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Abstract 

Cancer stem cells (CSCs) are a small group of cancer cells, which contribute to tumorigenesis and cancer progres-
sion. Cancer cells undergoing epithelial-to-mesenchymal transition (EMT) acquire the chemoresistant ability, which is 
regarded as an important feature of CSCs. Thus, there emerges an opinion that the generation of CSCs is considered 
to be driven by EMT. In this complex process, microRNAs (miRNAs) are found to play a key role. In order to overcome 
the drug resistance, inhibiting EMT as well as CSCs phenotype seem feasible. Thereinto, regulating the EMT- or CSCs-
associated miRNAs is a crucial approach. Herein, we conduct this review to elaborate on the complicated interplay 
between EMT and CSCs in cancer chemoresistance, which is modulated by miRNAs. In addition, we elucidate the 
therapeutic strategy to overcome drug resistance through targeting EMT and CSCs.
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Introduction
Cancer stem cells (CSCs) are a special subset of cancer 
cells, which have the ability to self-renew and contrib-
ute to tumor initiation, metastasis, and chemoresistance 
[1, 2]. So far, several surface markers of CSCs have been 
identified, such as CD24, CD44, CD133, and EpCAM, 
which facilitate the CSCs isolation and targeting [3, 4]. 
Importantly, aldehyde dehydrogenase (ALDH), ATP-
binding cassette subfamily G member 2 (ABCG2), and 
c-kit have been additionally regarded as the CSC hall-
marks, which contribute to chemoresistance by regulat-
ing drug metabolism or affecting the gene expression 
of drug efflux [5]. Recent studies have revealed that the 
generation of CSCs is likely driven by the epithelial-to-
mesenchymal transition (EMT). EMT is a morphoge-
netic process, in which cancer cells lose their epithelial 

properties, such as the apical-basal polarity and cell junc-
tions, while acquiring mesenchymal characteristics, 
including the increased capacity of migration and inva-
sion[6]. Additionally, the activation of EMT confers the 
tumor cells with the capacity to resist various chemother-
apeutics, which is also a crucial feature of CSCs [7].

MicroRNAs (miRNAs) are a part of non-coding sin-
gle-stranded small RNAs (18–22 nucleotides) that can 
suppress gene expression through binding the 3’-UTR 
of target mRNA [8]. With the further understanding 
of miRNAs, researchers find miRNAs can function as 
oncogenes or tumor suppressors to modulate tumor cell 
proliferation, apoptosis, immune response, and reshape 
microenvronment [9–12]. Recently, a growing number 
of studies report miRNAs play a pivotal role in regulating 
the EMT program and the CSCs genesis [13]. However, 
we still have few insights into the complicated relation-
ship between cancer chemoresistance and miRNA-medi-
ated CSCs and EMT. Therefore, we conduct this review 
to elaborate on the mechanistic link between CSCs as 
well as EMT, and summarize the role of EMT- or CSCs-
associated miRNAs in cancer chemoresistance.
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EMT program and CSCs
Cancer cells undergoing the EMT process express more 
mesenchymal markers including N-cadherin as well as 
vimentin, and diminish the epithelial markers expressions 
like E-cadherin [14]. Loss of E-cadherin has been rec-
ognized to be related to cancer metastasis and the poor 
prognosis since nearly 20 years ago, then how to activate 
EMT draws considerable attention [15]. Numerous stud-
ies have reported the intricate EMT-associated signal 
pathways, in which the TGF-β-SMAD signal pathway has 
been well accepted [16]. Furthermore, Wnt signaling also 
contributes to the activation of EMT [17]. However, the 
complex signal pathways primarily activate a relatively 
small group of transcription factors to induce the EMT 
process. These transcription factors are termed as EMT-
inducing transcription factors (EMT-TFs), which are 
typically categorized into three different protein families, 
including the ZEB (ZEB1 and ZEB2), Snail (SNAI1 and 
SNAI2, also termed as Snail and Slug), and basic helix–
loop–helix (Twist1 and Twist2) families [18]. Notably, the 
EMT-TFs usually regulate the expression of one another 
and act together to activate EMT. For instance, Snail 
can increase the expression of Slug, Twist1, and ZEB1, 
which is regarded as an upstream regulator [19]. Due to 
the reciprocal interactions, it is difficult to determine the 
exact function of individual EMT-TF.

Apart from being modulated by specific signal path-
ways, EMT-TFs are also controlled by other regulators, 
especially miRNAs. MiRNAs affect the EMT process by 
directly or indirectly regulating specific EMT-TFs. The 
well-known examples are miR-200 and miR-34 families, 
which downregulates the expression of Snail and ZEB, 
respectively [20, 21]. Though the mechanism of the acti-
vation is becoming gradually clear, there remain some 
key problems to solve. For example, the experimental 
and clinical observations suggest the EMT program is 
reversible and dynamic, but how cancer cells harboring 
mesenchymal properties become epithelioid again in the 
metastatic sites needs to be further explored.

