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Abstract 

Despite the advances in intensive chemotherapy regimens and targeted therapies, overall survival (OS) of acute 
myeloid leukemia (AML) remains unfavorable due to inevitable chemotherapy resistance and high relapse rate, which 
mainly caused by the persistence existence of leukemia stem cells (LSCs). Bone marrow microenvironment (BMM), the 
home of hematopoiesis, has been considered to play a crucial role in both hematopoiesis and leukemogenesis. When 
interrupted by the AML cells, a malignant BMM formed and thus provided a refuge for LSCs and protecting them from 
the cytotoxic effects of chemotherapy. In this review, we summarized the alterations in the bidirectional interplay 
between hematopoietic cells and BMM in the normal/AML hematopoietic environment, and pointed out the key role 
of these alterations in pathogenesis and chemotherapy resistance of AML. Finally, we focused on the current potential 
BMM-targeted strategies together with future prospects and challenges. Accordingly, while further research is neces-
sary to elucidate the underlying mechanisms behind LSC–BMM interaction, targeting the interaction is perceived as a 
potential therapeutic strategy to eradicate LSCs and ultimately improve the outcome of AML.
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Introduction
Acute myeloid leukemia (AML) is one of the most com-
mon acute leukemia in adults, which is characterized 
by abnormal proliferation of undifferentiated and non-
functional hematopoietic blasts in bone marrow accom-
panied by injured production of normal blood cells [1]. 
Global incident cases of AML  gradually increased from 
63,840 in 1990 to 11,957 in 2017 according to latest epi-
demiological data from Global Burden Disease 2017 [2, 
3]. Over the past 40  years, administration of daunoru-
bicin for 3 days then with continuous infusion of cytara-
bine for 7 days has been the standard induction regimen 

for AML without encouraging breakthrough. Due to the 
prominent problems of chemotherapies and targeted 
therapies including treatment-related toxicity and high 
therapeutic resistance rates caused by residual leuke-
mia stem cells (LSCs), the efficacy of current treatments 
for AML has been unsatisfactory. The relapse rate is up 
to 60% in higher risk AML patients, leading to an over-
all 5-year survival rate of about 40% in patients under 
60. Meanwhile, a relatively grim prognosis was found in 
elderly patients over 60 years old, with the overall 5-year 
survival rate declining rapidly to only about 10% [4].

Bone marrow microenvironment (BMM), also known 
as bone marrow niche, was first depicted by Schofield in 
1978 [5]. Schofield et al. proposed that besides structural 
and supportive roles, the specific microenvironment inti-
mately engaged in maintaining long-term self-renewal 
of hematopoietic stem cells (HSCs). Later investigations 
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identified distinct components of BMM in murine mod-
els and confirmed that the interaction of BMM and 
HSCs participated in governing the fate of HSCs [6, 7]. 
Of note, heterogeneous niche in bone marrow differs in 
composition and thus exerts diverse functions on modu-
lating HSC behaviors [8]. LSCs are a group of leukemic 
cells that maintain the vitality of leukemic cell popula-
tions through aberrant self-renewal capacity and uncon-
trolled immortal proliferation status. Residual LSCs in 
the bone marrow microenvironment after chemotherapy 
is generally regarded as the key factor for AML relapse 
[9]. Recently rising evidence demonstrated that not only 
accumulating genetic lesions but also BMM’s runaway 
regulation of HSCs participated in the transition from 
HSCs into LSCs [10]. The transformed LSCs not only 
initiated hematopoietic homeostasis breaking, but also 
promoted remodeling of the surrounding BMM [11]. 
Further, at the expense of healthy HSCs and their sur-
rounding stromal cells, hijacked BMM accelerated the 
progression of AML and led to chemo-resistance by 
providing anti-apoptotic shelter [12]. Taken together, 
the LSC–BMM interaction plays a crucial role in AML 
development through a combination of soluble factors, 
adhesion signals, and neural signals. Thus, there rises an 
urgent need for a comprehensive understanding of LSC–
BMM interactions to expand novel specific targets and 
develop therapeutic regimens targeting LSC mobilization 
and elimination. Here, we briefly addressed several BMM 
components closely associated with hematopoiesis regu-
lation, then concentrated on the interactions between 
BMM and LSCs in AML development and chemo-resist-
ance, and summarized the potential therapeutic strate-
gies targeting LSC–BMM interplay.

Constructions of BMM
Abundant blood vessels and nerves systems were con-
tained in BMM. After the branches of nutrient arter-
ies penetrate through cortex via nutrient foramen, they 
give off widespread small arterioles which are wrapped 
by innervated smooth muscle cells to permit altera-
tion of vessel caliber and modulation of flow resistance. 
The small arterioles run closed to the endosteum and 
extend into the medullary cavity to form a dense net-
work of sinusoids. Sinusoidal network is considered to 
be the major site permitting efficient exchange of oxygen, 
nutrients, cytokines and hormones molecules, removing 
metabolic waste products, as well as providing channels 
for mature hematopoietic cells to enter peripheral blood. 
The sinusoidal vessels then influx into the central venous 
sinus, and ultimately outflow to nutrient veins which pass 
through nutrient foramen to exit bone marrow and enter 
the extramedullary blood circulation [7].

Based on anatomical structure, BMM has been gener-
ally categorized into two specialized niches: perivascu-
lar and endosteal. The perivascular niche (also known 
as the endothelial niche) has been further divided into 
perisinusoidal region and periarteriolar region according 
to the blood vessel types passing through. The endosteal 
niche (also known as the osteoblastic niche) is located 
on the endosteal bone surface, where osteoblasts are pri-
marily lined. Perisinusoidal region was reported distant 
from endosteal niche, while periarteriolar region located 
adjacent to endosteum surface [13]. The earliest investi-
gations in murine models suggested that the majority of 
primitive hematopoietic cells located near the endosteal 
surface rather than central medullary regions [14]. 
Later, emergence of new evidence has changed previous 
embedded perspectives. A research using deep confocal 
imaging reported the opposite discovery that the major-
ity of HSCs located in the central bone marrow area dis-
tant away from the endosteum and accumulated in the 
diaphysis instead of the metaphysis regions of long bone 
[15]. Moreover, the controversy over whether spatial dis-
tribution differences of activated/quiescent HSCs exist 
has continued. Kunisaki et  al. [16] reported that quies-
cent HSC populations tended to locate in periarteriolar 
region. However, later another study addressed that 
the majority of HSC population primarily surrounded 
around sinusoidal blood vessels instead of arterioles with 
no significant differences in the spatial location between 
dormant and proliferating HSC populations [15]. A tem-
porarily accepted view is that while the majority of HSCs 
is located around sinusoids rather than proximal to arte-
rioles or bone surface, the advantage in abundance does 
not represent a difference in HSC function and status 
[17]. However, whether there is a potential specific niche 
supporting HSC quiescence or activation is still worth 
considering. Indeed, a latest study identified distinct cav-
ity types in the metaphysis of long bones in mice, imply-
ing that the traditional way of HSC niche characterizing 
as endosteal or perivascular is inadequate [18].

Transgenic murine models have been widely employed 
to identify the constitution of the diverse and com-
plex BMM. Besides hematopoietic cell populations, the 
BMM is mainly comprised of heterogeneous stromal 
cell populations and extracellular matrix (ECM). Cur-
rently, stromal cell populations including mesenchymal 
stem cells (MSCs; also known as mesenchymal stromal 
cells), arteriolar and sinusoidal type endothelial cells, 
osteoblasts, osteoclasts, osteocytes, macrophages, mega-
karyocytes, adipocytes, sympathetic neurons, non-mye-
linating Schwann cells, C-X-C motif chemokine ligand 
12 (CXCL12)-abundant reticular cells, and ECM com-
ponents like collagen, fibronectin, laminin, plasmin have 
been identified in BMM [7]. In this section, we focused 



Page 3 of 19Yao et al. Exp Hematol Oncol           (2021) 10:39 	

on normal hematopoietic microenvironment of bone 
marrow and described several crucial components asso-
ciated with hematopoiesis.

