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Abstract 

Background:  The receptor tyrosine kinase FLT3 with internal tandem duplications within the juxtamembrane 
domain (FLT3-ITD) is a poor prognostic factor; however, the prognostic significance of missense mutation in the tyros-
ine kinase domain (FLT3-TKD) is controversial. Furthermore, the accompanying mutations and fusion genes with FLT3 
mutations are unclear in acute myeloid leukemia (AML).

Methods:  We investigated FLT3 mutations and their correlation with other gene mutations and gene fusions through 
two RNA-seq based next-generation sequencing (NGS) method and prognostic impact in 207 de novo AML patients.

Results:  FLT3-ITD mutations were positive in 58 patients (28%), and FLT3-TKD mutations were positive in 20 patients 
(9.7%). FLT3-ITD was associated with a higher white blood cell count (WBC, mean 72.9 × 109/L vs. 24.2 × 109/L, 
P = 0.000), higher bone marrow blasts (mean 65.9% vs. 56.0%, P = 0.024), and NK-AML (normal karyotype) (64.8% vs. 
48.4%, P = 0.043). NPM1 and DNMT3A mutations were enriched in FLT3-ITD (53.5% vs. 15.3%, P = 0.000; 34.6% vs. 13%, 
P = 0.003). However, the mutations of CEBPA were excluded in FLT3-AML (3.8% vs. 0% vs. 19.8%, P = 0.005). Mutations 
of Ras and TP53 were unlikely associated with FLT3-ITD (1.9% vs. 20.6%, P = 0.006; 0% vs. 6.1%, P = 0.04). The common 
fusion genes (> 10%) in FLT3-ITD had MLL-rearrangement and NUP98-rearrangement, while the common fusion genes 
in FLT3-TKD had AML1-ETO and MLL-rearrangement. Two novel fusion genes PRDM16-SKI and EFAN2-ZNF238 were 
identified in FLT3-ITD patients. Gene fusions and NPM1 mutation were mutually excluded in FLT3-ITD and FLT3-TKD 
patients. Their patterns of mutual exclusivity and cooperation among mutated genes suggest that additional driver 
genetic alterations are required and reveal two evolutionary patterns of FLT3 pathogenesis. Patients with FLT3-ITD had 
a lower CR (complete remission) rate, lower 3-year OS (overall survival), DFS (disease-free survival), and EFS (event-
free survival) compared to FLT3wtAML. NK-AML with FLT3-ITD had a lower 3-year OS, DFS, and EFS than those without, 
while FLT3-TKD did not influence the survival in whole cohort and NK-AML. Besides, we found that FLT3-ITD/TET2 
bimutation defined a poor prognostic subgroup.
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Introduction
Acute myeloid leukemia (AML) is a heterogeneous hema-
tological malignancy accompanied by complex molecular 
genetic abnormalities with an increasing incidence in the 
globe [1–3]. FLT3 mutation is one of the most common 
mutations in AML. FLT3 with internal tandem duplica-
tions within the juxtamembrane domain (FLT3-ITD) 
is present in 20–30% of AML patients, and a missense 
mutation in the tyrosine kinase domain (FLT3-TKD) 
accounts for about 10% of AML [4, 5]. FLT3-ITD alone 
does not trigger leukemia, indicating that other drivers 
are needed for pathogenies [6, 7]. FLT3-ITD with addi-
tional NPM1 mutation [8], AML1-ETO fusion gene [9], 
NUP98 fusion [10, 11], CBFβ-SMMHC fusion gene [12], 
and TET2 deletion [13, 14] can cause leukemia. The com-
plex pathogenic mechanism and heterogeneous clinical 
features of FLT3-ITD necessitate comprehensive molecu-
lar profiling. Owing to the low incidence of FLT3-TKD 
mutation, neither the prognostic significance is clear nor 
the accompanying molecular alterations.

Gene fusion is a very important pathogenic mecha-
nism, and each fusion gene has its unique clinical mani-
festations. BCR-ABL resulting from t(9;22) in chronic 
myelogenous leukemia (CML) is a classic example [15]. 
Since the discovery of BCR/ABL, CML entered the era of 
targeted treatment, significantly improving the survival 
[16, 17]. Fusion genes are effective targets for diagnosis, 
prognosis, therapy, and minimal residual disease (MRD) 
monitoring in hematological cancers [18]. The detection 
of common fusion genes with clinical significance has 
become a routine practice today. The next-generation 
sequencing (NGS) technique has much more advantages 
in detecting fusion genes. RNA-seq based NGS can pro-
vide information about the structure and transcript level 
of fusion genes. Its technical advance makes the global 
identification of fusion transcripts possible [19]. Targeted 
NGS sequencing for fusion genes in FLT3 mutant AML 
has not been reported before. In this study, coexisting 
gene mutations and fusion genes of FLT3-ITD and FLT3-
TKD mutation in AML patients by NGS were analyzed to 
better understand this disease.

Patients and methods
Patients and study design
A total of 207 patients (older than 14 years) with newly 
diagnosed AML (non-M3) admitted to the hospital from 

August 2009 to October 2017 were analyzed. According 
to the cytogenetically defined MRC criteria, 23 patients 
of this cohort were assigned to the favorable-prognos-
tic-risk group, 151 to the intermediate-prognostic-risk 
group, and 23 to the poor-prognostic-risk group. In 
detail, 103 patients had a normal karyotype; six patients 
had a complex aberrate karyotype; 23 patients had a 
t(8;21); eight patients had a 11q23 rearrangement; 57 
patients had other aberrant karyotypes. Cytogenetics of 
10 patients were not available because of analysis failure 
or missing information. The cohort included 115 male 
and 94 female patients. The median age was 45.4  years 
(ranging from 14 to 76 years). Incidence of FLT3 muta-
tions and correlation with other recurrent mutations and 
fusions in AML were evaluated in this cohort.

