.

Results:  The concordance rate among FISH and NGS was 62.5% (25/40). MET amplification identified by FISH showed 
the optimal predictive value. The partial response (PR) rate was 68.0% (17/25 with MET amplification) vs. 6.7% (1/15 
without MET amplification); the median progression-free survival (PFS) was 5.4 months versus 1.0 months (P  < 0.001). 
MET amplification identified by NGS failed to distinguish significant clinical outcomes. The PR rate was 60.0% (6/10, 
with MET GCN  ≥ 5) vs. 40.0% (12/30, with MET GCN  < 5); the median PFS was 4.8 months vs. 2.2 months (P  = 0.357). 
The PR rate was 68.8% (11/16) and the median PFS was 4.8 months in patients with focal amplification by NGS.

Conclusions:  MET amplification identified by FISH remains the optimal biomarker to identify suitable candidates for 
MET-TKI therapy. In comparison, amplification identified by NGS seems not as robust to be effective predictive bio‑
marker. Further exploration is needed regarding the focal amplification by NGS in predicting the efficacy.
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Background
The discovery of oncogenic driver genes has improved 
the overall survival (OS) of advanced non-small-cell lung 
cancer (NSCLC) patients in clinical practice [1–4]. One 
of the most important achievements in NSCLC research 
has been the development of epidermal growth factor 
receptor tyrosine kinase inhibitors (EGFR-TKIs), which 
have increased the OS of patients with advanced-stage 
EGFR-mutated NSCLC to approximately 22–34 months 
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[5–9]. Small molecular drugs targeting eight oncogenic 
driver genes (EGFR, ALK, ROS1, BRAF V600E, MET 
exon 14 skipping, RET, KRAS G12C, and NTRK) have 
been approved for the market [10]. The search for new 
targets has become an important direction in lung cancer 
research.

MET, located in the 7q21-31 region, belongs to the 
tyrosine kinase protein family. MET activation has been 
shown to promote tumor cell growth, survival, migra-
tion, and invasion by interacting with multiple pathways 
[11]. Major types of MET abnormalities include the MET 
exon 14 skipping mutation, MET amplification, MET 
overexpression, and MET fusion. The MET exon 14 skip-
ping mutation exists in approximately 5% of lung cancer 
patients and has been recognized as an oncogenic driver 
gene [12]. MET overexpression is common in untreated 
NSCLC patients, occurring in approximately 50% of this 
population. De novo MET amplification occurring in 
only 1–5% of NSCLC patients. However, among patients 
who develop EGFR-TKI resistance, 64% and 5–22% of 
patients show MET overexpression and MET amplifica-
tion, respectively [13, 14].

MET amplification represents a resistance mecha-
nism in EGFR-mutated NSCLC patients treated with 
EGFR-TKIs [15–18]. The INC280 study showed that in 
patients with EGFR mutation and acquired MET ampli-
fication, the combination of capmatinib with gefitinib 
was a promising treatment, with a disease control rate 
of 57%. Notably, the objective response rate (ORR) was 
up to 47% in patients with MET amplification, defined 
as Copy number (CN)  ≥ 6 [19]. Tepotinib plus gefitinib 
also showed significantly better progression-free survival 
(PFS) and OS than chemotherapy in patients with MET 
amplification (16.6 months vs. 4.2 months; 37.3 months 
vs. 17.9  months, respectively) [20]. Two phase Ib clini-
cal trials revealed that a combination of savolitinib and 
osimertinib or gefitinib showed promising antitumor 
activity and tolerable toxicity in patients with acquired 
MET-amplified NSCLC [21, 22].

Moreover, MET amplification, particularly at a high 
level, also seems to play a driver gene role in advanced 
NSCLC. A previous study showed that the ORR in groups 
with different MET/CEP7 ratios differed dramatically 
in response to the MET/ALK/ROS1 inhibitor crizotinib 
(MET/CEP7  ≥ 5, ORR  = 67%) [23]. A recent study also 
founded better survival benefits in patients with MET/
CEP7  ≥ 4 (ORR of 38.1%, median PFS  = 6.7  months) 
[24]. Presentations during the 2020 American Society of 
Clinical Oncology and 2020 European Society of Medi-
cal Oncology meetings reported that capmatinib had 
achieved higher ORR (40.0%) and better survival benefits 
in patients with de novo MET amplification, especially 

with high-level MET amplification [gene copy number 
(GCN)  ≥ 10] as a first-line treatment [25, 26].