MSCs
MSCs, primarily wrapped around arterial and sinusoidal 
vessels, are a heterogeneous population of non-hemat-
opoietic stem cells. Evidence supported that MSCs dis-
played the potential to give rise to a wide range of mature 
mesenchymal cell populations including osteoblasts, 
chondrocytes, adipocytes and fibroblast-like cells in the 
stromal microenvironment [19]. Currently, wide interest 
has been elicited to MSC-derived extracellular vehicles 
(MSC-EVs). MSC-EVs contain a variety of proteins and 
RNAs, express both EV and MSC markers, and inter-
act with targeted cells by transporting cargos  into the 
intracellular compartment. Several specific EV-derived 
miRNAs have been reported to be participated in immu-
nomodulation and regulation of MSC differentiation, 
proliferation and angiogenic activity [20].

Bone marrow adiposes
Bone marrow adipose tissue (BMAT) refers to MSCs-
derived adipose tissue in the bone marrow, which is an 
extramedullary reservoir of normal HSCs. Adipose tissue 
in different compartments perform distinct functions, 
which set BMAT apart from other adipose tissues like 
white adipose tissue and brown adipose tissue. There has 
been consistent controversy about the regulation direc-
tion of BMAT in hematopoiesis in the past years [21, 22]. 
Zhou et  al. [23] reported that there existed functional 
differences with adipocytes in different bone marrow 
compartments (long bones versus caudal vertebrae) in 
mice, with adipocytes promoting HSCs maintenance and 
regeneration by secreting stem cell factor (SCF) in long 
bones while making suppressive effects on hematopoie-
sis in caudal vertebrae. Besides, Zhou et al. also proposed 
a new perspective that adipogenesis was an emergency 
response to cytopenia that could promote rapid hemat-
opoiesis, which emphasized the strongly connected 
association between BMAT and hematopoiesis. The 
regulation of BMAT on hematopoiesis may be largely 
depend on the dynamic hematopoietic environment 
itself, with further studies to verify.

Autonomic nervous system
Evidence supported the positive role of autonomic nerv-
ous system to form a circadian rhythm of HSC mobiliza-
tion through rhythmically CXCL12 down-regulating and 
physiologic oscillations of glucocorticoid signal [24–28]. 
Recently, A study found that the central (parasympa-
thetic) and local (sympathetic) cholinergic signals coop-
erated to regulate the migration of hematopoietic stem/

progenitor cells (HSPCs) and leukocytes, thereby gener-
ating circadian rhythmic oscillations [29]. Besides par-
ticipating in mobilization, the autonomic nervous system 
has been reported to highly engaged in regulating the 
flow of arterioles and differentiation of osteoblasts [7, 30].

Neuroglial cells have been shown to be involved in size 
adjustment of the HSCs pool instead of purely conduit-
ing as supportive cells. Indeed, non-myelinating Schwann 
cells encapsulating autonomic nerves maintained sur-
rounding HSCs dormant by activating latent transform-
ing growth factor β (TGF-β) [31]. Sympathetic nerve 
denervation decreased TGF-β-producing cell population, 
resulting in a rapid loss of HSCs from bone marrow [32].

Extracellular matrix
The ECM network, abundant with collagens, glycopro-
teins, and proteoglycans, functions in compartmentali-
zation of bone marrow and participates in cell adhesion, 
migration, and proliferation [33, 34]. Several ECM ingre-
dients in hematopoiesis have been investigated. For 
instance, an early study has shown that α5-containing 
laminin favored multipotent hematopoietic cell adhe-
sion [35]. Bone marrow from laminin α4 deficient mice 
promoted the quiescence of HSCs and impaired the 
recirculation of HSCs across bone marrow vessels into 
the bone marrow niche [36]. Osteopontin (OPN), a phos-
phor glycoprotein which mainly secreted by osteoblastic 
cells, was found to induce HSCs migration toward the 
endosteal region and negatively adjustment pool size and 
function of HSCs by suppressing the expression of Jag-
ged1 and Ang-1 [34, 37].

Other components in the endosteal niche 
and the perivascular niche
It has been reported that osteoblasts within the endosteal 
niche play a vital role in HSCs long-term maintenance 
and bone marrow retention [7]. Osteoblasts inhibit the 
differentiation and enhance the self-renewal of HSCs to 
maintain HSCs pool through signal pathways including 
Jagged-1/Notch, Ang-1/Tie-2 and TPO/MPL [38–40]. 
Visnjic et  al. [41] showed that ablation of osteoblasts 
led to the loss of bone marrow cellularity, followed by a 
decrease in bone marrow hematopoiesis, accompanied 
with an active extramedullary hematopoiesis. Moreover, 
osteoblasts secrete varied hematopoietic cytokines and 
extracellular proteins, including granulocyte colony-
stimulating factor (G-CSF), interleukins, type I collagen, 
osteocalcin (OCN), OPN and others [42]. Accordingly, 
these studies have displayed the instrumental role of 
endosteal niche in HSCs maintenance and HSCs pool 
regulation.

The perivascular niche is composed of endothelial 
cells and a range of heterogeneous mesenchymal cells, 
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like CXCL12-abundant reticular (CAR) cells, nestin-
GFP+ cells, and leptin receptor (LepR)+ cells. Evidence 
showed that these stromal cell subgroups displayed a 
high degree of overlap with each other in the bone mar-
row [43]. Adipogenic and osteogenic capacities of CAR 
cells are regulated by complex transcription factor net-
work to permit enough space reserved for hematopoiesis 
[44, 45]. CAR cells also secrete chemokine CXCL12 and 
a series of adhesion molecules to mediate HSCs homing 
and support HSCs maintenance [46–48]. The distribu-
tion of nesting-GFP+ cells has been reported associated 
with GFP expression levels, with nesting-GFPbright mainly 
distributed around arterioles, while nesting-GFPdim 
proximal to sinusoids [16]. Such heterogeneous distri-
bution has been reported associated to the regulation of 
HSCs quiescence and the maintenance of the HSCs pool, 
despite of the dispute in respective proliferating/dormant 
HSCs distribution [16].

Hypoxia and reactive oxygen species (ROS) levels
It has been clarified that the bone marrow microenviron-
ment is ubiquitously hypoxic, with oxygen tension below 
10  mmHg [49]. Contrary to the previous view that the 
endosteum is relatively hypoxic in BMM, Spencer et  al. 
[13] demonstrated a moderate oxygen tension with the 
increasing distance away from the endosteum toward 
perivascular niche. Indeed, they found that despite of 
oxygen exchange taken place between sinusoids and sur-
rounding tissue, the oxygen level was significantly lower 
in the perisinusoidal region than periarteriolar region. 
Hypoxia has been previously considered critical for HSCs 
maintenance. Nevertheless, a latest study based on live-
animal imaging reported no HSCs were detected in the 
region with the lowest oxygen in central BM, indicating 
that extreme hypoxia may not be the prerequisite for 
maintaining stem cell quiescence [18]. Additionally, while 
it is generally reputed that the adaptation to hypoxia is 
principally mediated through the heterodimeric tran-
scription factor hypoxia-inducible factor (HIF), several 
investigations reported no detectable effects on HSCs 
maintenance in inducible acute deletion of Hif-1α and 
Hif-2α [50–52].

In addition, increasing evidence supported that ROS 
played a critical role of intracellular in HSCs behavior 
and function. It has been reported that knockdown of 
HIF1-α and HIF2-α caused damage to the self-renewal 
ability of HSPCs through enhanced ROS production 
[53]. Emerging studies have focused on the relationship 
between ROS levels and HSCs maintenance [54, 55]. 
Itkin et al. indicated that low ROS levels in the poor per-
meable periarteriolar region appeared to strengthen the 
maintenance of HSCs quiescence, whereas the ROS levels 

in the hyperpermeable perisinusoidal region drove acti-
vation of HSCs.

