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Abstract 

Pancreatic cancer is one of the most common causes of cancer-related deaths worldwide. The two major histologi‑
cal subtypes of pancreatic cancer are pancreatic ductal adenocarcinoma (PDAC), accounting for 90% of all cases, and 
pancreatic neuroendocrine neoplasm (PanNEN), which makes up 3–5% of all cases. PanNEN is classified into well-dif‑
ferentiated pancreatic neuroendocrine tumor and poorly-differentiated pancreatic neuroendocrine carcinoma (Pan‑
NEC). Although PDAC and PanNEN are commonly thought to be different diseases with distinct biology, cell of origin, 
and genomic abnormalities, the idea that PDAC and PanNEC share common cells of origin has been gaining support. 
This is substantiated by evidence that the molecular profiling of PanNEC is genetically and phenotypically related 
to PDAC. In the current review, we summarize published studies pointing to common potential cells of origin and 
speculate about how the distinct paths of differentiation are determined by the genomic patterns of each disease. We 
also discuss the overlap between PDAC and PanNEC, which has been noted in clinical observations.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the most 
common type of malignancy found in the pancreas, with 
over 90% of pancreatic neoplasms diagnosed as PDAC. 
Epidemiologic studies of all malignant types have shown 
that the 5-year relative survival rate is the lowest in PDAC 
and that death rates from this type of cancer have been 
rising over the past decade [1]. Less than 5% of patients 
with PDAC are alive after 5 years, and in patients discov-
ered in the early stages, the 5-year survival rate is only 
approximately 20% [2]. The most common driver gene 
mutations of PDAC include KRAS, CDKN2A, TP53, and 
SMAD4, which all together account for 90% of cases [3].

The second most common type of pancreatic neoplasm 
is pancreatic neuroendocrine neoplasm (PanNEN), 
which accounts for 3–5% of all cases [4]. It is important to 
note that poor differentiation of pancreatic neuroendo-
crine carcinoma (PanNEC) accounts for 10–20% of Pan-
NEN cases. PanNEN has a prognosis similar to PDAC, 
with a median overall survival (OS) of only 7.5  months 
[5]. In contrast, well-differentiated pancreatic neu-
roendocrine tumors (PanNETs) are slow-growing with 
5- and 15-year OS rates of 85.4% and 55%, respectively. 
In addition to distinguished clinicopathological charac-
teristics and prognosis, PanNEC tumors are known to 
be histologically and genetically different from PanNET. 
For example, common somatic mutations in PanNET 
include MEN1 (multiple endocrine neoplasia type 1), 
DAXX (death-domain-associated protein)/ATRX (alpha 
alassemia/mental retardation syndrome X-linked), and 
mTOR (mammalian target of rapamycin) pathway genes. 
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However, PanNEC tumors carry the mutations of tumor 
protein 53 (TP53), retinoblastoma 1 (RB1), and KRAS 
[6], which is similar to what is seen in PDAC, while dif-
fering completely from what occurs in PanNET [7].

The close association between adenocarcinoma and 
neuroendocrine carcinoma has been shown in other 
organs, such as the colon and rectum [8]. Transformation 
from non-small cell lung cancer to small cell lung cancer 
is commonly encountered in clinical practice, and sup-
ports the idea that these malignancies might share com-
mon cells of origin [9]. The current 2019 World Health 
Organization (WHO) TNM classification for NEN 
indicates that high-grade PanNEC should be classified 
according to the criteria used for classifying the carcino-
mas of the pancreas [10]. In addition, in clinical practice 
the standard chemotherapy for PDAC is also effective in 
treatment of PanNEC [11]. This raises the question of 
whether PDAC and PanNEC may have deeper connec-
tions. In this review, we summarize connections between 
PDAC and PanNEC including their genomic features, 
cells of origin, and clinical practice areas.