CSCs are a small subpopulation of cancer cells with 
stem cell-like characteristics, including quiescence, self-
renew, and slow cell cycle. A growing number of studies 
indicate conventional chemotherapeutics mainly target 
the bulk non-CSCs population instead of the rare CSCs 
population that indeed cause the clinical relapse [22]. 
Mechanism explorations reveal that CSCs are resistant to 
chemotherapy owing to their quiescent state, increased 
drug efflux, and activate DNA repair [23]. When the 
chemotherapy ceases, CSCs that escape from cytotoxic-
ity will revive from quiescence and promote tumorigen-
esis. Thus, eradicating CSCs are becoming a promising 
therapeutic approach to overcome chemoresistance and 
achieve clinical cure. Currently, the identification of these 

subpopulations primarily depends on the high expres-
sion of ALDH and surface markers like CD44 and CD133 
[24]. However, it is still urgent to find other potent CSCs 
markers to select the patients who likely resist drugs in 
the clinic due to inter-patient variations and tumor heter-
ogeneity [25]. This is critical to precisely targeting CSCs 
without impairing those stem cells from normal tissues.

The relationship between EMT and CSCs
 Cancer cells undergoing EMT possess lots of stem-like 
traits, such as the elevated expression of CD44 and the 
increased capacity to form spheres [26]. These phenom-
ena suggest EMT is closely related to the generation and 
maintenance of CSCs. Compelling evidence shows that 
CSCs may occur from progenitor cells or normal stem 
cells owing to the genetic and epigenetic mutations [27]. 
For instance, the overexpression of yes associated protein 
1 (YAP1) that contributes to EMT can transform differ-
entiated cancer cells into CSCs [28]. This characteristic 
example demonstrates that the abnormal expressions 
of EMT-related genes facilitate the generation of CSCs. 
CSCs live in a dynamic microenvironment, called niche, 
which is composed of stromal cells, immune cells, various 
cytokines and growth factors [29]. CSCs in such a niche 
are able to maintain their stemness state [30]. On one 
hand, the niche with hypoxia and high vascular inten-
sity can directly maintain CSCs plasticity and survival 
[31]. On the other hand, the maintenance of CSCs can 
be reinforced by the EMT process under such a favora-
ble microenvironment. For example, nestin is another 
CSCs marker that is upregulated by hypoxia-induced 
TGF-β-SMAD4 pathway activation [32]. Furthermore, 
cancer-associated fibroblasts and tumor-associated mac-
rophages in the CSCs niche can secrete TGF-β to pro-
mote EMT, subsequently maintaining the CSCs features 
[33]. Additionally, CSCs have the potential to differenti-
ate into non-CSCs. It is plausible that the aforementioned 
dynamic and reversibility of EMT can be partially attrib-
uted to the differentiation capacity of CSCs (Fig. 1).

The association between EMT and CSCs is supported by 
substantial experimental evidence concerning the mecha-
nistic link. It is reported the activation of EMT and CSCs 
share similar signaling pathways, such as Wnt and Notch 
signals [34]. Notably, Scheel et  al. found the autocrine 
of TGF-β and Wnt signal pathways of cancer cells were 
responsible for maintaining the EMT establishment and 
CSCs state. Blocking these autocrine signals could prevent 
cancer cells from acquiring CSCs properties even though 
the EMT program was activated [35]. Furthermore, Snail 
could facilitate the acquisition of dedifferentiated pheno-
type ultimately promoting the tumor-initiating capability 
by deacetylating active p53 [36]. Although substantial stud-
ies demonstrate the close relationship between EMT and 
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CSCs, whether the EMT program is necessary for driving 
the CSCs phenotype remains to be further explored. Hav-
ing insight into this problem may help us make a thera-
peutic decision in targeting mesenchymal cells or only 
precisely eradicating the small subpopulation of CSCs in 
the future.

MiRNA‑mediated EMT and CSCs in chemotherapy 
resistance
Though the studies about EMT focused on cancer metas-
tasis at first, the link between EMT and cancer drug resist-
ance has been increasingly recognized. Before the relation 
between EMT and CSCs was established, the mecha-
nism of EMT-mediated drug resistance was unclear. In 
recent years, miRNAs as a hot topic have drawn consider-
able attention among numerous researchers. An increas-
ing number of studies show miRNAs play a pivotal role in 
chemotherapy resistance, which is correlated to EMT or 
CSCs [37, 38]. Herein, we summarize the various roles of 
miRNAs in mediating EMT- or CSCs-associated chemore-
sistance (Fig. 2) (Table 1).