BMM–LSC interaction in leukemia development
Accumulating evidence have suggested that AML cells 
reshape a supportive microenvironment to accelerate 
leukemia progression and suppress the normal hemat-
opoiesis. Several instrumental molecular players in the 
regulation of angiogenesis, BMAT remodeling, adhe-
sion factors, neural signals, and hypoxia have been found 
closely correlated with ‘LSC-educated BMM’ and ‘micro-
environment-accelerated AML development and chemo-
resistance’. In addition, Kumar et  al. [56] revealed that 
AML-derived exosome secretion played a critical role in 
the forming of a leukemia growth-permissive and nor-
mal hematopoiesis-suppressive niche, which uncovered 
a novel feature of AML pathogenesis. The comparison of 
normal BMM and leukemic microenvironment is illus-
trated in Fig. 1.

Angiogenesis
Angiogenesis, defined as the development of new blood 
vessels starting from pre-existing vessels, is distinctly dif-
ferent from the normal vascularity. Driven by the over-
expression of pro-angiogenic factors triggered by relative 
hypoxia in tissues, angiogenesis promotes proliferation of 
malignant cells by continuous providing oxygen, nutri-
ents, and growth factors from surrounding microenvi-
ronment. Bone marrow microvessel density (MVD) can 
be used to estimate angiogenesis in leukemic patients. 
Due to the non-solid malignancy feature of AML, ini-
tially few studies had emphasized the role of angiogenesis 
in AML development. However, recent studies on BMM 
vasculature have found an increasing level of MVD in 
AML patients and suggested that angiogenesis is highly 
associated with leukemia progression. Consistent with 
reports in solid tumors, a poor prognosis was found in 
high baseline MVD patients [57].

Several angiogenic cytokines and signaling pathways 
were identified in angiogenesis. Vascular endothelial 
growth factor (VEGF) and angiopoietin are among the 
most pivotal angiogenic cytokines secreted by several 
types of stroma cells and leukemic cells. In general, AML 
cells secrete VEGF to activate VEGF receptor expressed 
on both AML cells and endothelial cells [58]. On the 
one hand, the autocrine form activates BCL2 family 
to protect leukemic cells from apoptosis [59]. On the 
other hand, VEGF binding to endothelial cells stimu-
lates growth factors including G-CSF and IL-6 secreted 
by endothelium, which promote angiogenesis and play 
critical roles in AML cells survivability and prolifera-
tion [60]. Additionally, several studies reported that the 
up-regulation of VEGF in AML blasts has been closely 
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associated with increased failure of complete remission 
(CR) and low overall survival (OS) [61, 62]. Ang/Tie axis 
is another signaling pathway that significantly associ-
ated with angiogenesis. Ang-1 participates in migration, 
adhesion, survival, and proliferation of endothelial cells, 
whereas the role of Ang-2 remains controversial depend-
ing on the cytokine microenvironment. Ang-2 competes 
with Ang-1 to bind the receptor and leads to apoptosis of 
endothelial cells and disruption of vasculature integrity, 
meanwhile contributes to angiogenesis by binding VEGF 
[63]. The controversial effects of Ang-2 in angiogenesis 
warrant intensive study in the future.

Another study taken by Passaro et  al. [64] indicated 
that AML microenvironment not only altered vascular 
density, but also enhanced vascular permeability. Using 
intravital two-photon microscopy to analyze vascular 
permeability in human AML engrafted mice with vari-
ous sizes of TRITC-dextran acted as tracer, they found a 
significant leakage of the dextran outside the vasculature 

in transplanted mice compared with controls, with AML 
engrafted area becoming the leakiest area. Enhanced vas-
cular permeability characterized with increased leakiness 
impairs drug delivery and reshapes microenvironment 
into chemo-resistant sanctuary. Therefore, restoring the 
damaged vascular permeability could serve as an adju-
vant treatment strategy in combination with traditional 
chemotherapy treatment.

BMAT remodeling
Remodeling of bone marrow adipocytes is intimately 
involved in AML development. Due to the uncontrolled 
expansion of leukemic cells in the limited bone marrow 
cavity, the living space of adipocytes is squeezed, induc-
ing a series of adipocyte remodeling process like mor-
phological changes and lipolysis [65].

Previous evidence revealed that BMAT has a con-
troversial effect on normal hematopoiesis. While in the 
leukemia environment, existing evidence unanimously 

Fig. 1  The comparison between normal/AML BMM with associated cellular interactions. The composition of the BMM contains hematopoietic cells, 
several stromal cell populations as well as ECM. HSCs with different behaviors have been found to reside in heterogenous niches. BMM supports 
hematopoiesis through interactions mediated by cell–cell contact and soluble secreted factors. Compared to normal BMM, there have been several 
prominent changes in AML BMM, including differential remodeling of the vasculature, alteration of cytokines secretion together with adhesion 
capacity, adaptability to hypoxia microenvironment and maintenance of low ROS, which lead to AML development and further chemoresistance. 
AML acute myeloid leukemia, BMM bone marrow microenvironment, HSC hematopoietic stem cell, MSC mesenchymal stem cell, CXCL12 C-X-C 
motif chemokine 12, CXCR4 C-X-C chemokine receptor 4, VLA-4 very late antigen 4, VCAM-1 vascular cell adhesion molecule 1, TGF-β transforming 
growth factor-β, OPN osteopontin, G-CSF granulocyte-colony stimulating factor, ECM extracellular matrix, BMA bone marrow Adipose, OB osteoblast 
OC osteoclast, Ebf3 transcription factor early B-cell factor 3, Foxc1 transcription factor forkhead box C1, HIF hypoxia-inducible factor, VEGF vascular 
endothelial growth factor, SNS sympathetic nervous system, GFP green fluorescent protein, MSC-EV MSC-derived extracellular vehicles, ROS reactive 
oxygen species, BCL-2 B-cell lymphoma-2
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supported the favorable role of the transformed BMAT in 
promoting survival and proliferation of leukemic cells. A 
study examined the adipocyte-leukemic cell interactions 
and elucidated that BMAT was modulated into a lipolytic 
state under the impact of AML cells, with subsequent 
releasing free fatty acids to maintain nutrient supply for 
leukemic cells within exuberant metabolism [66]. Later 
in a study exploring the mechanisms behind the remod-
eling of bone marrow adipocyte, Lu et  al. [67] reported 
that growth differentiation factor-15 (GDF15), a secreted 
propeptide highly expressed in leukemic cells, could pro-
mote the morphological transition of small adipocytes 
from larger adipocytes when released to the bone mar-
row cavity. they proceeded to elucidate that the down-
regulation of TRPV4 (a calcium channel on the adipocyte 
membrane) mediated by GDF15 played an important 
role in the morphological transition process [68]. Previ-
ous study found that highly expressed lipolytic gene was 
expressed in small adipocytes in mice [69]. In the study 
of Lu et al. [67], the lipolytic activity of GDF15-induced 
small adipocytes apparently enhanced with the elevated 
expression of lipolytic genes including HSL and ATGL. 
In turn, the large amounts of free fatty acids produced by 
lipolysis function satisfied energy requirements for leuke-
mic cells to support survival of leukemic cells [66].

Besides providing energy for leukemic cells, the dis-
ruption of adipocyte bone marrow niche also impaired 
endogenous myelo-erythropoiesis [22]. Proliferation of 
normal BMAT induced by PPARγ agonists could rescue 
healthy hematopoiesis and repress leukemia develop-
ment, indicating that targeting BMAT could be regarded 
as a potential strategy to arrest leukemia progression.

Sympathetic nervous system alteration
Studies have found that sympathetic neuropathy acceler-
ated the progression of AML. Hanoun et al. [70] revealed 
that in an MLL-AF9 AML murine model, bone marrow 
infiltration of malignant cells manipulated neuropathy 
of sympathetic nervous system (SNS) and reinforced 
AML progression. This process disrupts nestin GFP+ 
cell quiescence, leading to osteoblastic differentiation of 
the bone marrow MSCs at the expense of the reserved 
space for bone marrow cavity. The manipulated micro-
environment with SNS denervation facilitates expansion 
of leukemic cells and finally becomes not suitable for 
normal HSCs. Additionally, blockade of β2-adrenergic 
tone in these mice was found associated with extended 
leukemic cells proliferation and poor outcome, while the 
administration of an β2-adrenergic agonist led to reduc-
tion of LSCs and prolonged survival, indicating that sig-
nal alteration of β2-adrenergic associated pathway might 
be involved in leukemia progression. In another study, 
treated with β3-adrenergic stimulators, the restoration 

of sympathetic regulation on nestin+ MSCs alleviated 
myeloproliferative neoplasms progression [71]. In gen-
eral, these studies have suggested that normal SNS main-
tenance contributed to preservation of healthy HSCs and 
limitation of LSC expansion, prompting a future direc-
tion for ameliorating the malignant microenvironment.