Embryo development and molecular regulation 
of pancreatic exocrine and endocrine secretions
The pancreas is an organ with dual endocrine (hormone-
producing) and exocrine (enzyme-producing) functions. 
Exocrine secretions are formed with acini and ducts and 
secrete digestive proenzymes into the duodenum where 
they aid the digestion process. Exocrine secretion, which 
is represented by the islet of Langerhans, contains five 
distinct cell types (α-cells, β-cells, δ-cells, γ-cells, and 
ε-cells), and hormones, such as glucagon, insulin, and 
somatostatin, are secreted directly into blood circulation 
[12].

During the process of embryo development, however, 
both endocrine and exocrine cells originate from a com-
mon pool of multipotent pancreatic progenitors, which 
subsequently differentiate into the acing progenitors and 
bipotent pancreatic progenitors (bi-PPs) (Fig. 1). The for-
mer differentiate into acinar cells, while the latter give 
rise to ductal progenitors and endocrine progenitors 
which further separate into ductal cells and endocrine 
cells, respectively [13]. Three major epithelial cell types 
(islet, acinar and duct) found in the pancreas develop 
from the same undifferentiated pancreatic progenitors, 
yet have radically different functions, which indicates an 
interesting mechanism. The mechanism seen in the dif-
ferentiation process is not synchronous, as several mol-
ecules and pathways participate in this process (Fig.  1). 
GATA4, GATA6, FOXA2, and PTF1A are expressed 
in the foregut endoderm and play important roles in 
the differentiation of pancreatic progenitors [14, 15]. 
SOX9 persists in pancreatic duct cells, but it is absent 

in endocrine cells and acinar cells [16]. The mechanisms 
that initiate the formation of specific endocrine subtypes 
are more sophisticated. The most effective differentiation 
in α-lineage is observed in Aristaless-related homeobox 
(ARX)expressing cells, which effectively secrete glucagon 
[17]. Genes for β-cell differentiation and maintenance 
of function are multiple. Typical genes for functional 
β-cell differentiation are NEUROD1, INS1, MAFA, ISL1, 
PDX1, and ACVR1C [18]. Genetic markers that main-
tain mature β-cell function and identity include MAFA, 
PDX1, NKX2.2 and NKX6.1 [12, 16, 19]. Ductal cell lin-
eages and endocrine cell lineages interact and exhibit 
common genetic differentiation during development of 
the pancreas.

Genomic features shared among PDAC, PanNET, 
and PanNEC
There are major differences in driver gene landscapes 
and related pathways among PDAC, PanNET and Pan-
NEC (Fig.  2, Table  1). The most common driver genes 
found in PDAC are KRAS (88–100% of cases), TP53 (85% 
of cases), CDKN2A (90% of cases) and SMAD4 (55% of 
cases) [20, 21]. These four driver genes fulfill key roles 
in pancreatic tumorigenesis including the transition of 
pancreatic precursors such as PanIN and IPMN to PDAC 
[22]. In addition, about 10% of PDAC manifestations 
are inherited, and the best-studied germline mutations 
linked to familial pancreatic cancer risk are the compo-
nents of DNA double-strand break repair machinery, 
including BRCA1, BRCA2, PALB2 (partner and local-
izer of BRCA2), the Fanconi anemia genes FANCC and 
FANCG, and ATM (ataxia telangiectasia mutated) [23].

Comparisons between genetic landscapes of PanNEC 
and PDAC indicate that almost half of PanNEC instances 
are genetically and phenotypically related to PDAC [24]. 
Whole exon analysis shows that TP53 and RB are the 
most common altered genes in NEC [25]. TP53 muta-
tions are present in approximately 70–95% of PanNEC 
cases [26], and Rb markers have been identified in 74% 
of the instances of PanNEC [27]. Mutations in TP53 and 
RB1 genes are the pivotal drivers, and related pathways 
are central features of PanNEC development and are 
associated with poor survival [28]. Other predominantly 
mutated genes involve APC, CDKN2A, BRAF, KRAS, 
PTEN and PIK3CA [28, 29]. FBXW7, WNT, BCL2, 
and CTNNB1, which are mutated in partial PDAC, are 
also related to PanNEC oncogenesis but at a lower rate 
of occurrence [30]. Most KRAS-positive PanNEC also 
express MUC1 and carcinoembryonic antigen (CEA) as 
the markers of ductal differentiation. Exocrine lineage 
markers may help to reveal the potential relationship of 
some PanNEC occurrences with conventional PDAC. 
Activating KRAS mutations in PanNEC expression show 
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the same hot spot areas in PDAC, such as exon 2 and 
exon 3 ++− [27]. The most common gene mutations in 
mixed neuroendocrine-nonneuroendocrine neoplasms 
(MiNENs) are TP53, KRAS, and BRAF [31], which have 
been found to overlap between PanNEC and PDAC. 
One study has shown that in MiNEN, the mutations of 
CDKN2A, GNAS, ERBB2, and BRAF found in the Pan-
NEC section were located next to the PDAC section [32].