MiRNAs facilitate EMT to induce chemotherapy resistance
MiRNAs can contribute to chemoresistance by directly 
targeting the epithelial markers. For instance, miR-
375  induces paclitaxel chemoresistance by directly 
suppressing E-cadherin in lung cancer [39]. Besides, 
miR-514b-5p can decrease the expression of E-cadherin 
to facilitate drug resistance. Intriguingly, despite derived 
from the identical RNA hairpin, miR-514b-3p plays an 
opposite role, which reverses the EMT-induced drug 
resistance [40]. However, how the precursor of miR-514 
becomes the mature miR-514b-3p and miR-514b-5p with 
distinct roles remains to be further investigated. Further-
more, the miR-106b-25 cluster promotes doxorubicin 
resistance via repressing EP300, a transcriptional activa-
tor of E-cadherin [41].

There exist complex signal pathways of the EMT pro-
gram, which miRNAs participate in. Wnt is a critical 
signal in regulating EMT-associated chemoresistance. 
Yu et al. reported miR-125b promoted the EMT process 
and induced 5-fluorouracil (5-FU) resistance in colorec-
tal cancer through targeting the APC/Wnt/β-catenin 
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Fig. 1   The connection between EMT and CSCs. CSCs can be generated by cancer cells that undergo a partial EMT process. Compared with cancer 
cells, CSCs are more invasive and drug-resistant and have great ability of tumor-initiation. CSCs are prone to intravasate into adjacent blood vessels. 
After entering the circulation, the metastatic CSCs will undergo transendothelial migration to extravasate into a new secondary site. Subsequently, 
CSCs can be transformed into cancer cells again via the MET process
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pathway. Remarkably, the expression of miR-125b could 
be upregulated by CXCL12/CXCR4 [42]. In addition, 
miR-221 enhanced the resistant capacity to 5-FU of 
esophageal cancer via the Wnt/β-catenin pathway by 
directly targeting Dickkopf-2 [43]. PTEN, a tumor sup-
pressor, is identified to participate in repressing EMT 
by inhibiting PI3K/AKT signal. Chu et al. found miR-93 
contributed to eliciting EMT and facilitating doxorubicin 
resistance in breast cancer via the suppression of PTEN 
[44]. It was observed that miR-27a was dramatically 
upregulated in cisplatin-resistant lung adenocarcinoma. 
Mechanism exploration revealed that miR-27a targeted 
Raf kinase inhibitory protein to rescue Raf signal, which 
was involved in EMT-induced cisplatin resistance [45].

Exosomes are a subset of extracellular vesicles with a 
diameter ranging from 40nm to 160nm, which can medi-
ate cell communication in physiological and pathological 

conditions via transferring specific cargos (nucleic acid 
or protein) [46]. Recently, it is reported that miRNAs 
carried by exosomes derived from drug-resistant cells 
can confer the resistant ability to drug-sensitive ones 
[47]. For example, CSCs and resistant cancer cells can 
secrete exosomal miR-155, which induces the EMT pro-
cess to enhance the resistance to chemotherapy of breast 
cancer [48]. Besides, exosomal miR-155 was found to 
promote the EMT and chemoresistant phenotypes in 
gastric cancer by targeting GATA binding protein 3 and 
tumor protein p53‑inducible nuclear protein 1 [49]. Fu 
et al. identified the transmission of multidrug resistance 
in hepatocellular carcinoma was attributed to exosomal 
miR-32-5p that inhibited PTEN/PI3K/AKT pathways 
[50]. On the other hand, exosomes can also regulate 
drug resistance by changing the transcriptome of cancer 
cells. Exosomes derived from mesenchymal-like prostate 

Exosomal miRNA

miRNA

E-cadherin

Vimentin

Snail ZEB Twist

TGF-βRasPTENWnt

 Epithelial cell 

Mesenchymal cell

CSC

Chemosensitive Chemoresistant

miR-375
miR-514b-5p

miR-221 miR-93
miR-32-5

miR-509-5p
miR-138-5p 

miR-30a
miR-153
miR-363

miR-708-3p
miR-218

miR-181a
miR-186

miR-200
miR-1243 

miR-296-3p

Fig. 2   The mechanism by which some representative miRNA mediates EMT to affect chemotherapy resistance. MiRNA can regulate the EMT 
process by directly targeting the key proteins (E-cadherin and Vimentin) of EMT, modulating the expression of EMT-TFs (Snail, ZEB, and Twist), and 
influencing the EMT-associated signal pathways like Wnt, PTEN, TGF-β, and Ras signal. Furthermore, miRNA can be transferred by exosomes, which 
plays a key role in the EMT process. Cancer cells undergoing the EMT program exhibit the chemoresistant phenotype. In addition, the generation of 
chemoresistant CSC is partially attributed to the EMT
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Table 1  The role of miRNA-mediated EMT and CSCs in drug resistance