Cytokines and adhesion molecules
The malignant BMM mediates the anchorage of LSCs by 
up-regulation of adhesion factors and chemokines, thus 
activating pro-survival pathways and providing a sta-
ble shelter for LSCs. Like normal HSCs, the majority of 
LSCs also express CXCR4 on their surface and migrate in 
response to CXCL12. Although AML cells exhibiting var-
ying degrees of differentiation expressed different CXCR4 
levels, Tavor et  al. [72] showed that internal CXCR4 
expression was up-regulated in all AML cases, including 
cells which do not express surface CXCR4. Indeed, the 
CXCL12/CXCR4 axis has been illustrated played cru-
cial role in LSCs survivability and proliferation. Previous 
studies showed that the activated binding of CXCL12 to 
CXCR4 activated downstream pro-survival and prolifera-
tive pathways including the JAK/STAT, PI3K/AKT, and 
MEK/ERK pathways [73, 74]. Correspondingly, inhibition 
of CXCL12/CXCR4 axis significantly impaired AML cell 
proliferation In  vitro [75]. CXCR4 has also been shown 
to play a key role in LSCs migration and homing. Burger 
et  al. [76] observed that CXCR4 activation was associ-
ated with migration of CD34+ HSPCs and AML cells 
beneath marrow stromal cells. Voermans et al. [77] inves-
tigated the phenotype of the migrated cells and showed 
that significantly higher migration was observed in LSCs 
compared to other LSCs-derived cells in AML. The 
prognostic value of CXCL12/CXCR4 axis in leukemia 
has been studied to push forward risk-stratified thera-
peutic strategies. It was reported that elevated CXCR4 
expression in LSCs defined a high relapse rate and a sig-
nificantly poor outcome [78]. Taken together, these evi-
dences revealed up-regulating of CXCL12/CXCR4 axis 
contributed to AML development by promoting leuke-
mia cell proliferation and homing capacity.

Adhesion to the niche is a fundamental step to AML 
pathogenesis and progression. In AML environment, Jac-
amo et al. [79] have shown that very late antigen-4 (VLA-
4) was highly expressed in AML cells. The interaction of 
VLA-4 with vascular cell adhesion molecule-1 (VCAM-
1) on stromal cells targeted pro-survival and proliferative 
pathways in both AML cells and stromal cells through 
NF-κB pathway, ultimately committing to chemotherapy 
resistance. Previous studies on the role of VLA-4 in AML 
prognostic values have reported controversial findings. A 
study on 36 AML patients demonstrated that expanded 
VLA-4 expression predicted an unfavored prognosis [80]. 
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Surprisingly, several independent studies for pediatric 
and adult patients have shown that an elevated expres-
sion of VLA-4 was linked with a better prognosis [81, 
82]. Thus, well-designed studies with large-sample size 
are required to prudently certify the connection between 
elevated VLA-4 expression and outcome in AML. Sev-
eral studies reported that an enhanced E-selectin level 
and an elevated binding capacity to LSCs were found in 
murine models of AML [83, 84]. A study revealed that 
the adhesion of E-selectin in AML led to the activa-
tion of the wnt pathway and hedgehog pathway of AML 
blasts to facilitate the survivability of AML blasts in the 
microenvironment [85]. Jin et  al. [86] revealed that leu-
kemic repopulation was markedly decreased through 
administration of CD44 antibody in human AML trans-
planted mice. Another study showed that the expression 
of CD44 variant exons in AML cells is more common and 
complex compared to normal hematopoietic cells [87]. 
Understanding how these adhesion molecules interplay 
with each other to affect leukemogenesis contributes to 
the developing of innovative therapeutic interventions.

Hypoxia and levels of ROS
It has been reported that while no detectable difference 
of hypoxic level has been observed between healthy bone 
marrow and leukemic bone marrow, leukemic cells could 
better adapt in hypoxic microenvironment compared to 
HSCs. Thus, the hypoxic microenvironment efficiently 
permit an expansion of leukemic subgroup in AML pro-
gression [88]. Several studies have investigated the role of 
activated HIF-1α and HIF-2α in AML progression. None-
theless, there remain disputes with the effect of HIFs, 
with HIFs being regarded as either oncogenes or tumor 
suppressor genes in AML. HIF-1 or HIF-2 knockdown in 
AML patient samples compromised their ability to recon-
stitute AML upon transplantation into recipient mice 
[53, 89]. Abdul-Aziz et al. demonstrated that hypoxia in 
bone marrow induced high levels of macrophage migra-
tion inhibitor factor (MIF) in AML cells to promote 
survivability and proliferation of AML cells in vivo [90]. 
Another study found that co-expression of RUNX1 and 
ASXL1 mutations enhanced transcription of HIF-1α and 
its target gene inhibitor of DNA binding 1 (ID1) expres-
sion [91]. Through initiating activation of AKT signaling 
pathway, ID1 played a key role in excessive proliferation 
promotion of leukemic cells [92]. Intriguingly, evidence 
revealed that HIF-1α also exerted an opposite effect of 
anti–AML progression by inducing AML cells to undergo 
differentiation. A study showed that by regulating the 
miRNA network and activating downstream p21 and 
STAT3, HIF-1α inhibited proliferation and induced dif-
ferentiation of AML cells [93]. Moreover, a research using 
conditional Hif-1α knockout murine model reported that 

any improvement of the outcome from Hif-1α deletion 
failed to be observed. In contrast, a faster development 
of AML and an enhanced aggressive phenotype were 
observed in this murine model with deletion of Hif-1α 
[94]. Similar outcomes were found in HIF-2α. Vukovic 
et al. [95] demonstrated that although HIF-2α obstructed 
LSCs development, it had no suppressive effects on LSCs 
maintenance in a conditional genetic model. These stud-
ies have challenged the general notion of potential strat-
egies on repressing HIF signaling pathway. The possible 
explain for the controversy could be the different genetic 
models (mouse versus human) the investigations devel-
oped. Besides, even in the same individual, the effect of 
hypoxia on quiescent LSCs and relatively mature leuke-
mic cells could be quite different. Moreover, there may 
exist unknown hypoxia-independent pathway down-
stream of HIF to compensate HIF inhibition. Therefore, 
the research results of HIF inhibition in single study can-
not be generalized and future work should pay attention 
to resolve these questions in heterogeneous genetic sub-
types of AML.

The generation of endogenous ROS is limited by the 
hypoxic BMM [96]. ROS remains heterogeneous within 
most LSCs in a reduced state (ROS-low) to maintain 
LSCs dominance and a relatively long-term survival. 
Intriguingly, although LSCs are consistent with HSCs 
in the oxidation state, the energy generation strategies 
of LSCs are significantly different. HSCs can effectively 
achieve energy homeostasis by glycolysis, while LSCs 
are highly dependent on oxidative respiration instead of 
glycolysis to remain activity for survival. Additionally, a 
preferential elevation of BCL-2 was found in LSCs with 
low ROS compared to those with high ROS, suggesting 
the potential participation of anti-apoptotic protein in 
remaining mitochondrial activity to avoid accumula-
tion of ROS [97]. Moreover, attention should be paid on 
identifying the specific self-renewal signaling pathway in 
LSCs but not shared by normal HSCs. Zhang et al. [98] 
revealed that Slug/Slc13a3 signaling pathway enhanced 
intracellular ROS level to promote the initiation and 
maintenance of LSCs. Accordingly, the differential dis-
tribution of ROS level among individuals, in space, and 
across time requires in-depth mechanism research.