The driver genes in PanNETs are totally different from 
those found in PanNEC [33], PanNEC has a much higher 
mutation burden when compared with PanNETs. Next 
generation sequencing analysis has shown that the most 
common gene mutations in PanNETs include MEN1 

(37%), DAXX/ATRX (22% and 10%), and mTOR pathway 
genes, particularly PTEN(7%), tuberous sclerosis com-
plex 2 (TSC2, [4%]) and PIK3CA [7]. MEN1 acts as a hub 
gene and interacts with all core pathways, and DAXX/
ATRX also cooperates during tumorigenesis [34, 35]. 
The NET G3 subgroup, defined in a recent WHO clas-
sification, has the similar genetic mutations as PanNET 
G1/2, namely ATRX(19%), SF3B1(19%), and MEN1(12%) 
[29]. However, MEN1 and DAXX/ATRX genes muta-
tions seem to occur very rarely in PanNEC [36]. Whereas 
mutation rates in RB and TP53 appear to be very low in 
PanNETs. In general, 80% of PanNETs do not have muta-
tions in the Rb protein [37]. Even in PanNET G3, RB 

Fig. 1  Endocrine and exocrine cell differentiation during pancreas development
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abnormalities were lower than those in PanNEC G3 (42% 
to 71.4%) [26, 33]. Overexpression of the Bcl-2 protein 
was observed in 50–100% of PanNECs, higher than that 
found in PanNETs (18%). Furthermore, Bcl-2 overexpres-
sion was significantly correlated with higher Ki67 in Pan-
NEC [38]. In addition, the PanNEC expression levels of 
mTOR were higher than those found in PanNETs [39]. 
Some genes that are often seen to mutate in PDAC can 
be found to be abnormal in PanNETs, but this always is a 
more aggressive characteristic, leading to poor prognosis. 
For example, high expression of Cdk4 has been shown to 
lead to inactivation in PanNETs and is associated with a 
higher grade [40].

Twelve classical signaling pathways accompany PDAC 
tumorigenesis. Among them, the Hedgehog pathway, 
Notch pathway, Wnt pathway, RAS/MAPK/PI3K path-
way, and JAK-STAT pathway are recognized as main 

contributors to PDAC progression [41, 42]. Unlike 
PDAC, DNA damage repair, chromatin remodeling, tel-
omere alteration, and the PI3K/mTOR pathway are main 
pathways in the PanNET process.

Cells of origin that are shared among PDAC, 
PanNET, and PanNEC
The origins of PDAC and PanNEN are complex. PDAC 
can arise either from a precursor cell of intralobular 
ducts or acinar cells of exocrine secretion. The pro-
cess of PDAC tumorigenesis is initiated by oncogenic 
KRAS and requires the repression of the epithelial dif-
ferentiation program and activation of factors that are 
normally expressed during the embryonic develop-
ment of the pancreas. Precursors of pancreatic cancer, 
namely pancreatic intraepithelial neoplasia (PanIN), 
intraductal papillary mucinous neoplasm (IPMN), and 

Fig. 2  Driver gene association network between PanNET (a) and PDAC (b)
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mucinous cystic neoplasm (MCN), participate in this 
process. Indeed, up to 33% of pancreatic tissue from 
autopsy series contains PanIN [43]. Duct-like cell lin-
eages with a mutation in the driver gene KRAS, can 
develop into PanIN and progress to PDAC after addi-
tional multi-genetic (CDKN2A, SMAD4, and TP53) 
processes. The genetic features associated with IPMN 
and MCN are less well characterized [44]. Acinar cells 
transform to a duct-like phenotype during an acinar-
to-ductal metaplasia (ADM) process. With a mutation 
in the driver gene KRAS, ADM cells stay locked in a 
ductal stage, and progress to PanIN and PDAC during 
additional multi oncogenic signaling [45, 46].