5-FU 5-fluorocrail, APCadenomatous polyposis col, ABCB1 ABC subfamily B member 1, ABCG2ABC subfamily G member 2, Bak1BCL2 antagonist/killer 1, BCbreast 
cancer, Bmi1 B lymphoma Mo-MLV insertion region 1 homolog, CC Cervical cancer, CDH1 Cadherin 1, CLDN1 Claudin 1, CRC​ colorectal cancer, EC esophageal cancer, 
ENPP1 ectonucleotide pyrophosphatase/phosphodiesterase 1, ETS1 V-Ets avian erythroblastosis virus E26 oncogene homolog 1, FOXO3a Forkhead Box O3, FZD4 

miRNA Cancer type Chemotherapy Role in chemosensitivity Target Ref.

miR-375 CC Paclitaxel Decrease E-cadherin [39]

miR-514b-5p CRC​ Cisplatin and irinotecan Decrease CDH1, CLDN1 [40]

miR-514b-3p CRC​ Cisplatin and irinotecan Increase FZD4, NTN1 [40]

miR-125b CRC​ 5-FU Decrease APC [42]

miR-221 EC 5-FU Decrease DKK2 [43]

miR-93 BC Doxorubicin Decrease PTEN [44]

miR-27a LC Cisplatin Decrease RKIP [45]

miR-155 BC Doxorubicin and paclitaxel Decrease FOXO3a [48]

GC Paclitaxel Decrease GATA3 and TP53INP1 [49]

miR-32-5p HCC 5-FU Decrease PTEN [50]

miR-509-5p PC Gemcitabine Increase Vimentin [53]

miR-138-5p PC 5-FU Increase Vimentin [54]

miR-30a PC Gemcitabine Increase Snail [56]

miR-153 PC Gemcitabine Increase Snail [57]

miR-363 OC Cisplatin Increase Snail [58]

miR-34 PC Gemcitabine Increase Slug [59]

miR-27b LC Cisplatin Increase Snail [60]

miR-27b, miR-34a PC Docetaxel Increase ZEB1 [61]

miR-181a TSCC Cisplatin Increase Twist [63]

miR-186 OC Cisplatin Increase Twist [64]

GBM TMZ Increase Twist [65]

miR-708-3p BC Doxorubicin Increase ZEB1 [66]

miR-218 LC Cisplatin Increase ZEB2, Slug [67]

miR-200c LC Paclitaxel Increase Cathepsin L [69]

miR-200a BC Cisplatin Decrease TP53INP1, YAP1 [72]

miR-1243 PC Gemcitabine Increase SMAD4 [53]

miR-25-3p CC Cisplatin Increase Sema4C [74]

miR-31-3p CC Cisplatin Increase Sema4C [75]

miR-296-3p NPC Cisplatin Increase MK2 [77]

LC Cisplatin Increase PRKCA [78]

miR-1294 OC Cisplatin Increase IGF1R [82]

miR-128-3p CRC​ Oxaliplatin Increase Bmi1 and MRP5 [83]

miR-5100 LC Cisplatin Decrease Rab6 [84]

miR-125b BC Gemcitabine, Taxol Decrease BAK1 [86]

miR-455-3p EC Cisplatin Decrease NA [87]

miR-27b BC Docetaxel Increase ENPP1 [89]

miR-328 CRC​ 5-FU, HCPT Increase ABCG2 [90]

miR-451 CRC​ SN38 Increase ABCB1 [91]

miR-181b LC Cisplatin Increase Notch2 [93]

miR-365 HCC Cisplatin Increase RAC1 [98]

miR-485 LC Cisplatin Increase CD44 [99]

miR-1246 BC Docetaxel, epirubicin, gemcitabine Decrease Cyclin G2 [100]

miR-9-5p, miR-195-5p, 
miR-203a-3p

BC Doxorubicin, Docetaxel Decrease ONECUT2 [101]

miR-129-5p BC Doxorubicin Increase SOX4 [118]

miR-532-3p CRC​ 5-FU, cisplatin Increase ETS1 and TGM2 [119]

miR-224 CRC​ 5-FU Decrease NA [124]

miR-145 GBM TMZ, cisplatin Increase Oct4 and Sox2 [127]
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cancer cells confer the recipient cells with the ability to 
resist enzalutamide, an androgen receptor antagonist. 
It was observed that the expressions of miR-21, miR-31, 
and miR-145 were upregulated with the activation of the 
TGF-β signaling pathway when the recipient cells took 
up the exosomes [51]. However, the content of exosomes 
hasn’t been identified. Although EMT-related path-
ways mediated by miRNAs in drug resistance have been 
broadly investigated, there remain several key problems 
about exosomal miRNAs-mediated drug resistance. For 
example, how the EMT-related miRNAs are loaded into 
exosomes hasn’t been exhaustively figured out. Further-
more, inhibition of drug resistance-induced exosomal 
miRNA cannot entirely abolish the resistance, indicating 
drug resistance is a complex process where other factors 
may be involved [52].