Fifty-eight cases were FLT3-ITD positive (28%), and 
20 cases were FLT3-TKD mutation-positive (9.7%), 
four of which carried both mutations. FLT3-ITD analy-
sis was based on DNA capture sequencing. The filtered 
reads were compared to the reference genome sequence 
(HG19, NCBI Built 37) using Burrows–Wheeler align-
ment (BWA), and the insertion and deletion of FLT3 
region were detected using Pindel (0.2.4) software to 
detect FLT3-ITD mutation. The variation was annotated 
using ANNOVAR. The reads were aligned using BWA 
tool to human genomic reference sequences (HG19, 
NCBI built 37). To identify SNPs and INDELs, GATK 
was performed with recommended parameters; Pindel 
(0.2.4) was performed to identify the FLT3-ITD. FLT3-
ITD was simultaneously verified by Sanger sequencing. 
52/58 FLT3-ITD patients were detected by two targeted 
NGS for mutations and fusions. Four FLT3-TKD patients 
co-occurring with FLT3-TKD were assigned to the FLT3-
ITD group; the other 16 FLT3-TKD patients were also 
detected by NGS for mutations and fusion genes assigned 
as FLT3-TKD group. The other 133 FLT3 wild-type AML 
(FLT3wtAML) patients were detected by Sanger sequenc-
ing for molecular mutation analyses only. The study 
was designed following the Declaration of Helsinki and 
approved by the institutional review board of PLA gen-
eral hospital.

Therapy
Forty-six FLT3-ITD patients, 14 FLT3-TKD patients, 
and 113 FLT3wt patients completed two cycles of induc-
tion, and they were evaluated for treatment response. 

Conclusions:  Our study offers deep insights into the molecular pathogenesis and biology of AML with FLT3-ITD and 
FLT3-TKD by providing the profiles of concurrent molecular alterations and the clinical impact of FLT3-ITD and FLT3-
TKD on AML patients.

Keywords:  Acute myeloid leukemia, FLT3-ITD, FLT3-TKD, TET2, Next-generation sequencing
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TKI inhibitor was applied in the induction regimen for 
three patients with FLT3-ITD [Sunitinib + AA (n = 1) 
and Sorafenib + FLAG (n = 2)]. Consolidation therapy 
after complete remission (CR) was administered to 
29 patients in the FLT3-ITD group, 10 patients in the 
FLT3-TKD group, and 93 FLT3wt patients. Sorafenib was 
administrated in consolidation chemotherapy for one 
patient with FLT3-ITD and after HSCT for one patient 
with FLT3-ITD to prevent relapse. In total, 13 patients 
with FLT3-ITD, 5 with FLT3-TKD, and 47 FLT3 wild 
type received SCT in CR1. Treatment options for chem-
otherapy and stem cell transplantation were not signifi-
cantly different among the three groups (P = 0.865). The 
treatment flow diagram is shown in Additional file 1: Fig. 
S1. The data of two FLT3-ITD patients and one FLT3wt 
patient were cancelled for survival analysis due to the loss 
of follow-up.

Library preparation and NGS
The method and gene panel of NGS for mutation detec-
tion in AML are previously reported [20]. The NGS for 
fusion gene detection is based on targeted RNA-seq. In 
brief, RNA was extracted from patient samples using 
the Tempus Spin RNA Isolation Kit (Life) following the 
manufacturer’s instructions. The RNA quality [RNA 
integrity number (RIN)] was assessed using an Agilent 
2100 Bioanalyzer and RNA 6000 Nano Kit and quantified 
using a Qubit® 3.0 fluorometer and Qubit RNA HS Assay 
Kit. Samples with a total of 1500 ng RNA and RIN ≥ 4.1 
were used as the input for the next library preparation. 
Briefly, the first- and second-strand complementary DNA 
(cDNA) was synthesized using a PrimeScript Double 
Strand cDNA Synthesis Kit (Takara). Double-stranded 
cDNA was then cleaned with Agencourt AMPure XP 
beads (Beckman Coulter) and subjected to end-repair, 
adenylation, and ligation using a universal barcode 
adapter, subjected, and amplified by seven cycles to gen-
erate the mid-libraries. The target genes were captured 
with a specific panel from the mid-libraries, amplified, 
and then sequenced. Paired-end, 101 bp sequencing was 
performed using a HiSeq 2500 (Illumina) instrument in 
the Rapid Run mode. The sequence was aligned to the 
reference sequence using Hisat2 (2.0.3). FusionMap soft-
ware was used to detect the fusion genes, and Blacklist 
filtering was used to remove the ribosomal genes, mito-
chondrial genes, and fusions of pseudogenes, as well 
as the fusions between gene families and homologous 
genes. The targeted fusion genes are shown in Additional 
file 4: Table S1.

Statistics method
The data were analyzed and processed using Graph-
Pad 7.0 software. The measurement data conforming to 

normal distribution were compared using a Student’s 
t-test and variance analysis. The mean value of meas-
urement data that did not conform to normal distribu-
tion was compared using a rank-sum test. The frequency 
of counting data was expressed in %, and the rates were 
compared by conducting a χ2 test. The survival curve was 
tested using the log-rank method. Overall survival (OS) 
was calculated from diagnosis to death. Disease-free sur-
vival (DFS) was calculated from the first CR to relapse 
or death, and patients who did not achieve CR were 
excluded. Event-free survival (EFS) was calculated from 
diagnosis to relapse or death of any cause. A statistical 
difference was considered at P < 0.05.

Results
Clinical associations
The frequency of FLT3-ITD and FLT3-TKD mutation 
was 28%, and 9.7%, respectively. The general character-
istics of FLT3-ITD AML, FLT3-TKD AML, and FLT3wt 
AML are shown in Table 1. The count of white blood cell 
(WBC) and the proportion of blasts in the bone marrow 
of FLT3-ITD group was higher than that of FLT3wtAML 
group (P = 0.000 and P = 0.024, respectively). The count 
of WBC of FLT3-TKD group was also higher than that 
of FLT3wtAML group, P = 0.008. There was no signifi-
cant difference in the proportion of bone marrow blasts 
between the FLT3-TKD group and FLT3wtAML group, 
P > 0.05. FLT3-ITD was associated with normal karyo-
type (64.8% vs. 48.4%, P = 0.043); in contrast, FLT3-TKD 
showed no difference in karyotype distribution compared 
to FLT3wt AML, (40% vs. 48.4%, P > 0.05).