PanNETs are heterogeneous, and their differences 
can be explained partly by the PanNET cells of origin. 
Specifically, at least two different progenitor cells can 
give rise to non-functional PanNETs, the α-cells line-
age (ARX +) or β-cells lineage (PDX +) [19]. Global 
DNAme profiles of the early stage of PanNET show 
strong similarities with both α- and β-cell DNAme pro-
files, while late stage tumors show a lower degree of 
similarities with normal cell types [47]. An additional 
study confirmed that different molecular subtypes of 
PanNET arise from different cellular origins, or from 
mature β-cell lineage, or islet cell precursors [48]. Loss 
of MEN1 is an early event in PanNET tumorigenesis, 
while ATRX/DAXX loss and ALT are relatively late 
events [49]. ACVR1C plays a key role in islet cell dif-
ferentiation and also works as a suppresser during 
PanNET development. ACVRIC also contributes to a 
higher Ki67 index [50].

PanNEC cell of origin is more sophisticated. PanNEC 
may in fact originate from a separate, potentially non-
neuroendocrine lineage, as seen in the growing body of 
evidence showing that the genomic origination of Pan-
NEC is different from that of PanNETs. PanNEC may 
originate from undifferentiated progenitor cells [51], 
which is the same in the occurrence of PDAC (Fig. 3). A 
mouse model of PanNEC has shown a loss of many mark-
ers during beta-cell, alpha-cell, and delta-cell differentia-
tion, including markers of endocrine progenitors, such as 
MAFA, PDX1, and NKX6.1. RB and/or the p53 signaling 
network are associated with this process. Furthermore, 
Id1, a marker of neural stem cells, was identified as spe-
cifically expressed in PanNEC [52]. This raises the possi-
bility that PanNEC may have stem cell-like properties or 
arise from pancreatic progenitor cells.

Tumor microenvironment among PDAC, PanNET, 
and PanNEC
In addition to genetic landscape, the tumor microenvi-
ronments (TME) of these neoplasms also have distinct 
characteristics. PDAC has a unique desmoplastic TME, 
which generates a large stromal component and accounts 
for 15–90% of the tumor [53]. This desmoplastic stroma 
compromises immune cells, tumor blood perfusion 
and oxygen delivery, in turn generating an obstacle for 
angiogenesis. This identifies another feature of PDAC, 
impaired tumor vasculature and hypoxia [54]. Desmo-
plastic stroma causes obstacles in chemotherapy and 
anti-angiogenesis target therapy in PDAC. Most PanNEC 
cases exhibit hypo vascular patterns similar to PDAC. In 