MiRNAs inhibit EMT to overcome chemotherapy resistance
There also exist numerous miRNAs that suppress chem-
oresistance by inhibiting the EMT process. To begin 
with, miRNA can inhibit mesenchymal markers like 
vimentin to overcome chemoresistance. Overexpression 
of miR-509-5p increases the sensitivity to gemcitabine 
in pancreatic cancer by targeting vimentin [53]. Further-
more, miR-138-5p that can be downregulated by TGF-β 
also targets vimentin to enhance the chemosensitivity to 
5-FU in pancreatic cancer [54, 55].

Additionally, miRNAs can inhibit the EMT-TFs to 
overcome drug resistance. It was reported that miR-
30a, miR-153, and miR-363 all targeted Snail to enhance 
chemotherapy sensitivity [56–58]. In addition, miR-34 
and miR-27b were found to increase chemotherapy sen-
sitivity through targeting Slug and Snail, respectively 
[59, 60]. Meanwhile, Zhang et al. identified miR-34a and 
miR-27b could enhance docetaxel sensitivity via inhibit-
ing ZEB1 in prostate cancer [61]. Notably, hypoxia can 
repress the expression of miR-34a, attenuating its anti-
tumor effect [62]. Thus, improving the hypoxic micro-
environment will be a novel strategy to overcome the 
therapy resistance. Twist, another key EMT-TF, can be 
suppressed by miR-181a with the increased cisplatin 
sensitivity simultaneously [63]. Moreover, miR-186 was 
reported as a chemotherapy sensitizer through targeting 
Twist in not only ovarian cancer but also glioblastoma 
[64, 65]. As for ZEB, miR-708-3p acts as a ZEB1 sup-
pressor to increase drug resistance in breast cancer [66]. 
Similarly, Shi et  al. identified miR-218 served as a drug 

sensitizer through directly targeting ZEB2 in lung can-
cer, which provided a potential therapeutic strategy [67]. 
However, the therapeutic effect should be further evalu-
ated because EMT-TFs often act cooperatively and are 
modulated by other upstream regulative EMT-TFs.

Through targeting the EMT-related signal pathways, 
miRNAs can exert their anti-chemoresistant functions. 
Generally, the miR-200 family, containing miR-141, 
miR-200a, miR-200b, miR-200c, and miR-429, serves as 
a tumor suppressor in manifold cancer types. It is well 
known that the miR-200 family decreases the expression 
of TGF-β to repress the EMT process and drug resist-
ance [68]. In addition to the TGF-β/SMAD pathways, 
miR-200c can overcome chemoresistance by reducing 
Cathepsin L that has been regarded as a potential target 
in cancer treatment [69, 70]. Moreover, the miR-200c/c-
myc negative regulatory feedback loop is crucial for the 
EMT process and CSC properties as well as drug sensi-
tivity [71]. Nevertheless, there exists an opposite voice 
about the role of miR-200. For instance, Yu et  al. found 
miR-200a confer the sensitive breast cancer cells with 
the chemoresistant ability through antagonizing tumor 
protein p53‑inducible nuclear protein 1 and YAP1 
[72]. TGF-β signal is also regulated by other miRNAs. 
Recently, miR-1243 was found to increase the expres-
sion of E-cadherin and reverse drug resistance via sup-
pressing SMAD4 [53]. Semaphorin 4 C plays a key role in 
promoting TGF-β-induced EMT [73]. Overexpression of 
miR-25-3p and miR-31-3p can target Semaphorin 4 C to 
reverse EMT in cisplatin-resistance cervical cancer cells 
[74, 75]. TGF-β can affect the expression of miRNAs in 
turn, to regulate the EMT, resulting in the change of drug 
sensitivity. For example, TGF-β can suppress miR-499a 
to induce drug resistance, which inhibits EMT in osteo-
sarcoma through targeting SH3K binding protein 1 [76]. 
Furthermore, the Ras/Raf signal pathway has a signifi-
cant influence on EMT and chemoresistance, too. It was 
found that miR-296-3p could suppress the expression of 
MAPK activated protein kinase 2 to inhibit the Ras/Braf/
Erk/Mek/c-Myc pathway, ultimately reversing the chem-
oresistance in NPC [77]. In lung adenocarcinoma, miR-
296-3p also contributes to the inhibition of Ras, leading 
to the increased chemotherapy sensitivity [78]. It is also 
reported that miR-296-5p inhibited stemness potency 
and EMT via BRM/SWI2-related gene 1 and neuregu-
lin 1, respectively [79]. Intriguingly, miR-95 knockdown 
could repress EMT and CSCs phenotype through dual 