With respect to diagnostic modalities for MET ampli-
fication, fluorescence in  situ hybridization (FISH) was 
considered the gold standard. A previous study showed 
that PFS differed significantly between patients with 
MET amplification-positive and -negative FISH findings 
(8.2  months vs. 1.3  months, P  = 0.002) [27]. Recently, 
next-generation sequencing (NGS) has been widely 
applied in clinical practice to detect comprehensive gene 
profiles, including point testing of multiple-gene DNA 
mutations, as well as gene amplification, rearrangement, 
and fusion. However, the definition of MET amplification 
varies on different NGS platforms. The cutoff value varies 
from GCN 2.3–10. It remains unclear whether NGS can 
serve as an alternate method for identifying MET ampli-
fication. Therefore, we conducted this study to investigate 
the relationship between MET amplification detected by 
FISH and MET amplification detected by NGS. We then 
explored optimal biomarkers based on their efficacy in 
selection of suitable candidates for MET-TKI treatment 
in advanced NSCLC.

Patients and methods
This study was conducted at the Guangdong Lung Can-
cer Institute and was approved by the Research Ethics 
Committee of the Guangdong Provincial People’s Hospi-
tal (No. 2013185H[R2]). Written informed consent was 
obtained from each patient prior to sample collection. 
From March 2014 to June 2019, 40 NSCLC patients with 
MET inhibitors were included in this study. Immunohis-
tochemistry (IHC) was conducted for primary screening 
and then MET amplification was tested by FISH and NGS 
at baseline for all patients.  Tumor samples were tested 
using FISH and NGS to identify MET amplification prior 
to MET-TKI. Baseline clinicopathological data, including 
patient characteristics and gene status (EGFR and MET), 
were collected from medical records. PFS was measured 
from the date of first administration of MET-TKIs until 
the date of disease progression or death. Response rate 
and PFS were calculated separately for FISH and NGS 
results, then used to compare the two methods of testing.

Assessment of MET amplification
Fluorescence in situ hybridization
Dual-color FISH was performed using deparaffinized 
4-μm-thick sections with a MET/CEN7q dual-color 
FISH probe (Vysis, Abbott Laboratories). MET amplifica-
tion was defined as a mean gene copy number  ≥ 5 and/
or MET to centromere of chromosome 7 ratio  > 2.0 and 
evaluated using the criteria established by Cappuzzo [22] 
(i.e., a mean of  > 5 copies per cell, MET-to-CEN7 ratio 
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of  > 2.0 or clustered gene amplification evident in all 
nuclei).

Next‑generation sequencing
NGS was performed using a HiSeq 4000 NGS platform 
(Illumina) or NovaSeq 6000 NGS platform (Illumina). 
MET amplification was evaluated based on the ratio 
of GCN to a baseline established from a pool of sam-
ples with normal MET status. GCN  ≥ 5 was defined as 
MET amplification criteria from TATTON trial [22]. 
The criteria were samples with  ≥ 10% tumor cells and  
≥ 500 ×  sequencing depth. Further analysis was con-
ducted to distinguish between focal and non-focal MET 
amplification, where focal amplification was defined as a 
MET amplification size of  < 20 Mbp or both MET/CDK6 
and MET/BRAF ratios of  ≥ 1.2.

Results
From March 2014 to June 2019, 40 NSCLC patients 
with MET inhibitors were included in this study. IHC 
was conducted for primary screening and then MET 

amplification was tested by FISH and NGS at baseline 
for all patients (Table 1). Among all tests, 25/40 cases of 
MET amplification were diagnosed by FISH and 10/40 
cases were diagnosed by NGS (GCN  ≥ 5). The concord-
ance rate between FISH and NGS was 62.5% (25/40) 
(concordance rate means the same results from FISH and 
NGS, including negative or positive) (Fig. 1a). All patients 
received MET inhibitors (such as crizotinib, Savolitinib 
and bozitinib etc.) as treatment. The partial response 
(PR) rate was 45.0% (18/40) and the median PFS was 
4.0 months (Fig. 2a). 