The CR rate after two cycles of induction of FLT3-ITD 
group was lower than that of FLT3wtAML group (63% 
and 88.5%, respectively, P = 0.000). The CR rate of FLT3-
TKD patients was is 71.4%, not significantly differ-
ent from that of the FLT3wtAML group, P = 0.077. The 
FLT3-ITD group had a lower three-year OS, DFS, and 
EFS than those of FLT3-TKD group and FLT3wtAML 
group (36% ± 9.1% vs. 65.6% ± 15.1% vs. 50.6% ± 4.6%, 
respectively, P = 0.02; 45.8% ± 10.8% vs. 70% ± 18.2% 
vs. 44.6% ± 7.4%, respectively, P = 0.052; 27.2% ± 8.1% 
vs. 55.9% ± 16.2% vs. 40.5% ± 6.5%, respectively, 
P = 0.005) (Fig. 1a–c). The three-year OS, DFS, and EFS 
of FLT3-ITD group, FLT3-TKD group, and FLT3-ITDwt 
group in normal karyotype (NK)-AML are shown in 
Fig.  1d–f. No difference was observed between FLT3-
TKD group and FLT3wt group in three-year OS, DFS, 
and EFS in NK-AML (65.5% ± 20.9% vs. 54.4% ± 10.5%, 
P = 0.538; 53.3% ± 24.8% vs. 51.7% ± 8.4%, P = 0.43; 
48.6% ± 22.7% vs. 47.9% ± 7.6%, P = 0.557). FLT3-
ITD could stratify the outcomes of NK-AML 
patients (24% ± 19% vs. 54.4% ± 10.5%, P = 0.035; 
0% vs. 51.7% ± 8.4%, P = 0.004; 0% vs. 47.9% ± 7.6%, 
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P = 0.000). Furthermore, co-occurring TET2 muta-
tion impaired the 3-year OS, DFS, and EFS of patients 
with FLT3-ITD (37.9% ± 10.3% vs. 25% ± 20.4%, 

P = 0.044; 48.9% ± 12.6% vs. 16.7% ± 15.2%, P = 0.002; 
27.8% ± 9.2% vs. 16.7% ± 15.2%, P = 0.049) (Fig. 1g–i).

Table 1  Clinical, cytogenetics and molecular genetics characteristic of 207 analyzed AML patients

Italic values indicate significance of P value (P < 0.05)

WBC white blood count, BM bone marrow, FAB French–America–British, CR complete remission, CT chemotherapy, SCT stem cell transplantation
a  P-values for categorical variables are from chi-square test, P-values for continuous variables are from the ANOVA test
b  Methylation related gene included DNMT3A, IDH1/2, and TET2
c  52 FLT3-ITD, 16 FLT3-TKD and 131 FLT3 wildtype patients were analyzed for gene mutations
#  p value for frequency of favorable, intermediate and unfavorable karyotype in three groups
&  P value < 0.05 between the FLT3-ITD group and FLT3wt group

Parameter FLT3-ITD
(n = 58)

FLT3-TKD
(n = 16)

FLT3wtAML
(n = 133)

P valuea

Male 23 (39.7) 12 (75) 80 (60.2) 0.009

Age 48 (14–73) 41 (14–76) 45 (15–76) 0.367

WBC at diagnosis, × 109/L 72.9 (2.3–405.1) 68.2 (1.8–251.1) 24.2 (0.57–311.0) 0.000

Blasts in BM, % 65.9 (22.0–95.6) 55.5 (30.8–94.0) 56.0 (14.4–94.5) 0.040

FAB subtype, n (%) 0.983

 M0 0 0 0

 M1 3 (5.2) 1 (6.3) 4 (3.0)

 M2 16 (27.6) 5 (31.3) 38 (28.6)

 M4 20 (34.5) 6 (37.5) 41 (30.8)

 M5 14 (24.1) 4 (25.0) 36 (27.1)

 M6 2 (34) 0 5 (3.8)

 Unclassified 1 (1.7) 0 6 (4.5)

 Secondary-AML 2 (3.4) 0 3 (2.3)

Cytogenetics, n (%) (n = 197)

 Normal karyotypes 35 (64.8) 6 (40.0) 62 (48.4) 0.079

 Aberrant karyotypes 19 (35.2) 9 (60.9) 66 (51.6)

Gene Mutationc, n (%)

 NPM1 28 (53.8)& 4 (25) 20 (15.3) 0.000

 DNMT3A 18 (34.6)& 4 (25) 17(13.0) 0.003

 RUNX1 1 (1.7) 1 (6.3) 8 (6.1) 0.492

 KIT 3 (5.8) 0 (0) 6 (4.6) 0.623

 RAS 1 (1.9)& 1 (6.3) 27 (20.6) 0.003

 PTPN11 5 (9.6) 1 (6.3) 6 (6.3) 0.435

 TET2 6 (11.5) 1 (6.3) 10 (7.6) 0.656

 IDH1/2 5 (19.6) 3 (18.8) 20 (15.3) 0.522

 CEBPA 2 (3.8)& 0 (0) 26 (19.8) 0.005

 ASXL1 2 (3.8) 2 (12.5) 13 (9.9) 0.348

 TP53 0 (0)& 1/16 (6.3) 8 (6.1) 0.189

 Methylation-related genesb 23 (44.2) 6 (37.5) 42 (32.1) 0.297

 Number of mutations 3.2 (1–7)& 3.6 (1–6) 2.7 (0–8) 0.022

 CR after two cycles of induction 29/46 (63) 10/14 (71.4) 100/113 (88.5) 0.001

Consolidation in CR1

 CT
 SCT

16 (55.2)
13 (44.8)

5 (50)
5 (50)

6 (49.5)
47 (50.5)

0.865

 Three-year OS (%) 36 ± 9.1 65.6 ± 15.1 50.6 ± 7 0.020

 Three-year EFS (%) 27.2 ± 8.1 55.9 ± 16.2 40.5 ± 6.5 0.005
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Associations with fusion genes
Among the 52 patients with FLT3-ITD, 21 had fusion 
genes, and the incidence of fusion genes was 40.4% 
(Fig.  2a, b). The most common fusion genes of FLT3-
ITD AML included seven MLL-rearranged (13.5%) (four 
MLL-PTD, two MLL-AF9, and one MLL-ELL) and seven 
NUP98-rearranged (13.5%) (four NUP98-NSD1 and three 
NUP98-HOX9A). Other recurrent fusions included three 
with AML1-ETO and two with DEK/CAN. One case with 
PRDM16-SKI and one case with EFAN2-ZNF238 fusion 
gene are reported for the first time.