frizzled class receptor 4, GATA3 GATA binding protein 3, GBM Glioblastoma, GC gastric cancer, HCPT hydroxycamptothecine, IGF1R insulin like growth factor 1 receptor, 
LC lung cancer, MK2 MAPK activated protein kinase 2, MRP5 multidrug resistant protein 5, NA not acquired, NIN1 Netrin 1, NPC Nasopharyngeal carcinoma, OC ovarian 
cancer, Oct4 Octamer-binding protein 4, ONECUT2 one cut homeobox 2, PC Pancreatic cancer, PRKCA Protein kinase C alpha, RAC1 Ras-related C3 botulinum toxin 
substrate 1, Rab6 Ras-related protein Rab-6a, RKIP Raf kinase inhibitory protein, SN38 7-ethyl-10-hydroxycamptothecin, SOX SRY-box transcription factor, TGM2 
transglutaminase 2, TMZ temozolomide, TP53INP1 tumor protein P53 inducible nuclear protein 1, YAP1 Yes associated protein 1

Table 1  (continued)
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specificity phosphatase 5-dependent MAPK pathway 
[80]. Insulin-like growth factor 1 receptor (IGF1R) can 
activate PI3K/ATK and Ras/Raf signal pathways to par-
ticipate in the generation of drug resistance, respectively 
[81]. Zhang et al. showed miR-1294 could bind the 3’UTR 
of IGF1R to prevent the EMT program and reverse cispl-
atin resistance in ovarian cancer [82].

Interestingly, exosomal miRNAs derived from nor-
mal cells are able to reverse drug resistance. For exam-
ple, derived from intestinal epithelial cells, exosomal 
miR-128-3p shows the outstanding capability to increase 
chemosensitivity to oxaliplatin in colorectal cancer. 
Mechanically, miR-128-3p can prevent the efflux of 
oxaliplatin via repressing the drug transporter multidrug 
resistant protein 5 and reverse the oxaliplatin-induced 
EMT [83].

MiRNAs promote CSCs features to induce chemotherapy 
resistance
In addition to regulating the EMT-mediated drug resist-
ance, miRNAs can directly affect the CSCs status to 
modulate drug sensitivity. As mentioned above, CSCs-
mediated chemoresistance is attributed to anti-apoptosis, 
activate DNA repair, and increased drug efflux. Rab6, a 
small GTP-binding protein, belongs to the Ras superfam-
ily, which is regarded as a pro-apoptotic factor. Overex-
pression of miR-5100 was observed in lung CSCs, which 
can inhibit cisplatin-induced mitochondrial apoptosis by 
directly targeting Rab6 [84]. Apart from promoting EMT 
that is aforementioned, miR-125b can directly regulate 
CSCs phenotype to induce chemoresistance. Wang et al. 
observed the phenomenon that miR-125b confers the 
chemoresistant capability of breast cancer by maintain-
ing CSCs state [85]. The further study identified BCL2 
antagonist/killer 1 as the direct target of miR-125b in 
such a phenomenon [86].

Owing to the interactive signal pathways between 
EMT and CSCs, miRNAs regulating EMT-associated 
signals also have a significant influence on the genera-
tion of CSCs characteristics. Liu et al. found miR-455-3p 
as an oncomiR can maintain CSCs state to reinforce 
the chemoresistance in esophageal cancer by activating 
Wnt/β-catenin and TGF-β signaling. Remarkably, treat-
ment with the miR-455-3p antagomir significantly sensi-
tized esophageal cancer in vitro, which provided a novel 
therapeutic strategy for esophageal cancer [87]. However, 
the therapeutic effect in vitro needs to be evaluated and 
more efforts should be put into the translation to clinical 
application.

MiRNAs inhibit CSCs to overcome chemotherapy resistance
In CSCs, one of the most important mechanisms of 
drug resistance is the overexpression of the ATP-binding 

cassette (ABC) family, which transports drugs out of 
cells, protecting the cells from cytotoxicity [88]. MiRNAs 
can modulate the expression of the ABC family to affect 
the resistant phenotype in CSCs. For instance, miR-27b 
indirectly represses ABCG2 by affecting its localization 
on the cell surface. As a result, breast cancer patients with 
the downregulation of miR-27b was inclined to relapse 
due to the emergence of a small group of cells harboring 
CSCs properties [89]. In addition, miR-328 and miR-451 
reverse the chemotherapy resistance by directly target-
ing ABCG2 and ABC subfamily B member 1  in CSCs, 
respectively [90, 91].