We calculated the PR rate and PFS for MET amplifica-
tion identified by FISH and NGS. In the FISH group, the 
PR rate was 68.0% (17/25) vs. 6.7% (1/15); the median PFS 
was 5.4 months vs. 1.0 months (P  < 0.001) (Figs. 1b, 2b). 
In the NGS group, the PR rate was 60.0% (6/10) vs. 40.0% 
(12/30); the median PFS was 4.8 months vs. 2.2 months 
(P  = 0.357) (Figs. 1b, 2c). Among the 35 available tumor 
samples, 45.7% (16/35) were identified as MET focal 
amplification by NGS (Fig.  3). The PR rate was 68.8% 
(11/16) and the median PFS was 4.8 months in patients 
with MET focal amplification by NGS (Fig. 2d).

Multivariable analyses of PFS using the Cox propor-
tional hazard regression method showed that PFS was 
significantly different only according to the MET amplifi-
cation identified by FISH.

Fig. 1  Comparison between MET amplification identified by FISH 
and NGS. a Consistency between MET amplification identified by FISH 
and NGS. b PR rate in group between MET amplification and MET 
non-amplification identified by different methods. ***P value  < 0.001, 
ns no significance

Table 1  Clinicopathologic characteristics of enrolled patients

Data are presented as n (%)

GCN Gene copy number

Characteristic N (%)

Age, years

 < 60 26 (65.0)

 ≥ 60 14 (35.0)

Sex

 Female 14 (35.0)

 Male 26 (65.0)

Pathology

 Adenocarcinoma 37 (92.5)

 Others 3 (7.5)

EGFR status

 Wide-type 21 (52.5)

 Mutation 19 (47.5)

MET exon 14 skipping mutations

 Yes 2 (5.0)

 No 38 (95.0)

MET amplification by FISH

 Amplified 25 (62.5)

 Non-amplified 15 (37.5)

MET amplification by NGS

 GCN  ≥ 5 10 (25.0)

 GCN  < 5 30 (75.0)

Focal amplified by NGS

 Focal amplified 16 (40.0)

 Non-focal amplified 19 (47.5)

 Not available 5 (12.5)
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Discussion
MET amplification as a pharmaceutical target has 
become a hot research topic, especially in terms of EGFR-
TKI resistance. Unlike gene point mutation, MET ampli-
fication is difficult to test using reverse-transcription 
polymerase chain reaction (RT-PCR) or NGS. Although 
NGS results are widely used to guide the clinical manage-
ment of oncogene driver-positive cancer, there is a lack of 
evidence regarding the accuracy and appropriateness of 
MET amplification identified by NGS as an indication for 
MET-TKI treatment. Few studies have investigated the 
concordance between NGS and FISH detection results 
for MET amplification. One study reported a low cor-
relation of MET amplification results obtained by NGS 
and FISH. Among patients with FISH-positive results 
who had CN  ≥ 8, only 1/3 exhibited MET amplification 
according to NGS [28]. The results of the TATTON study 
also showed low consistency between NGS and FISH for 
MET amplification. In the FISH-positive group, only 26% 
of the patients (12/47) were diagnosed with MET amplifi-
cation by NGS [29, 30].

In our study, MET amplification identified by FISH 
showed the most optimal predictive efficiency for sur-
vival benefits. The PR rate [68.0% (17/25) vs. 6.7% (1/15)] 
and the median PFS (5.4  months vs. 1.0  months) were 
higher in the MET amplification group than in the non-
MET amplification group (P  < 0.001). Our findings 
showed that FISH positivity remains as the “gold stand-
ard” for evaluating MET amplification, with high accu-
racy and good correlation with treatment outcomes. 
Several patients such as ID23, got progression although 
they were carrying MET-amplification by FISH. It was 
indicating that some co-occurring gene alterations have 
potential to affect response, including TP53 mutation, 
EGFR amplification.