Among the 16 FLT3-TKD mutant AML patients, 11 
cases had fusion genes (four cases with AML1-ETO, 
two cases with MLL-AF9, one case with AML1-MDS1, 
one case with DEC-CAN, one case with BCR-ABL, 

one case with CBFB-MYH11, and one case with MLL-
TMX2 -CTNND1) (Fig. 2c, d). The frequency of fusion 
genes of FLT3-TKD group was higher than that of 
FLT3-ITD group (68.75% vs. 40.4%, P = 0.014). Among 
patients with FLT3-TKD, 11 patients were associated 
with fusion genes, as described in the manuscript, four 
cases with AML1-ETO, two cases with MLL-AF9, one 
case with AML1-MDS1, one case with DEC-CAN, one 
case with BCR-ABL, one case with CBFB-MYH11, and 
one case with MLL-TMX2-CTNND1. Both patients 
with MLL rearrangement were refractory to induction 
therapy and died of disease progression. The prognosis 
of four patients with AML1-ETO was relatively good, 
among which two patients achieved long-term sur-
vival through chemotherapy and transplantation. Two 

Fig. 1  OS (a), DFS (b), and EFS (c) curve of FLT3-TKD (n = 16), FLT3-ITD (n = 56), and FLT3 wild type (n = 132) AML patients; OS (d), DFS (e), and EFS 
(f) curve of normal karyotype AML patients with (n = 18) or without (n = 74) FLT3-ITD mutation; OS (h), DFS (i), and EFS (g) curve of FLT3-ITD AML 
patients with (n = 6) or without (n = 44) TET2 mutation
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patients with AML1-ETO relapsed and were salvaged 
by allo-HSCT, one of who relapsed and died after sal-
vaged transplantation, and the other patient achieved 
long-term survival after salvaged transplantation. 
The patient with BCR/ABL1 fusion died during induc-
tion. The remaining patients with DEC-CAN, AML-
MDS1, and CBFC-MYH11 achieved long-term survival. 
Among them, the patient with DEC-CAN received 
allogeneic transplantation, the patient with AML-
MDS1 received autograft, and the patient with CBFB-
MYH11 received chemotherapy as consolidation after 
remission.

Fusion genes and chromosome karyotype character-
istics are shown in Table  2. NGS was efficient in the 
detection of gene fusions, especially in the rare fusions 
or MLL translocation partner genes. Cytogenetics anal-
ysis failed to detect all NUP98-NSD1 and four of five 
MLL fusions. Furthermore, one MLL/MLLT3 and one 
MLL/TMX2-CTNND1 were detected by only NGS. In 
normal karyotypes cases and negative cases by routine 
PCR, NGS identified seven fusion genes including four 
with NUP98-NSD1, four with AML/MDS1, one with 
PRDM16/SKI, one with EFCAB2/ZNF238, and one 

with MLL/MLLT3. One MLL fusion with rare translo-
cation partner genes TMX2/CTNND1 was detected by 
NGS, while without providing information by karyo-
type analysis (Table 2).

Associations with other molecular mutations
The mutation data were available in subcohorts as fol-
lows: 52 FLT3-ITD, 16 FLT3-TKD, and 131 FLT3wt 
patients. NPM1 and DNMT3A were concomitantly 
observed together with FLT3-ITD (Table  1; Figs.  3, 4). 
The frequency of NPM1 mutation was 53.8% in FLT3-
ITD AML, higher than that of FLT3wtAML group 
(15.3%), P = 0.000. The second frequent mutation was 
DNMT3A, with a frequency of 34.6%, significantly 
higher than that of FLT3wtAML group, P = 0.001. How-
ever, the mutation in CEBPA and Ras were highly infre-
quent in FLT3-ITD AML (2/52 (3.8%) vs. 26/131 (19.8%), 
P = 0.007; 1/52(1.9%) vs. 27/131(20.6%), P = 0.002). RAS 
mutations in FLT3-ITD (n = 1) and FLT3-TKD (n = 1) 
were both NRAS mutation. RAS isoforms (n = 27) in 
FLT3wt patients were NRAS in 22 cases, KRAS in four 
cases, and both NRAS and KRAS in one case. Further, 
TP53 mutations were mutually exclusive of FLT3-ITD 

Fig. 2  Relationship between gene mutations and fusion genes of FLT3-ITD and FLT3-TKD AML. a, b Represent fusion genes by targeted NGS and 
its exclusive relationship with NPM1 mutation in FLT3-ITD positive AML (n = 60). c, d Represent fusion genes by targeted NGS and its exclusive 
relationship with NPM1 mutation in FLT3-TKD positive AML (n = 16)
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(0/58 vs. 8/131, P = 0.004). The average number of muta-
tions in FLT3-ITD AML was 3.7, higher than that in FLT-
3wtAML (average number = 2.7, P = 0.011). 

In contrast to FLT3-ITD, no significant difference was 
observed in the incidence of NPM1, DNMT3A, and RAS 
mutations between FLT3-TKD group and FLT3wtAML 
group. Mutations of CEBPA were also excluded in FLT3-
TKD mutant patients (0/16 vs. 26/131, P = 0.05) (Figs. 3, 
4).

Clinical features of FLT3 AML with mutations and fusion 
genes
In AML patients with FLT3-ITD, NPM1 and DNMT3A 
were the most common mutations. FLT3-ITD with both 
NPM1 and DNMT3A mutations defines a poor prog-
nosis. Three-year OS of FLT3-ITD patients with both 
NPM1 and DNMT3A mutations was 12.7% ± 11.5% 
(Additional file 2: Fig. S2A), though no significant differ-
ence was observed between the four subgroups in FLT3-
ITD patients in DFS (Additional file 2: Fig. 2B).