Table 1  Summary of the core pathways and genes in PDAC, PanNET and PanNEC

Pathways PDAC PanNET PanNEC

RAS/MAPK signaling KRAS, MAP2K4 KRAS, BRAF

NF-kB signaling NF-κB, IKK

JAK/STAT signaling MAP4K3, TNF, BCL2 BCL2

TGFb/SMAD signaling TGF-bR2, SMAD4

Wnt/b-catenin signaling DKK1, HMGA2 WNT

Hedgehog signaling SOX3,GLI1,GLI3, TBX5, LRP2 LRP2

Hippo signaling YAP, TAZ

SWI/SNF ARID1A

Small GTPase-dependent signaling DEPDC2

Notch signaling MYC, GATA6 NOTCH1, HES1

DNA damage repair TP53, BRCA1, BRCA2 TP53, MDM2, MDM4 TP53

Cell cycle CDKN2A, APC2, FBXW7, CHD1 CDK4, p16,p27 RB1, APC, CDKN2A, FBXW7

c-MET MET

PI3K/AKt signaling PTEN, PI3KCA, AKT, mTOR, TSC1/2 PTEN, PI3KCA, mTOR

Chromatin remodeling DAXX,ATRX, MDM2

Angiogenesis pathway HIF-1, BNIP3 HIF-1a, VEGF, PDGF, PHDs,Kit, Tie-2

Menin pathway MEN1, MLL
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contrast, PanNETs have extraordinary tumor vasculariza-
tion with high expression of several pro-angiogenic mol-
ecules, including platelet-derived growth factor receptors 
and, vascular endothelial growth factor and its receptors 
[55]. The hyper vascular characteristics of PanNET pro-
vide a way to target angiogenesis therapy [56].

It has been observed that profiles of tumor-infiltrat-
ing lymphocytes (TILs) in PanNEN and PDAC samples 
form three distinct clusters and are concordant with 
histological types PanNEC, PDAC, and PanNETs [57]. 
This indicates a correlation between immune profile and 
tumor histology. PanNEC and in some instances, PDAC 
have revealed a hot immune TME when compared to 

PanNETs. TIL and its PD-1/PD-L1 + subsets have been 
found less abundant in PanNETs compared to those 
found in PanNEC and PDAC [57]. The stroma of PDAC 
is rich in CD3 + CD4 + helper T (Th) cells, CD8 + T 
cells, and CD4 + CD25 + fork-head box P3 regulatory 
T cells. PD-1 and PD-L1 are associated with poor prog-
nosis in patients with PDAC [58]. PanNEC shows the 
intensive accumulation of CD3 +/CD4 T cells, which 
is comparable with that found in PDAC [57]. There is a 
clear shift at the NET–NEC transition in immune-related 
profiles of GEP-NEN. Reduced CD8 + infiltration and 
enhanced PD-L1 expression in tumor cells are associated 
with higher tumor grading [59]. Among PanNET cases, 

Fig. 3  Hypothesis of the evolution of PanNET, PDAC, and PanNET cells of origin
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32–65% have a high degree of T cell infiltrates (CD3 + , 
CD45RO + , and CD8 +) in intratumoral cases and 
50–70%, in extratumoral cases [60]. CD3 +/PD-1high and 
CD204 +/PD-L1high populations were significantly higher 
in PanNETs with a higher grade [57]. Furthermore, the 
expression of PD-L1(Stroma) was higher in PanNEC 
than in PanNETs [59]. Since immune checkpoints such 
as PD-1/PD-L1 are mainly expressed in high-grade NEN, 
the KEYNOTE-028 trial evaluated treatment with pem-
brolizumab in solid tumors and was able to show that 
partial response and progression-free survival in patients 
with PanNETs and PDAC were 6.3% at 4.5  months and 
0% at 1.7 months, respectively [61, 62]. Case series have 
also reported that patients with PanNEC respond to 
nivolumab and have a long survival of 8 years following 
standard chemotherapy [63]. Equivalent trials are now 
in progress for GEP-NETs. However, most phase I and II 
clinical trials have failed to show any clinical efficacy in 
the case of PDAC [64].

Pathological diagnosis and serum detection
The pathology diagnosis of PanNEC is sometimes mis-
taken for PDAC, as both often have nuclear atypia, 
necrosis and a high mitotic rate; furthermore, PanNEC 
may have an adenocarcinoma component [10, 65]. Pan-
NEC is composed of highly atypical neoplastic cells and 
can be further classified into small and large cell carci-
noma. Large cell (61%) is more common than small cell 
(39%) [66]. In general, PanNEC cells are pleomorphic 
and its classic salt-and-pepper chromatin pattern is not 
as evident. Geographic necrosis, as well as perineural and 
angiolymphatic invasion, are often present in PanNEC. 
Microscopically, PDAC often has glandular architecture 
and mucin-producing glands, but can have single-cell 
infiltration. In addition, the neoplastic cells have irregu-
lar nuclear chromatin and prominent nucleoli. Overall, 
cells in PDAC tend to be more pleomorphic than those 
in PanNENs. IHC is useful for distinguishing these 
malignancies. In PanNET, chromogranin A (CgA) and 
Synaptophysin (Syn) are the most sensitive biomarkers, 
and staining is generally found to be diffuse and strong; 
however, CgA and Syn are less sensitive in the diagnosis 
of PanNEC compared with PanNETs [67]. Well-differ-
entiated morphology and lower Ki67 proliferation index 
were found to be correlated with the strong expression of 
SSTR2A and CgA, and highly positive SSTR2A was asso-
ciated with longer survival in PanNETs [68].