MET amplification identified by NGS failed to distin-
guish significant clinical outcomes. In the NGS group, 
the PR rate of MET amplification and non-amplification 
was 60.0% (6/10) vs. 40.0% (12/30); the median PFS 
was 4.8  months vs. 2.2  months (P  = 0.357) (Fig.  2c). 
Moreover, setting GCN  = 5 as cutoff value for MET 

Fig. 2  Progression-free survival in patients. a Progression-free survival in all patients (n  =  40). b Progression-free survival between MET 
amplification/non-amplification by FISH (n = 40). c Progression-free survival between MET GCN ≥  5/GCN <  5 by NGS (n = 40). d Progression-free 
survival between MET focal amplification/non-focal amplification by NGS (n  = 35)
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amplification by NGS was also likely to resulting in miss-
ing patients that with response.

Under FISH, MET amplification is defined as MET 
CN  > 5 or MET/CEP7  > 2.0. This criterion has been 
applied in several clinical trials including INSIGHT, 
VISION, and TATTON studies [19, 31–33]. Under 
NGS, some recent trials found higher gene copy num-
ber may have better predictive power. For example, the 
TATTON study defined GCN  > 5 as the MET ampli-
fication. The GEOMETRY mono-1 study also found 
that patients with GCN ≥ 10 tended to have a better 
overall response [25]. Similar results were observed 
in our study for patients with GCN  > 5. Though only 
12.5% (5/40) of patients showed GCN  ≥ 10, the PR rate 
among these patients reached 60.0%, with a median 
PFS of 7.3 months. However, patients with lung cancer 
based on this criterion are rare. In our study, only 8.5% 
(5/59) of patients showed a preliminary GCN of  > 10 
(Additional file 1: Table S1).

We found no significant associations among MET 
amplification status determined by NGS with survival 
benefits. There remains no general consensus regarding 
the protocol for detecting MET amplification by NGS in 
patients with lung cancer. No internationally accepted 
standard for testing MET amplification by NGS has been 
established. In this study, MET amplification by NGS was 
based on the ratio of GCN to the baseline value from a 
pool of samples with a known normal MET status, such 
that it is difficult to discriminate true amplification and 
polysomy by NGS. Therefore, MET amplification testing 

by NGS remains uncertain and it could not be directly 
used in clinical practice. If GCN  < 5, it is recommended 
to confirm MET status by FISH (Table 1).

Biological characteristics differ between focal and 
non-focal MET amplification diagnosed by NGS. A 
previous study using hybrid-capture-based comprehen-
sive genomic profiling showed a higher median CN in 
patients with focal MET amplification than in patients 
with non-focal MET amplification (11 copies vs. 7 cop-
ies; P  = 0.004). Furthermore, neither tumor mutation 
burden nor co-occurring MET and EGFR mutations 
were significantly correlated with the size of the MET 
amplification. However, other co-occurring oncogenic 
drivers were associated with non-focal MET ampli-
fication [34]. Therefore, we explored the role of focal 
MET amplification using NGS. The results showed a 
focal MET amplification frequency of 48.5% (17/35). 
The PR rate was 68.8% (11/16) and the median PFS was 
4.8 months in this patient group (Fig. 2d). Furthermore, 
patients with focal MET amplification present with a 
significantly higher median GCN than patients with 
non-focal MET amplification (7.5 copies vs. 2.7 copies; 
P  < 0.001), suggesting that focal amplification identi-
fied by NGS and its clinical relevance warrant further 
research. Despite some meaningful findings obtained 
in this study, our small sample sizes require cautious 
interpretation of the results.

In conclusion, MET amplification identified by FISH 
remains the optimal biomarker to identify suitable can-
didates for MET-TKI therapy. In this small, exploratory 

Fig. 3  Explorations for GCN and survival. Amp: MET amplification identified by FISH; No Amp: non-MET amplification identified by FISH; Focal Amp: 
MET focal amplification by NGS; Non-Focal Amp: MET non-focal amplification by NGS; GCN gene copy number
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series, MET amplification identified by NGS seems not 
as effective as a predictive biomarker for MET inhibitors. 
Further research is required regarding the role of focal 
amplification by NGS in predicting its efficacy.
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