Role of interaction between BMM and LSCs 
in environment‑mediated drug resistance (EMDR)
EMDR is one form of extrinsic primary drug resistance. 
It happens when the surrounding microenvironment 
temporarily protect tumor cells from apoptosis, thus 
leading to the preservation and even expansion of adap-
tive tumor cell subsets [99]. Based on different resistance 
mechanisms mediated in the tumor microenvironment, 
EMDR can be divided into two categories: soluble 
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factor-mediated drug resistance (SFM-DR) and cell adhe-
sion-mediated drug resistance (CAM-DR). SFM-DR is 
induced by soluble molecules secreted by tumor stroma, 
which including CXCL12, VEGF, IL-6, G-CSF and other 
soluble molecules. CAM-DR is a direct cell-to-cell con-
tact mediated by adhesion factors like selectins, integrins, 
cadherins and components of ECM, such as fibronectin, 
laminin, OPN and collagen.

Meads et  al. [100] proposed that the development of 
drug resistance could be divided into three major stages: 
(1) tumor cells homing to BMM; (2) maintaining in the 
bone marrow protective shelter mediated by EMDR; (3) 
evolving an acquired drug resistance phenotype. The 
CXCL12/CXCR4 interaction, taking charge of homing 
and maintaining hematopoietic cells in the bone marrow, 
frequently presents in the first stage. A study reported 
that CXCR4 blockade augmented the sensitivity of AML 
cells to apoptosis induced by the FMS-like tyrosine 
kinase-3 gene (FLT3) inhibitor sorafenib in stromal cocul-
tures [73]. Previous studies have shown that activation of 
the STAT5/PIM kinase axis tightly participated in leuke-
mogenesis accompanied with FLT3-ITD. Later research 
confirmed the critical role of PIM-1 activity for high lev-
els of surface CXCR4 expression to regulate homing and 
migration of hematopoietic cells and LSCs [101]. Addi-
tionally, CXCL12 activates VLA-4-dependent migration, 
which contributes significantly to CAM-DR phenotype 
[102]. SFM-DR and CAM-DR play essential roles in the 
second stage of chemo-resistance development. IL-6, an 
important cytokine mediating proliferation and differ-
entiation of HSCs, is primarily secreted by bone marrow 
stromal cells and various hematological malignancy cells 
[103]. Aberrant activation of STAT3 has been found to 
induce anti-apoptosis by up-regulation of BCL-2 fam-
ily in a wide range of malignances including AML [104]. 
Later studies in pediatric AML patients demonstrated 
that elevated IL-6 induced chemo-resistance and exac-
erbated disease progression through enhanced STAT3 
activity, which was associated with a poor outcome [105]. 
In addition to soluble factors, LSCs dormancy is also 
related with adhesion factors represented by integrin 
family. Matsunaga et al. [106] indicated that the interac-
tion between VLA-4 on leukemic cells and fibronectin 
on stromal cells activated the PI3K/AKT/BCL-2 signal-
ing pathway to acquire drug-induced apoptosis resist-
ance. Another study using antibodies targeting VLA-4 
observed that blockade of VLA-4 in combination with 
CD3 redirection sensitized cytotoxicity [107]. Recently, 
a study investigated the role of integrin α7 in AML cells 
and found that the elevated expression of integrin α7 in 
AML activated ERK signal and impaired sensitivity to the 
stromal-induced drug resistance [108, 109]. The selec-
tive pressure of cumulative cytotoxic therapies over time 

gradually contributes to the transformation from random 
genetic mutations to acquired resistance in these surviv-
ing cell subsets, eventually causing residual leukemic cell 
expansion and disease relapse. EMDR served as protec-
tive resistance via alteration of post-transcription, until 
the ultimate emergence of acquired resistance phenotype 
with common alterations of transcription levels evolving 
in leukemic cells [110]. This transformation process of 
resistance suggests that innovative therapeutic strategies 
toward the microenvironment should be applicated from 
the onset of initial relapse, instead of not being consid-
ered until disease develops into an advanced stage.

Hypoxia-induced HIF expression primarily favors the 
quiescence of AML cells [111]. Considering that the cur-
rent mainstream chemotherapy regimens represented by 
combination of cytarabine and daunorubicin are aimed 
at circulating cells, quiescence remarkably enhanced the 
chemotherapy resistance of AML cells. Besides, hypoxia 
durably activates the PI3K/AKT/mTOR signaling path-
way, inducing anti-apoptosis and weakening the chemo-
therapy sensitivity of AML cells [112]. A recent study 
reported that hypoxia enhanced the expression of recep-
tor tyrosine kinase (RTK) AXL to trigger an enhanced 
AXL mediated drug resistance to quizardinib in FLT3-
ITD transplanted mice [113]. Another research revealed 
that HIF-dependent upregulation of BMX kinase reduced 
FLT3 inhibitor sorafenib sensitivity through compensa-
tory pro-survival signaling pathway in a murine Flt3-ITD 
model [114]. Recently, Sauvageau et al. [115] revealed the 
metabolic differences between chemotherapy-resistant 
AML cell subgroups and chemotherapy-sensitive AML 
subgroups. They found that chemotherapy-sensitive 
AML cell subgroups did not require mitochondrial res-
piration to produce energy, while the chemotherapy-
resistant AML cell subgroups highly depended on NADH 
dehydrogenase activity for survival. The Warburg effect, 
considered as a key feature of cancer, describes that 
tumor cells produce energy by glycolysis without oxygen. 
The discovery in AML drug-resistant cells overturned 
universality of this perception, with more attempts in 
inhibiting mitochondrial metabolism to target chemo-
therapy-resistant AML cell subgroups being needed.

MSC-EVs were found in a variety of cancers to induce 
resistance to chemotherapy agents [116]. Recently, sev-
eral studies have probed into mechanisms of MSC-EVs in 
AML resistance. Lyu et al. [117] reported that exosome-
treatment of AML cells acquired enhanced resistance 
to cytarabine by up-regulating S100A4, an important 
effector participated in cell adherence and cytokine 
regulation. Another study revealed that after exosomes 
encapsulating fibroblast growth factor 2 (FGF2) in bone 
marrow stromal cells, they were subsequently endo-
cytosed by leukemic cells and protected leukemic cells 
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from tyrosine kinase inhibitors (TKIs) [118]. These evi-
dences suggested that inhibiting the synthesis and release 
of exosomes could be a potential strategy to overcome 
drug resistance. In addition, emerging studies have sup-
ported that the characteristics of high-efficient loading 
of exosomes can be considered for drug delivery, with its 
natural transmembrane capacity as advantage [116].

Mitochondrial transfer in AML describes a novel cell-
to-cell communication mechanism through delivery of 
functional mitochondria from donor stromal cells to 
recipient leukemic cells [119]. An increase in mitochon-
drial mass enabled an elevated rate of oxidative phos-
phorylation and an obvious AML cell survival advantage 
against cytotoxic chemotherapy in the recipient leukemic 
cells co-cultured with bone marrow stromal cells [120]. 
The xenograft model in immunodeficiency mice fur-
ther confirmed the occurrence of mitochondrial trans-
fer in AML and its effect against chemotherapy-induced 
apoptosis. Marlein et  al. [121] described that NADPH 
oxidase-2 (NOX2) activation led to increasing oxidative 
stress, stimulating mitochondrial transfer from stromal 
cells to AML cells through AML-derived tunneling nano-
tubes which acted as bridge. Moreover, Blocking NOX2 
inhibited mitochondrial transfer, increased AML apopto-
sis, and improved AML mouse survival. Remarkably, any 
significant effect on normal CD34+ cell survival failed 
to be detected, suggesting that targeting NOX2-driven 
mitochondrial transfer appears to be a novel therapeu-
tic strategy in AML. Later Marlein et  al. [122] focused 
on stromal cells with loss of mitochondria after mito-
chondrial transfer, discovering that the up-regulation of 
peroxisome proliferator-activated receptor gamma coac-
tivator 1-alpha (PGC-1α) led to an increased accumula-
tion of functional mitochondria in stromal cells. In this 
way, stromal cells restore its metabolic capacity and keep 
a long-term balance of metabolism.