MiRNAs can regulate the stemness-associated signal 
pathways to overcome chemoresistance, in which the 
Notch signal plays a pivotal role [92]. Notch signal can 
contribute to the reduced sensitivity to cisplatin and 
the suppression of CSCs features while it is repressed 
by miR-181b in lung cancer [93]. Similarly, miR-136 
enhances the antitumor effect of paclitaxel in ovarian 
cancer by decreasing Notch3 [94]. Another crucial path-
way concerning the generation of CSCs is the Ras sign-
aling pathway. Upregulation of miR-17-92 cluster can 
facilitate the exhaustion of pancreatic CSCs by reducing 
Ras and cyclin dependent kinase inhibitor 1 C, resulting 
in the reverse of chemoresistance [95]. Ras-related C3 
botulinum toxin substrate 1 (RAC1) is also a subfamily of 
the Ras superfamily, which mediates intercellular adhe-
sion, cell cycle, and epithelial differentiation [96]. Upreg-
ulation of miR-194 and miR-365 targeting RAC1 inhibits 
liver CSCs expansion, leading to the increased sensitivity 
to sorafenib and cisplatin [97, 98]. In addition to regulat-
ing the complicated signals, miRNAs are able to dimin-
ish the number of CSCs more directly—targeting the 
hallmarks of CSCs. For example, stemness features and 
CSC population were repressed by miR-485/CD44 axis in 
cisplatin-resistant lung cancer cells [99].

Exosome-loaded miRNAs are also vital to spread 
drug resistance to those sensitive cancer cells. Exosomal 
miR-1246  is related to stem-like traits and chemore-
sistance, which could serve as a prognostic predictor in 
breast cancer patients. Mechanically, miR-1246 exert its 
oncogenic role by inhibiting cyclin-G2 [100]. MiR-9-5p, 
miR-195-5p, and miR-203a-3p carried by exosomes all 
target One Cut Homeobox 2 (ONECUT2) to enhance the 
stemness of breast cancer. Notably, the upregulations of 
these exosomal miRNAs are induced by chemotherapy 
[101]. Additionally, gemcitabine-resistant pancreatic 
CSCs disseminate the resistant phenotype by delivering 
exosomal miR-210 [102]. Importantly, the upregulation 
of miR-210  is elicited by hypoxia [103], which indicates 
inhibiting exosomal miR-210 and improving the hypoxic 
microenvironment simultaneously may achieve a better 
therapeutic effect.
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The therapeutic strategy of inhibiting EMT 
and CSCs to overcome chemoresistance
Since the roles of EMT and CSCs in chemoresistance are 
gradually determined, a promising therapeutic strategy 
for overcoming chemoresistance is to repress EMT and 
CSCs. The rapid progress of CSC-associated drug resist-
ance is attributed to the advanced technique of identify-
ing and isolating CSCs, which makes researchers analyze 
the distinct drug sensitivities between CSCs and non-
CSCs. Nevertheless, the idea of precisely targeting CSCs 
is faced with several challenges. On one hand, the reliable 
hallmarks to accurately identify CSCs in bulk cancers are 
still insufficient. On the other hand, how to ensure the 
stem cells from normal tissues escape the cytotoxicity 
of chemotherapeutics remains to be solved. Fortunately, 
benefiting from the interplay between CSCs and the 
EMT program, a substituted therapy of targeting EMT 
seem feasible due to the existence of definite biomarkers 
and signal pathways.

Given that the EMT is dynamic and requires a certain 
process, the therapeutic approaches can be primarily 
divided into preventing EMT initiation, eliminating the 
cells undergoing EMT, and activating the opposite pro-
cess of EMT—mesenchymal-epithelial transition (MET) 
[23].

TGF-β signal is among the best-characterized pathways 
in inducing EMT. Therefore, the blockage of the TGF-β 
pathway may be an effective approach in preventing the 
initiation of EMT and overcome drug resistance. As 
expected, several TGF-β inhibitors are undergoing clini-
cal trials and achieve a certain therapeutic effect [104, 
105]. However, TGF-β has a broad function in physiolog-
ical and pathological conditions, which is not merely lim-
ited to affecting EMT. Hence, whether TGF-β inhibitors 
influence other biological processes need to be further 
evaluated. In addition, TGF-β serves as a tumor suppres-
sor in early-stage cancer and it is cautious to choose the 
optimal medication time [106].

Another approach is to improve the tumor micro-
environment, which also contributes to the activation 
of EMT. The conventional method is to inhibit tumor-
associated inflammation and hypoxia. In recent years, 
with the gradual insight into the role of cancer-associated 
fibroblast and tumor-associated macrophage in EMT-
associated metastasis, the strategy of targeting these cells 
has drawn considerable attention, especially targeting the 
exosomes derived from them [107, 108]. However, EMT 
triggered by these components of the tumor microenvi-
ronment remains under investigation.