NPM1 mutation and fusion genes rarely occurred 
simultaneously in FLT3 mutant patients (Figs. 2, 5). Only 
two patients with FLT3-ITD are accompanied by both 

Table 2  Fusion genes by NGS and PCR and Chromosome karyotype analysis in FLT3 mutant AML

NGS, next generation sequencing; PCR, polymerase chain reaction

Fusion gene by NGS Fusion gene by PCR Chromosome karyotype FLT3 mutation

AML1/ETO AML1/ETO 46, XY, t(8;21)(q22;q22)[20] FLT3-ITD, FLT3-TKD

AML1/ETO AML1/ETO 46, X, -X,t(8;21)(q22;q22), del(9)(q22)[9]/46,XX,t(8;21)(q22;q22)[11] FLT3-ITD

AML1/ETO AML1/ETO 45, X, -X,t(8;21)[20] FLT3-ITD

MLL-PTD MLL-PTD 46, XY[20] FLT3-ITD

MLL-PTD MLL-PTD 46, XY[20] FLT3-ITD

MLL-PTD MLL-PTD 46, XX[20] FLT3-ITD

MLL-PTD MLL-PTD 47, XY, + 8?[10]/46, XY[10] FLT3-ITD

MLL/AF9 MLL/AF9 46, XX,?der(2)(q11),inc[1] /46,XX[28]/hypodiploid [4] (44–45) FLT3-ITD

MLL/AF9 MLL/AF9 47, XY, + 8[7] FLT3-ITD

MLL/ELL MLL/ELL 46, XX, t(11;19)(q23; q13)[10] FLT3-ITD

NUP98/HOXA9 NUP98/HOXA9 NA FLT3-ITD

NUP98/HOXA9 NUP98/HOXA9 46, XX[20] FLT3-ITD

NUP98/HOXA9 NUP98/HOXA9 NA FLT3-ITD

NUP98-NSD1 – 46, XX[20] FLT3-ITD

NUP98-NSD1 – 47, XX, + 6[14]/46, XX[6] FLT3-ITD

NUP98-NSD1 – 46, XY[20] FLT3-ITD

NUP98-NSD1 – 46, XY[25] FLT3-ITD

DEK/CAN DEK/CAN 46, XX[20] FLT3-ITD

DEK/CAN DEK/CAN 46, XY, ?t(6;9)(p23;34)[10]/46, XY,?t(6;9)(p23;q34),?del(8)(q21)[11]/46,XY[1] FLT3-ITD

PRDM16-SKI – 46, XX[20] FLT3-ITD

EFCAB2-ZNF238 – 46, XX [20] FLT3-ITD

BCR/ABL BCR/ABL NA FLT3-TKD

AML1/ETO AML1/ETO 45, X, -Y, t(8;21)(q22;q22)[22] FLT3-TKD

AML1/ETO AML1/ETO 46, XY,t(8;21)(q22;q22)[26]/46,XY[1] FLT3-TKD

AML1/ETO AML1/ETO 46, XX, t(8;21)(q22;q22)[20] FLT3-TKD

AML1/ETO AML1/ETO 45,X,?Xq-,?8q-,-22[1]/43,X,?Xq-,-8,-10,-22[1]/45,X,-X[1]/47,XX, + mar[1]/40,-X,-
X,-11,-21,-22, + mar[1]/46,XX[4]

FLT3-TKD

MLL/MLLT3 – 46, XX[20] FLT3-TKD

DEK/CAN DEK/CAN 47, XY, chtb(4)(?q31),? + 9,-15,inc[1]/46, XY[27]/hypodiploid [2] (44–45) FLT3-TKD

AML/MDS1 – 46, XY [20] FLT3-TKD

SLC45A3/ELK4 – 47, XY, + 8[7] FLT3-TKD

MLL/TMX2-CTNND1 – 42–47,XY, + 3,del(3)(p13),del(3)(q13),-4,?add(4)(q35),-8,-11,dic(11;?)(q25;?),-16,-17,-
18,-19,-20, + r, + mar1, + mar2, + mar3,inc[cp22]/46,XY[1] 

FLT3-TKD

CBFB/MYH11 CBFB/MYH11 47, XY, + 22[2]/46, XY[23] FLT3-TKD
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Fig. 3  Distribution of somatic mutations and fusion genes in 82 AML patients with FLT3-ITD and FLT3-TKD. Each column displays an individual 
sample. White highlights in the top FAB subtype indicate that the information is not available (n.a.). Blue highlights indicate the presence of a 
gene mutation; grey highlights indicate wild-type status. CEBPA mutation is an allele double mutation in this panel. Mutated genes are clustered 
according to their pathways or family
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NPM1 mutation and fusion genes (NUP98/HOXA9 and 
PRDM16/SKI, respectively). The FLT3-ITD patient with 
NUP98/HOXA9 and NPM1 achieved CR after IA regi-
men and obtained continuous CR after HSCT. How-
ever, the other FLT3-ITD patient with PRDM16/SKI 
and NPM1 was refractory to induction and died of dis-
ease progress after four cycles of chemotherapy. The 
same trend was observed in FLT3-TKD group, with 

only one patient with both BCR/ABL and NPM1 muta-
tion who died during induction due to disease progress. 
Interestingly, it was also rare to have neither an NPM1 
mutation nor a fusion gene in FLT3 mutant AML. Only 
three FLT3-ITD patients had neither NPM1 mutation 
nor fusion genes, nor did two FLT3-TKD AML patients. 
The outcomes of these five patients were heterogeneous. 
One patient with FLT3-ITD did not receive chemother-
apy. The other two patients with FLT3-ITD were both 
refractory to induction. One of the two patients with 
FLT3-TKD without NPM1 or fusions was refractory to 
induction, and the other one achieved long-term survival 
after chemotherapy.