Strategies targeting BMM in AML
As previously mentioned, extensive evidence indicates 
that the alteration of BMM is intimately associated with 
AML development and therapeutic resistance. Several 
prominent BMM changes including remodeling of the 
vasculature, alteration of cytokine levels as well as adhe-
sion capacity, adaptability to hypoxic microenviron-
ment, and approach to maintain a low cellular oxidative 
in LSCs. Several classes of therapeutic agents have been 
designed to effectively target these pathological pro-
cesses of environmental alterations. Currently, combined 
therapies targeting LSCs mobilization from protective 
shelters have been tested under various phases of clini-
cal trials. In addition, cell-mediated drug-delivery system 
facilitating the targeted transport of chemotherapeutic 
agents provides a new insight to improve the efficacy of 

current chemotherapy regimens, although it has not been 
confirmed by clinical trials [123]. Here we summarize 
current available strategies targeting BMM that might 
represent potential directions for future adjunctive thera-
peutics (Table 1, Fig. 2).

Strategies from anti‑angiogenesis to guidance of early 
vasculature normalization
Several anti-angiogenic strategies targeting angiogenic 
factor signaling pathways have been attempted before. 
Unfortunately, up to date, most clinical trials on AML 
with agents targeting angiogenesis have shown disap-
pointing results. VEGF is one of the most critical factors 
for angiogenesis. Bevacizumab is a widely investigated 
humanized recombinant monoclonal antibody target-
ing VEGF which has been applied in treatment for solid 
tumors. An early phase II clinical trial designed a regi-
men with standard induction chemotherapy followed 
by bevacizumab and reported a favorable CR, sug-
gesting the potential clinical activity of bevacizumab 
(NCT00015951) [124]. While another study reported that 
although significantly decreased VEGF level was detected 
in patients with relapsed/refractory AML treated with 
bevacizumab, no or only modest anti-leukemic effi-
cacy was observed [125]. Later, a randomized phase II 
trial of bevacizumab did not show any improvement in 
the therapeutic outcome of elderly AML patients, either 
(NTR904) [126]. Clinical trials on other VEGF inhibitors 
like lenalidomide and thalidomide displayed neither lim-
ited nor controversial efficacy in patients with relapsed/
refractory AML [127–129]. VEGF mediates downstream 
effects through VEGFR-2, a receptor which exhibits 
tyrosine-kinase activity. TKIs are a family of small mol-
ecules that aim at diverse categories of targets with tyros-
ine kinase activity such as VEGF signals through blocking 
downstream RTK. In a phase I/II study (NCT00783653), 
favorable CR rates and long-term outcome have been 
observed in patients treated with combined therapies 
of TKI sunitinib and standard chemotherapy [130]. The 
activation of other pro-angiogenic growth factors such 
as Ang/Tie-2 can also stimulate angiogenesis, thereby 
contributing to the major drug resistance mechanism of 
VEGF-targeted therapy. New generation of anti-angio-
genic targeted drugs blocking both VEGF and Ang/Tie-2 
pathway to delay the occurrence of chemotherapy resist-
ance could be the direction of future research.

In addition to restore normal vascular system, vascular 
disrupting agents (VDAs) to destabilize leukemic blood 
vessels  suggest an alternative  strategy. Combretastatin 
A1 (OXi450) is a novel dual-function agent with both 
vascular disruption and cytotoxic activity against AML 
cells. Through binding tubulin, combretastatin A1 medi-
ates microtubule depolymerization and cytoskeleton 
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collapse of endothelial cells, eventually causing obstruc-
tion of the tumor vasculature due to enlarged endothelial 
cells [131]. A study tested combretastatin A1 alone and in 
combination with bevacizumab in xenotransplant murine 
models reported that combretastatin A1 treatment alone 
of human AML chloromas led to vascular disruption in 
leukemia cores and increased apoptosis. Furthermore, 
combination with bevacizumab abrogated VEGF-A-rich 
vascular rims and led to enhanced leukemia regression, 
suggesting that compared to monotherapy, multi-tar-
geted anti-angiogenesis therapy appears to be a supe-
rior approach. In addition, the observed regression of 

leukemia engraftment couldn’t be completely explained 
by alteration of blood vessel density. Further research 
confirmed that combretastatin A1 also exhibited direct 
cytotoxic effects on leukemic cells, which was mediated 
by generation of ROS [132]. Later, a phase I clinical tri-
als on a novel combination therapy with combretastatin 
A1 and cytarabine in patients with relapsed/refractory 
AML displayed a prolonged OS and well tolerance 
(NCT02576301) [133].

The efficacy of anti-angiogenic therapies in improving 
AML patient outcomes remains controversial, Duarte 
et  al. [134] further investigated vascular remodeling of 

Table 1  Summary of clinical trials targeting the bone marrow microenvironment in AML

AML acute myeloid leukemia, VEGF vascular endothelial growth factor, RTK receptor tyrosine kinase, CR complete remission, CRi complete remission with incomplete 
count recovery, CRp complete remission with incomplete platelet count recovery, G-CSF granulocyte-colony stimulating factor, Allo-SCT allogeneic stem cell 
transplantation

Target Regimen ClinicalTrial.gov Identifier Patient population Phase Response

VEGF Bevacizumab + cytarabine/idarubicin NCT 00096148 Untreated, < 60 years II

Bevacizumab + cytarabine/mitoxantrone 
hydrochloride

NCT00015951 Relapsed/refractory, ≥ 18 years II CR 33%

RTK Sunitinib NCT 00783653 Untreated, FLT3-ITD, ≥ 60 years I/II CR + CRi 59%

Tubulin Combretastatin A1 + cytarabine NCT02576301 Relapsed/refractory, ≥ 18 years I/II CR + CRi 15%

CXCR4 Plerixafor + decitabine NCT 01352650 Untreated, ≥ 60 years I

Plerixafor + cytarabine/daunorubicin NCT 00990054 Untreated, 18–70 years I CR 67%

Plerixafor + sorafenib/G-CSF NCT 00943943 Relapsed/refractory, FLT3-ITD, ≥ 18 years I CR + CRi 36%

Plerixafor + mitoxantrone/etoposide/
cytarabine (MEC)

NCT 00512252 Relapsed/refractory, 18–70 years I/II CR + CRi 46%

Plerixafor + G-CSF/mitoxantrone/etopo-
side/cytarabine (MEC)

NCT 00906945 Relapsed/refractory, 18–70 years I/II CR + CRi 30%

Plerixafor + cytarabine/etoposide NCT 01319864 Relapsed/refractory, 3–29 years I/II

Plerixafor + G-CSF/ busulfan/fludarabine/
thymoglobulin

NCT 00822770 Allo-SCT, 18–65 years I/II

Plerixafor + daunorubicin/clofarabine or 
daunorubicin/cytarabine

NCT 01236144 Untreated, ≥ 60 years I/II

Plerixafor + clofarabine NCT 01160354 Untreated, ≥ 60 years I/II

Plerixafor + fludarabine/idarubicin/
cytarabine/G-CSF (FLAG)

NCT 01435343 Relapsed/refractory, 18–65 years I/II

BL-8040 + cytarabine NCT 01838395 Relapsed/refractory, 18–75 years II CR + CRi 39%

BL-8040 + atezolizumab NCT 03154827 Relapsed/refractory, ≥ 60 years Ib/II

Ulocuplumab NCT 01120457 Relapsed/refractory, ≥ 18 years I CR + CRi 51%

CXCL12 CX-01 + cytarabine/idarubicin NCT 02056782 Untreated, ≥ 60 years II CR 92%

CX-01 + cytarabine/idarubicin NCT 02873338 Untreated, ≥ 60 years II CR + CRi 89%

CX-01 + azacytidine NCT 02995655 Relapsed/refractory, ≥ 18 years I

E-Selectin GMI-1271 + idarubicin/mitoxantrone/
etoposide/cytarabine (MEC)