There is overlap in serum biomarkers between PanNEC 
and PDAC. CA199 and CEA are sensitive and specific 
markers for PDAC diagnosis and prognosis. Abnor-
mal CA199 and CEA levels have been found in Pan-
NEC, while serum CA199, CEA, and AFP levels above 
the upper limit have been observed in 23.8%, 28.6% and 

19.0% of PanNEC cases, respectively [69]. Abnormal 
CA199 and CA125 levels are more commonly found in 
PDAC than in PanNEC. AFP levels in PanNEC are higher 
than those found in PDAC. Serum CgA has been shown 
to have the highest sensitivity for diagnosing patients 
with PanNET G1 and G2. Elevated serum CgA levels 
have been found in 50–100% of patients with PanNET 
and have been shown to be correlated with tumor burden 
and metastasis in PanNETs [70]. However, CgA is less 
useful for detecting PanNEC tumors, especially in small 
cell carcinoma [71]. Instead, neuron-specific enolase has 
been proven to have higher sensitivity; however, its use is 
limited by its low specificity [72].

Convergence of clinical management
Standard system therapies vary widely among PDAC, 
PanNEC and PanNET (Table  2). National Comprehen-
sive Cancer Network treatment guidelines for PanNEC 
recommend cisplatin and etoposide chemotherapy, with 
an objective response rate of 41–67% and a median 
survival of 15–19  months [73]. The standard therapy 
for PDAC is FOLFIRINOX (5-fluorouracil, irinotecan, 
and oxaliplatin). FOLIFIRINOX treatment has accept-
able side effect profiles and rapid objective response in 
patients with PanNEC [11]. Somatostatin analogue is 
standard therapy for PanNETs with dual effects—inhibit-
ing hormone secretion as well as anti-tumor proliferation 
[56]. The mTOR inhibitor Everolimus is a standard target 
therapy for PanNETs [74]. The mTOR signaling pathway 
has also been demonstrated to be active in a small num-
ber of PDAC cases, and preclinical data have supported 
mTORC1 inhibitors in a subgroup of PDAC patients with 
the hyper-activation of the PI3K-mTOR pathway [75]. 
However, clinical trials have had disappointing results in 
PDAC patients treated with Everolimus as a single agent 
(ORR 0%–6%), or in combination with other agents [76, 
77]. The deregulation of the mTOR pathway is not of cru-
cial importance in treatment of PDAC.

Conclusions
Current data support the idea that the tumorigenesis of 
PanNEC and PDAC malignancies might overlap. The 
genetic profile of PanNEC is distinct from that of Pan-
NETs, while PanNEC harbors TP53 and RB1 alterations, 
which overlap in PDAC. The genetic profile of PanNEC 
also lacks neuroendocrine-related genetic changes, such 
as mutations in MEN1 and ATRX/DAXX. Additionally, 
a growing body of evidence suggests that there are over-
laps in treatments for PDAC and PanNEC, as well as in 
their prognoses. Our review was able to show an obvious 
relationship between conventional PDAC and PanNEC 
in a subset of cases. These preliminary observations raise 
practical issues for the proper care of patients, which 
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could become the basis for improved therapy. More stud-
ies are needed to further discover the still unknown fac-
tors surrounding the intersection of PDAC and PanNEC 
biology and pathology.
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