According to molecular alteration status, FLT3-ITD 
AML patients were divided into NPM1 + Fusion− 
group and Fusion + NPM1− group. The median age 
of NPM1 + Fusion− group was older than that of 
Fusion + NPM1− group, 52 and 36 years old, respectively, 
P = 0.006. NPM1 mutation was more likely to occur in 
older patients, while the fusion gene was more likely to 
be associated with younger age. The average number of 
mutations in NPM1 + Fusion− patients was 3.6, while the 
average number of mutations in Fusion + NPM1 − group 
was 2.2, indicating different molecular distributions. 
NPM1 mutation was associated with methylation-
related mutations such as DNMT3A. No difference was 
observed in the CR rate and survival rate between the 
two groups (Additional file  3: Fig. S3). Different muta-
tion distributions in NPM1 + Fusion − group and 
Fusion + NPM1 − group could be caused by different 
pathogenic mechanisms (Table 3; Fig. 6). 

Fig. 4  Circos of mutated genes and gene fusions in AML patients 
with FLT3 mutation. Ribbon widths are proportional to the frequency 
of a molecular event

Fig. 5  Molecular heterogeneity of AML exemplified by mutational and fusion genes profiling in FLT3-AML. Each spoke radiating from the central 
FLT3-ITD or FLT3-TKD hub represents the molecular pattern of a single patient. Cooperating mutations are grouped into three tiers according to the 
function and color-coded according to the figure key, and white space indicates no mutation or fusion. Overall, based on molecular combination, 
patients are segregated into different subgroups
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Discussion
FLT3-ITD is a late acquired proliferative advantage 
in leukemogenesis. In addition to FLT3-ITD, other 
molecular alterations are necessary (Fig. 6). Because of 

the complex pathogenic mechanism, FLT3-ITD AML 
is heterogeneous. FLT3-ITD and FLT3-TKD mutants 
show distinct gain-of-function phenotypes with distinct 
differences in signaling properties and gene expression 
patterns. Whether FLT3-TKD has the same prognostic 

Table 3  Clinical characteristic and outcomes of patients with NPM1 mutation or fusion genes in FLT3-ITD AML

Italic values indicate significance of P value (P < 0.05)

WBC white blood count, BM bone marrow, FAB French–America–British, CR complete remission
a  P-values for categorical variables are from chi-square test, P-values for continuous variables are from the Mann–Whitney test and Fisher exact test
b  Methylation-related genes included DNMT3A, IDH1/2, and TET2

Characteristics FLT3-ITD + 
NPM1 + Fusion −

FLT3-ITD + 
Fusion + NPM1 −

P valuea

n 31 24

Age, years
Median(range)

52 (14–76) 36 (12–65) 0.007

Male
n (%)

12 (38.7) 11 (45.8) 0.254

WBC at diagnosis, × 109/L
Median(range)

31.4 (1.3–405.1) 10.8 (0.7–306.9) 0.278

Blast in BM, %
Median(range)

68.8 (21.2–96.4) 56.4 (11.2–95.6) 0.543

FAB subtype 0.671

 M0 0 (0) 0 (0)

 M1 1 (3.3) 1 (4.2)

 M2 8 (26.7) 8 (33.3)

 M4 13 (43.3) 9 (37.5)

 M5 6 (20.0) 5 (20.8)

 M6 0 (0) 1 (4.2)

 Unclassified 0 (0) 0 (0)

 Secondary-AML 2 (6.7) 0 (0)

Karyotype 0.015

Favorable 0 (0) 7 (29.2)

Intermediate 27 (87.1) 13 (54.2)

 Normal 22 (71) 9 (37.5) 0.007

 Others 5 (16.1) 4 (16.7)

Unfavorable 2 (6.5) 3 (12.5)

Failed 2 (6.5) 1 (4.2)

Immunophenotype

 CD34 +  18/25 (72.0) 20/22 (90.9) 0.203

 CD13 +  25/26 (96.3) 18/20 (90.0) 0.814

 CD33 +  26/26 (100) 21/22 (95.5) 0.458

 CD117 +  23/25 (92) 21/22 (95.5) 1.000

 CD64 +  10/24 (41.7) 5/11 (45.5) 1.000

Mutations

 Average num 3.6 2.2 0.000

 DNMT3A 13/28 (46.4) 2/22 (9.1) 0.004

 Methylation-related genesb 16/28 (57.1) 4/22 (18.2) 0.005

CR, n (%)

 Yes 14/25 (56) 17/24 (70.8) 0.282

Relapse in 1 year

 Yes 16/22 (72.7) 17/20 (85) 0.460
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significance as FLT3-ITD is controversial. Comprehen-
sive detection of molecular landscape of FLT3 mutant 
AML is significant to establish a risk classification in 
AML and guide therapy options. Here, we evaluated a 
cohort of 207 AML patients for mutations in FLT3 with 
two targeted sequencing approaches to obtain novel 
insights into the prognostic relevance of FLT3 muta-
tions as well as their associations with other molecular 
markers.

Generally, we observed an overall FLT3-ITD and 
FLT3-TKD mutation rate of 28% and 9.7% in 207 de 
novo AML, consistent with previous reports [21, 22]. 
Through novel targeted RNA-seq-based NGS, the pro-
file of companying fusion genes with FLT3 mutations 
was revealed. The common fusion genes in FLT3-ITD 
had MLL-rearrangement and NUP98-rearrangement, 
while the common fusion genes in FLT3-TKD had 
AML1-ETO and MLL-rearrangement. Two novel fusion 
genes PRDM16-SKI and EFAN2-ZNF238 were identi-
fied in FLT3-ITD patients. Gene coexistence analysis 
revealed unbalanced gene mutation distributions in 
FLT3-ITD, FLT3-TKD, and FLT3wt AML. Gene fusions 
and NPM1 mutation are mutually excluded in FLT3-
ITD and FLT3-TKD patients. Their patterns of mutual 
exclusivity and cooperation among mutated genes 

suggest that additional driver genetic alterations are 
required and reveal two evolutionary patterns of FLT3 
pathogenesis. We observed unfavorable impact on 
CR and survival of FLT3-ITD in the whole cohort and 
NK-AML patients, consistent with other studies [21]. 
Besides, additional TET2 mutation further impaired 
the prognosis of patients with FLT3-ITD. In contrast 
to FLT3-ITD mutations, FLT3-TKD mutation did not 
affect the remission rate and survival of AML patients 
in this study. In patients with FLT3-TKD mutations in 
AML, the main prognostic factor still seems to be the 
concomitant fusion genes. MLL gene rearrangement is 
an identified adverse prognosis factor. The two patients 
with FLT3-TKD accompanied by MLL rearrange-
ment were both primary refractory, while the patients 
with AML-ETO had a relatively good prognosis, 3/4 of 
them achieving long-term survival. Therefore, atten-
tion should be paid to the accompanying molecular 
abnormalities when stratifying risk in patients with 
FLT3-TKD mutations. FLT3-ITD mutation alone is 
insufficient to drive leukemogenesis, suggesting that 
additional mutations are necessary for full transfor-
mation. Genetic testing incorporating both molecular 
analysis and cytogenetic karyotyping is an integral part 
of definition and risk stratification of AML to guide 