As for eliminating the cells undergoing EMT, the ini-
tial attempt is to repress the EMT biomarkers. Kaschula 
et al. found ajoene derived from garlic could disrupt the 
vimentin filament network to exert the anti-metastatic 

function, while the role of overcoming drug resist-
ance needs to be conducted [109]. However, the mes-
enchymal markers are also widely expressed in normal 
mesenchymal cells, leading to the potential off-tumor 
toxicities. Recently, Lou et  al. reported the c-Src inhibi-
tor could selectively target the overexpressed vimentin in 
triple-negative breast cancer, which may provide a new 
solution to this problem [110]. Another approach is to 
repress the specifically expressed gene in the EMT pro-
gram. It was found that Axl was significantly upregulated 
during the process of EMT and knockdown of Axl by 
siRNA inhibited the metastasis and increased the over-
all survival in breast cancer [111]. In 2013, the first Axl 
inhibitor BGB324 entered clinical trials [112]. Recently, 
the recruitment of a phase II, multicenter clinical trial 
of BGB324 combined with pembrolizumab in treat-
ing triple negative breast cancer has been completed 
(NCT03184558).

From the perspective of the principle of EMT, revers-
ing EMT to MET seems to be effective in overcoming 
drug resistance. It was reported the increased expression 
of intracellular second messenger cAMP induced MET 
via activating protein kinase A [113]. This study revealed 
a role of protein kinase A in maintaining and reinforc-
ing the epithelial state, which suggested protein kinase 
A may act as a new therapeutic target. However, cancer 
metastasis is likely associated with the re-epithelization 
of mesenchymal cells or CSCs, which is aforementioned. 
Thus, choosing the proper time of this strategy needs to 
be particularly careful otherwise it may be a pro-meta-
static factor.

 Since the EMT is regulated by miRNAs, the exoge-
nous introduction of miRNA mimics or antagomir may 
enhance the drug sensitivity. The downregulation of miR-
129-5p and miR-532-3p are associated with the poor 
prognosis in manifold cancer types, which are involved in 
the EMT program [114–117]. Hence, Luan et al. and Gu 
et al. used miR-129-5p and miR-532-3p mimics, respec-
tively, to enhance the chemosensitivity in vivo [118, 119]. 
Recently, miR-147, miR-335, miR-1976, and miR-4319 
were identified as tumor suppressor miRNAs for inhibit-
ing EMT and CSCs simultaneously [120–123]. However, 
their roles in reversing drug resistance have not been 
demonstrated clearly, which need to be further explored. 
On the contrary, miR-224  is responsible for the poor 
response of 5-FU, and silencing miR-224 by antagomir 
achieves the desired effect in colorectal cancer cells [124]. 
Nevertheless, miRNAs have broad functions due to their 
tissue specificity and target gene diversity. It remains 
unknown whether the inhibition of a specific miRNA will 
have an influence on other signal pathways. Moreover, 
the efficacy of RNA interference is likely to be reduced in 
vitro study due to the degradation and off-target effects 
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[125, 126]. Thus, it is important to select a proper deliv-
ery vehicle. Yang et  al. used polyurethane-short branch 
polyethyleneimine as the vehicle to deliver miR-145 that 
can inhibit stem-like features and chemoresistance simul-
taneously [127]. However, the chemosynthetic carrier is 
faced with the challenge of biocompatibility in vitro.

Recently, delivering functional small RNAs by 
exosomes is a decent approach to solve these problems. 
Exosomes are stable and of biological origin, which can 
protect the cargos from being degraded [128]. Further-
more, the ligand/receptor on the exosome membrane 
is usually modified for better targetability. For instance, 
IL-3R is overexpressed on chronic myelogenous leuke-
mia blasts [129], so Bellavia et  al. coated a fragment of 
IL-3 on exosomes to precisely target CML cells. It has 
been shown the engineered exosomes carrying BCR-ABL 
siRNA can significantly inhibit cell growth [130]. How-
ever, the exosome-based delivering strategy is also faced 
with quite a few defects. It is urgent to develop tech-
niques to realize the large-scale preparation of therapeu-
tic exosomes. Besides, the therapeutic effect should be 
further verified in a large number of clinical studies.

Conclusion
In summary, the deep understanding of the link between 
the EMT program and the CSCs status provides us with 
new insight into therapy resistance. Cancer cells under-
going EMT acquire the CSCs properties, which are regu-
lated by multiple factors, such as EMT-TFs and various 
signal pathways. In this process, miRNAs play a pivotal 
role. Importantly, targeting EMT and CSCs will be a 
promising therapeutic strategy in overcoming chem-
oresistance. Furthermore, inhibiting the EMT-induced 
miRNAs or introducing the EMT-suppressed miRNAs 
is also attractive. However, applying these therapeutic 
approaches to clinical practice remains a long way to go. 
More efforts should be put into identifying cancer type 
specific miRNAs and refining deleivery approaches for 
miRNAs into cancer cells.
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