NCT 02306291 Relapsed/refractory, or 
untreated, ≥ 60 years

I/II

GMI-1271 + mitoxantrone/etoposide/
cytarabine (MEC) or fludarabine/cytara-
bine/idarubicin (FAI)

NCT 03616470 Relapsed/refractory, 18–75 years III

GMI-1271 + daunorubicin/cytarabine NCT 03701308 Untreated, ≥ 60 years II/III

VLA-4 AS101 + chemotherapy NCT 01010373 Untreated, ≥ 60 years II

Hypoxia TH-302 NCT 01149915 Relapsed/refractory, ≥ 18 years I CR + CRi 5%

PR-104 NCT 01037556 Relapsed/refractory, ≥ 18 years I/II CR + CRp 32%
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different bone marrow region in AML and found central 
marrow remaining vascularized while endosteal regions 
being remodeled and even ultimately degraded, which 
is associated with loss of normal hematopoiesis. This 
finding suggested that precisely targeting endosteal vas-
culature to prevent degradation instead of taking anti-
angiogenic agents appears to be a possible alternative 
approach. It has been reported that blast differentiation 
together with reversal of pancytopenia was observed 
in AML treated with iron chelator deferoxamine [135]. 
Later, Duarte et  al. revealed that deferoxamine signifi-
cantly rescued degradation of the endosteal vasculature 
and HSCs, as well as supporting homing of HSCs. How-
ever, little remission of AML progression in deferoxam-
ine-treated mice was observed. Accordingly, current 
major challenge for anti-angiogenic strategies remains. 
Since restoring the damaged vascular permeability could 
serve as an adjuvant treatment strategy in combina-
tion with traditional chemotherapy treatment and clini-
cal strategies with single anti-angiogenic agent targeting 
AML did not display a notable efficacy, strategies from 
mono-target to multi-target, from generally anti-angi-
ogenesis to remodeling regional normal vascularity are 
deserved to be explored.

Targeting cytokine secretion and adhesion molecules 
in BMM of AML
The primary purpose of a series of strategies target-
ing chemokines and adhesion factors is to mobilize the 
resting LSC from the protective niche. By far the clinical 
trials based on this steering philosophy have achieved 
temporary success. CXCR4 inhibitors have been widely 
investigated as the most prominent candidate. The dis-
ruption of CXCR4/CXCL12 interaction blocks down-
stream signals such as PI3K/AKT and MAPK pathways, 
mediating AML cells mobilizing from their shelter to 
augment targeted delivery of chemotherapeutic agents. 
The first preclinical trial focusing on blocking CXCL12/
CXCR4 axis used the CXCR4 inhibitor AMD3465. 
By blocking CXCR4, AMD3465 led to suppression of 
stroma-activated PI3K/AKT and MAPK pro-survival 
pathways in FLt3-mutated AML cells. In a murine xeno-
graft model, AMD3465 promoted FLT3-mutated AML 
cells mobilizing into the peripheral blood, eliminated 
the stroma-mediated support of the microenviron-
ment, and thus enhanced chemo-sensitivity of leukemic 
cells to cytarabine and FLT3 inhibitor sorafenib [73]. 
Plerixafor (also known as mozobil, and AMD3100) is 
a small selective molecular inhibitor of CXCR4 which 

Fig. 2  Strategies to target the bone marrow microenvironment in AML. AML acute myeloid leukemia, EC endothelial cell, CXCL12 C-X-C motif 
chemokine 12, CXCR4 C-X-C chemokine receptor 4, VLA-4 very late antigen 4, VCAM-1 vascular cell adhesion molecule 1, VEGF vascular endothelial 
growth factor, VEGFR vascular endothelial growth factor receptor, LSC leukemic stem cell, CAR cell CXCL12-abundant reticular cell, FN fibronectin, 
BCL-2 B-cell lymphoma-2
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was first identified as an anti-HIV agent. The combina-
tion of plerixafor and G-CSF has been approved by the 
US Food and Drug Administration (FDA) for mobiliza-
tion of autologous transplantation in patients with multi-
ple myeloma (MM) and non-Hodgkin’s lymphoma (NHL) 
since 2008. In a murine model of acute promyelocytic 
leukemia, addition of plerixafor to cytarabine signifi-
cantly eased leukemia burden and prolonged OS com-
pared with cytarabine alone [136]. In an initial phase I/II 
study (NCT00512252), 52 patients with relapsed/refrac-
tory AML were treated with a combination of plerixafor 
and mitoxantrone, etoposide, cytarabine (MEC) regimen. 
The regimen appeared to be well tolerated and achieved 
a relatively satisfactory CR and CR with incomplete 
blood count recovery (CRi) rate of 46%. Moreover, the 
mobilization rate of AML blasts into peripheral blood 
was almost doubled [137]. However, another study using 
the combination of G-CSF and plerixafor in conjunc-
tion with MEC regimen showed no improved remission 
rates (NCT00906945) [138]. Recently, in a phase I study 
(NCT00943943), 28 relapsed/refractory, FLT3-ITD-
mutated AML patients were treated with combinato-
rial sorafenib, G-CSF, and plerixafor regimens. A CR/
CRi rate of 36% and a blast mobilization of 58.4 fold 
were shown in this study [139]. BL-8040 (also known as 
BKT140) is another selective inhibitor of CXCR4 which 
could induce a robust mobilization by blocking the bind-
ing of CXCL12 to CXCR4 as well as reducing the base-
line activity of CXCR4. Besides, BL-8040 also exhibited 
a direct anti-leukemic effect via inducing apoptosis 
of AML blasts [140]. In a phase IIa clinical trial with 
relapsed/refractory AML patients (NCT01838395), com-
bination of BL-8040 with cytarabine evidently triggered 
the mobilization of blasts into peripheral blood [141]. 
Ulocuplumab (also known as BMS-936564, and MDX-
1338) is a fully human IgG4 monoclonal antibody to 
CXCR4 with directly pro-apoptotic effects [142]. A CR/
CRi rate of 51% was observed in a phase I clinical trial 
in patients with relapsed/refractory AML treated with 
ulocuplumab in combination with chemotherapy of MEC 
(NCT01120457) [143]. CX-01 is a heparin derivative with 
little or no anticoagulant activity. It blocks CXCL12/
CXCR4 axis by binding CXCL12. A randomized phase I 
clinical trial of untreated AML patients with CX-01 com-
bined with cytarabine and idarubicin (7 + 3) showed an 
encouraging CR rate of 92% (NCT02056782). In addi-
tion, the combination treatment was well tolerated with a 
rapid hematologic recovery [144]. In consistent with the 
single-arm pilot study, recently a phase II clinical trial in 
untreated AML patients with combination of CX-01 and 
a standard therapeutic regimen resulted in a CR/CRi rate 
of 89% along with excellent tolerability (NCT02873338) 
[145].

Adhesion molecules such as VLA-4, CD44, and 
E-selectin may be regarded as candidate therapeutic 
targets for tumor migration. Natalizumab (also known 
as tysabri), a humanized VLA-4 monoclonal antibody 
which can reduce central nervous system (CNS) lym-
phocyte infiltration, is in clinical use for the treatment 
of autoimmune diseases. A durable HSC mobilization 
has been observed in patients with multiple sclerosis 
treated with natalizumab [146]. Unfortunately, the clini-
cal application of natalizumab is limited by potential 
side-effect, JC virus–associated progressive multifocal 
leukoencephalopathy [147]. Another VLA-4 inhibitor in 
clinical research is AS101. AS101 results in redox inhi-
bition of VLA-4 by binding fibronectin and suppressing 
PI3K/AKT/BCL-2 signaling to increase chemo-sensitiv-
ity [148]. A murine xenograft AML model showed that 
AS101 improved chemo-sensitivity of leukemic cells 
and prolonged survival in mice after chemotherapy. A 
phase II clinical trial of AS101 is currently underway in 
untreated elderly patients (NCT01010373). In addition to 
VLA-4, another important adhesion molecule is E-selec-
tin. GMI-1359 was first reported as a small molecule that 
simultaneously inhibited both E-selectin and CXCR4, 
significantly promoted mobilization and resulted in pro-
longed survival in a Flt3-ITD AML murine xenograft 
model [149]. GMI-1271 (also known as Uproleselan) is 
another specific small molecule inhibitor of E-selectin. 
A murine xenograft model showed that Blockade of 
E-selectin with GMI-1271 enhanced the effect of com-
bination with daunorubicin and cytarabine, significantly 
improved overall treatment efficacy, and prolonged mice 
survival [150]. A phase I/II clinical trial on GMI-1271 
with a combination of MEC or fludarabine, cytarabine, 
idarubicin (FAI) is completed and GMI-1271 showed 
promising prospects in relapsed/refractory AML patients 
(NCT02306291). Two other clinical trials are currently 
underway (NCT03616470, and NCT03701308). Further-
more, another small molecule E-selectin inhibitor GMI-
1687 is currently undergoing tests in preclinical trials. 
Finally, CD44 monoclonal antibody H90 showed a signifi-
cant reduction of the leukemic burden in xenograft AML 
models. Moreover, a failure of the secondary engraft-
ment was observed using leukemic cells taken out from 
primary mice treated with H90, suggesting that CD44 
directly targeted LSCs [86]. Accordingly, the therapeutic 
potential of targeting adhesion molecules deserved to be 
noted.