Fig. 6  Schematic model for the two paths of evolution of FLT3 mutant AML. The first step is the occurrence of mutations or fusions, and the second 
step is the hit of FLT3-ITD or FLT3-TKD mutations



Page 12 of 15Guan et al. Exp Hematol Oncol           (2021) 10:27 

therapy and monitor disease response/relapse [1, 23]. 
To further understand the pathogenic mechanism and 
prognostic effect of FLT3 mutations, gene mutations 
and gene fusions were examined using two targeted 
NGS methods in FLT3-mutant AML patients. NPM1 
and DNMT3A were concomitantly observed together 
with FLT3-ITD. NPM1 mutation showed a strong cor-
relation with FLT3-ITD in previous reports [8, 24, 
25]. NPM1 is considered as one of the early cooper-
ating mutations in leukemia leukemogenesis (Fig.  6) 
[26]. DNMT3A mutation is another common muta-
tion in patients with FLT3-ITD. Epigenetics plays an 
important role in leukemogenesis. In Jifeng Yu et  al.’s 
recent study, older AML patients (≥ 60  years) showed 
association with more incidence of DNA methyla-
tion compared with younger AML patients (87.7% vs. 
75.4%, P = 0.0425) [27]. DNMT3A mutation functions, 
as an epigenetic regulator, are associated with aging 
[28]. This could explain the elder distributions of age 
of NPM1 mutation subgroup. We found that patients 
with comutation of FLT3-ITD and TET2 mutation had 
shorter survival compared to patients with FLT3-ITD 
mutation and wildtype TET2, identifying FLT3-ITD/
TET2 bimutation as a high-risk AML subgroup. TET2 
mutation and FLT3-ITD cooperatively remodeled 
DNA methylation and gene expression and triggered 
AML in  vivo. Besides, the induced AML cell demon-
strated refractory to standard AML chemotherapy and 
FLT3 targeted treatment [29]. We previously reported 
that TET2 mutation is an unfavorable prognostic fac-
tor in AML patients [30]. Furthermore, TET2 mutation 
with FLT3-ITD could further stratify AML patients 
with intermediate-risk cytogenetics. Interestingly, the 
mutations in Ras, CEBPA, and TP53 were found to be 
excluded in FLT3 mutant AML. CEBPA mutation was 
reported to be restricted in normal karyotype with-
out FLT3-ITD and NPM1 mutation [31]. Ras also led 
to secondary events that occur later during leukemo-
genesis. Similar to Stirewalt’s study, the same negative 
association was observed between Ras mutation and 
FLT3 mutations in our study [32]. Most TP53 mutation 
is associated with abnormal cytogenetics, especially 
abnormalities in chromosomes 5 and 7, while FLT3-
ITD is associated with normal karyotype [32]. These 
exclusive relationship between FLT3 mutation and 
mutations in Ras, CEBPA, and TP53 probably indicate 
that the use of a differential detection panel in genetic 
mutations may be convenient and economical [33].

The fusion genes are important pathogenic mecha-
nism of leukemogenesis. It is considered as a potential 

therapeutic target and MRD monitoring marker. We 
found that MLL-rearrangement and NUP98-rearrange-
ment are both recurrent fusion genes in FLT3-ITD, and 
their partner genes are multitudinous. In a Genome 
Atlas Research, 118 gene fusions were found in 178 de 
novo AML samples, including 74 reported recurring 
events and 57 novel gene fusions; most of them were not 
detected using cytogenetic studies [24]. The karyotype 
analysis relies on experts’ experience, and it is likely to be 
missed if the changes in chromosomal appearance after 
translocation are not easily discernible. Besides, the kar-
yotype results may be inconsistent with the fusion gene 
expression under some conditions. In our study, 32 FLT3-
mutant patients were identified with fusions, 28 of which 
were generated by translocations. However, only seven 
fusions showed consistent karyotype results.

PCR detection relies on targeted primer design; novel/
rare fusion genes and common genes fusing at a rare site 
could be missed. On the other hand, even though chi-
meric RNA is almost the product of chromosomal rear-
rangement at the DNA level, it can also be generated 
from trans-splicing and cis-splicing between neighbor-
ing genes in some cases, which is only detectable at the 
RNA level than the DNA level [34–36]. Thus, RNA-based 
fusion gene detection is more comprehensive. The advan-
tage of NGS is that it can detect atypical sites of classical 
fusions, identify fusions involving multiple fusion part-
ner genes, and discover rare and unknown fusions [37]. 
In this study, 21 of 52 patients with FLT3-ITD had fusion 
genes detected by NGS, and the incidence of fusion 
genes is 40.4%. The most common fusions in FLT3-ITD 
included MLL-rearranged and NUP98-rearranged. The 
MLL fusion was associated with the fewest number of 
mutant genes in the newly diagnosed AML, indicat-
ing that the MLL gene alterations are very strong AML-
initiating factors. Besides, NPM1 and DNMT3A gene 
mutations were exclusive in MLL fusions [24, 38]. MLL 
rearrangement accounts for about 10% of AML, and the 
prognosis is very poor. The median age of onset of leu-
kemia in infants and young children closely related to 
MLL rearrangement is only six months, suggesting that 
MLL rearrangement is a very powerful pathogenic fac-
tor. A high expression of FLT3 is frequently observed in 
MLL-rearranged AML, but in  vivo experiments showed 
that could induce AML independent of the FLT3 signal-
ing pathway [39, 40]. A long-distance inverse PCR can 
be used to characterize MLL rearrangement; identifi-
cation and distribution of MLL rearrangements of 579 
AML samples including infants, pediatric, and adults 
were studied [41]. The most frequent fusion genes 
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were MLL-MLLT3/AF9 (28.8%), MLL-MLLT10/AF10 
(15.2%), MLL-ELL (11.4%), MLL-PTDs (11.4%), MLL-
MLLT4/AF6 (9.5%), MLL-MLLT1/ENL (4.0%), MLL-
SEPT6 (1.9%), and MLL-MLLT6/AF17 (1.6%). Adult 
AML patients were characterized by a higher frequency 
of MLL-PTD at 23.4% (64/272) compared to none and 
1.9% in infants and pediatric, respectively. In this study, 
MLL-PTD was positive in four patients with FLT3-ITD, 
which is the second most frequent fusion in FLT3-ITD 
in our study. MLL-PTD is not sufficient to cause leuke-
mia alone; an additional FLT3-ITD could trigger leuke-
mia in mice [42]. Sun et al. identified the most frequent 
mutation in MLL-PTD, which was FLT3, and NPM1 was 
mutually exclusive with MLL-PTD, exhibiting the same 
trend as in this study [26]. Interestingly, NPM1 was wild 
type in these four MLL-PTD patients. MLL-PTD func-
tioned as an early clonal driver mutation, while FLT3-
ITD was acquired later.

NUP98-NSD1, created by the translocation of juxtapo-
sition of Nucleoporin 98 (NUP98) and nuclear receptor 
binding SET-domain Protein 1 (NSD1) gene, is a common 
type of translocation in FLT3-ITD AML patients [10]. 
The incidence of translocation involving NUP98 in AML 
is very low, only 3% in adult AML [43]. It is reported that 
the frequency of NUP98-NSD1 in FLT3-ITD can reach 
15%, and the frequency of NUP98-NSD1 combined with 
FLT3-ITD is 82% [44]. The incidence of NUP98 fusion 
accounted for 33.3% fusion genes in FLT3-ITD, and the 
incidence of NUP98-NSD1 in FLT3-ITD was 6.7% in our 
study, reflecting a strong synergistic effect. The lower 
incidence of NUP98-NSD1 in FLT3-ITD compared to the 
previous report is probably due to the insufficient num-
ber of cases. When NUP98-NSD1 and FLT3-ITD occur 
simultaneously, the CR rate is less than 30% in AML 
patients with concurrent NUP98-NSD1 and FLT3-ITD, 
and the patient’s prognosis is extremely poor [45].

The FLT3-TKD is positively correlated with normal 
karyotype, and the incidence of FLT3-TKD is 5–10% in 
normal karyotype AML [22, 46]. In the largest clinical 
study on FLT3-TKD, FLT3-TKD mutation alone did not 
affect prognosis [22]. Though no difference was observed 
in the incidence of NPM1 mutation in patients with 
FLT3-TKD and FLT3wt, NPM1 was observed to be one of 
the most common mutations in FLT3-TKD in this study. 
Expression of FLT3-TKD is insufficient to trigger leuke-
mia in mice; however, a co-NPM1 mutation actively led 
to the onset of AML in mice. NPM1c altered the cellular 
localization of FLT3-TKD, leading to the aberrant activa-
tion of downstream STAT5 signaling pathway [47]. Inter-
estingly, patients with FLT3-TKD and NPM1 comutation 
had a better prognosis than patients with FLT3-TKD or 
NPM1 mutation alone [22, 48]. FLT3-TKD had an unfa-
vorable influence on prognosis in t(15;17)/PML-RARA​ 

and MLL-PTD/TKD double-mutated cases. Compared 
with FLT3-ITD, FLT3-TKD exhibits different molecu-
lar genetic profiles. The most frequent fusion gene in 
FLT3-TKD group was AML1-ETO. The high correlation 
between FLT3-TKD and AML1-ETO is probably one of 
the reasons why it has no adverse effect on prognosis. 
AML1-ETO fusion is one of the most common fusions 
in AML. In AML1-ETO AML patients, combined gene 
mutations are most frequently involved in the signal 
transduction pathway, including FLT3, KIT, and NRAS 
[49, 50]. The incidence of FLT3 mutation in core-binding 
factor (CBF) AML is 5–10%. FLT3 mutation combined 
with AML1-ETO gene fusion can lead to the onset of 
leukemia [9, 51]. In our previous study, 21 patients with 
AML1-ETO fusion-positive AML had a higher relapse 
rate and mortality with an FLT3 gene expression greater 
than 35% [52]. FLT3-ITD attenuates the good prognosis 
of AML1-ETO to some extent.

Because FLT3 mutation is insufficient to induce leu-
kemia, additional gene aberration is necessary. We 
comprehensively examined the molecular genetic back-
ground of FLT3 mutant AML using two second-genera-
tion sequencing methods. In previous studies, FLT3 was 
found to be a late acquired genetic change; our results 
revealed two molecular collaborative patterns of FLT3 
mutation in leukemia progression. Initiation of molecular 
alterations includes mutations and fusions. Initiation of 
cooperative gene mutation mainly includes NPM1 muta-
tion and methylation-modified genes such as DNMT3A 
and TET2. In the other FLT3 mutant patients, fusions 
play an important role in leukemogenesis, especially 
the MLL-rearranged, NUP98 fusions, and AML1-ETO 
(Fig. 6).

Conclusions
In summary, this study elucidated the coexisting molec-
ular landscape of AML with FLT3-ITD and FLT3-TKD 
mutations by NGS, revealing two patterns of two paths 
of evolution of FLT3 mutant AML. We confirmed the 
unfavorable prognostic effect of FLT3-ITD and no influ-
ence of FLT3-TKD on prognosis. Patients with FLT3-
ITD/TET2 bimutation are a high-risk subgroup. Finally, 
this study provides further insight into the role that 
genetic alterations including fusion genes and mutations 
may eventually lead to the development of effective and 
precise targeted therapy in FLT3 mutated AML.
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