Targeting hypoxia and inducing elevated ROS in BMM
Targeting hypoxia is an emerging strategy for the treat-
ment of hematologic malignancies. Considering the 
characteristics of HIF contributing to LSC mainte-
nance, combination of HIF inhibitors with traditional 
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chemotherapy regimens targeting circulating cells 
appears to be a potential therapeutic strategy to break 
the dormancy and efficiently move LSCs out to receive 
chemotherapy toxicity. Nonetheless, the results in pre-
clinical trials challenge the general notion of LSC sensi-
tization by HIF inhibition, indicating the mechanism and 
effects of HIF inhibition should be further investigated 
before being applied in clinic. Indeed, based on the char-
acteristics of hypoxic niche, hypoxia-activated prodrugs 
(HAPs) have been designed as an alternative strategy to 
overcome the problem with hypoxia induced resistance. 
Under hypoxic environment, HAPs release cytotoxic 
agents which are activated by enzymatic reduction, thus 
selectively targeting hypoxic malignancies. TH-302 (also 
known as evofosfamide) is a 2-nitroimidazole-linked 
prodrug. It is designed to release a DNA-crosslinking 
mustard alkylating agent bromo-isophosphoramide 
mustard (Br-IPM) within hypoxic subregions. Portwood 
et al. [151] demonstrated that within TH-302 treatment, 
previously chemo-resistant human AML cells under 
hypoxic conditions exhibited enhanced sensitivity to cyt-
arabine and underwent extensive apoptosis induced by 
cytarabine. Benito et al. [152] reported that in a murine 
AML model, TH-302 synergistically with TKI sorafenib 
induced apoptosis of leukemic cells and prolonged 
survival compared with treated alone with sorafenib. 
TH-302 in combination with traditional chemotherapy 
has been tested in clinical trials of solid tumors like soft 
tissue sarcoma and pancreatic cancer [153, 154]. In AML, 
a phase I clinical trial on TH-302 has been completed 
(NCT01149915), in which a rapid but transient cytore-
duction was observed in the majority of refractory AML 
patients [155]. Moreover, evidence supports that combin-
ing TH-302 therapy with other chemotherapeutic agents 
(anthracyclines and topoisomerase inhibitors) may be an 
optimization approach [156, 157]. Another HAP PR-104 
has been evaluated in treating patients with refractory/
relapsed AML in a phase I/II study (NCT01037556), in 
which an anti-leukemic activity together with primary 
toxicity myelosuppression was observed [158]. Further 
investigations are required to determine the therapeutic 
efficiency and safety of HAPs in AML, as well as combi-
nation therapies with traditional anti-leukemia regimens.

Since most resting LSCs with low ROS abnormally 
overexpress BCL-2, targeting BCL-2 inhibition appears 
to be strategies to destroy oxidative phosphorylation 
and accelerate the elimination of these resting LSCs. 
Lagadinou et al. [97] demonstrated that BCL-2 inhibitor 
ABT-263 effectively targeted the LSC enriched ROS-low 
population by impairing their mitochondrial energy gen-
eration capacity and redox control. NF-E2-related factor 
2 (Nrf2) induces an antioxidant response pathway which 
leads to an augmented mitochondrial ROS induction. A 

preclinical study demonstrated that after repressing the 
inhibition of Nrf2, an enhanced level of ROS and apop-
tosis was found in combined treatment hypomethylat-
ing agents and venetoclax (ABT-199) treated on AML 
compared to treatment of hypomethylating agents alone 
[159]. Nevertheless, additional studies on BCL-2 inhibi-
tors are required to confirm the effect of apoptotic induc-
tion through elimination of oxidative phosphorylation.

Conclusions and outlook
In summary, although significant progress has been made 
in the treatment of AML, a dismal prognosis remains in 
the majority of AML patients. Due to the highly hetero-
geneous character of AML, existing chemotherapy thera-
pies and targeted therapies aimed to leukemic cells can 
hardly get rid of all subclones of LSCs, resulting in the 
occurrence of minimal residual disease (MRD) and high 
rate of relapse.

With development in transgenic animal models and 
imaging technologies, numerous observations indicated 
that LSCs could remodel bone marrow niche and the 
educated-BMM provided a protective shelter to promote 
chemotherapy resistance. Since complex interactions 
with the BMM influence survivability and progression of 
LSCs, focusing on the bidirectional interplay appears to 
be an attractive strategy to identify new druggable targets 
and improve the outcome of AML. In our view, by far 
targeting chemokines and adhesion factors represented 
by CXCL12/CXCR4 axis and E-selectin to mobilize leu-
kemic cells from their protective niche tend to be one of 
the most successful strategies for targeting resting leuke-
mia cells, with emerging clinical trials demonstrating the 
effectiveness of this strategy in conjunction with circulat-
ing cell-targeted traditional chemotherapy regimens. In 
addition to the cell-killing effect of the drug itself, how 
to achieve high-efficiency drug delivery which hold the 
capacity to accurately target the BMM has always been 
a problem. The design of prodrugs targeting the hypoxic 
domain has undoubtedly opened new possibilities and 
directions in leukemia drug delivery, with clinical inves-
tigations of HAPs currently ongoing for expanded sup-
porting evidence.

Nonetheless, limitations and challenges still exist on 
the way to future clinical applications. Differences exist in 
immunophenotypic strategies of HSCs and stromal stem 
cell subgroups across studies. The lack of reliable mark-
ers hinders further studies on the bidirectional interplay 
between HSCs and BMM. Besides, model of oxygen gra-
dient in BMM needed to be confirmed and specified to 
quest the relationship between different oxygen gradient 
and supported-HSCs/LSCs behaviors (maintaining qui-
escent or being activated) in various niche. What’s more, 
the disputed role of HIF has not been fully elucidated 
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in the hypoxic BMM and AML development, which 
required further studies to investigate the impact of HIF 
on AML cell subsets. In addition, it should be noted that 
most of in vivo data on phenotypes and mechanisms are 
obtained through murine models. Due to the limitations 
of imaging technology, most of studies on the internals 
of BMM are based on transplanted mice receiving irra-
diation, instead of dynamic live imaging, with severe 
changes taking place in BMM which cannot reflect native 
hematopoiesis [18, 160]. Moreover, considering the exist-
ing biological discrepancies in BMM between human and 
murine models, the transform from mouse models to 
human populations is limited and need to be performed 
with caution. Of note, expanding the subclone targets 
to promote enhanced migration of LSCs out of protec-
tive niche may serve as a priming approach adjunctive to 
cytotoxic chemotherapy to eradicate LSCs. But simulta-
neously, we must pay attention to explore rational combi-
national therapies and avoid potential toxicities to remain 
normal HSCs. Given all of these challenges, a compre-
hensive and in-depth understanding of the protective 
shelter BMM is required, in order to prevail the final 
challenge, elimination of LSCs.
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