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Abstract 

Background:  Breast cancer is the most diagnosed malignancy in females in the United States. The members of reti-
nal determination gene network (RDGN) including DACH, EYA, as well as SIX families participate in the proliferation, 
apoptosis, and metastasis of multiple tumors including breast cancer. A comprehensive predictive model of RDGN 
might be helpful to herald the prognosis of breast cancer patients.

Methods:  In this study, the Gene Expression Ominibus (GEO) and Gene Set Expression Analysis (GSEA) algorithm 
were used to investigate the effect of RDGN members on downstream signaling pathways. Besides, based on The 
Cancer Genome Atlas (TCGA) database, we explored the expression patterns of RDGN members in tumors, normal 
tissues, and different breast cancer subtypes. Moreover, we estimated the relationship between RDGN members and 
the outcomes of breast cancer patients. Lastly, we constructed a RDGN-based predictive model by Cox proportional 
hazard regression and verified the model in two separate GEO datasets.

Results:  The results of GSEA showed that the expression of DACH1 was negatively correlated with cell cycle and DNA 
replication pathways. On the contrary, the levels of EYA2 and SIX1 were significantly positively correlated with DNA 
replication, mTOR, and Wnt pathways. Further investigation in TCGA database indicated that DACH1 expression was 
lower in breast cancers especially basal-like subtype. In the meanwhile, SIX1 was remarkably upregulated in breast 
cancers while EYA2 level was increased in Basal-like and Her-2 enriched subtypes. Survival analyses demonstrated that 
DACH1 was a favorable factor while EYA2 and SIX1 were risk factors for breast cancer patients. Given the results of Cox 
proportional hazard regression analysis, two members of RDGN were involved in the present predictive model and 
patients with high model index had poorer outcomes.

Conclusion:  This study showed that aberrant RDGN expression was an unfavorable factor for breast cancer. This 
RDGN-based comprehensively framework was meaningful for predicting the prognosis of breast cancer patients.
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Introduction
In the United States, breast cancer is the most commonly 
diagnosed cancer and second leading cause of cancer-
related death in women [1, 2]. According to the presence 
or absence of molecular biomarkers, breast cancer could 
be categorized into three major subtypes: Luminal (hor-
mone receptor positive and Her-2 negative), Her-2-en-
riched (Her-2 amplified), Basal-like (hormone receptor 
negative and Her-2 negative) [3]. The molecular typing 
of breast cancer is a huge breakthrough in cancer thera-
nostics which not only helps to predict the prognosis of 

Open Access

Experimental Hematology & 
Oncology

*Correspondence:  li_anping@yahoo.com; kmwu2005@yahoo.com
†Bing Dong and Ming Yi are contributed equally to this work
2 Department of Oncology, Tongji Hospital of Tongji Medical College, 
Huazhong University of Science and Technology, Wuhan 430030, China
3 Department of Medical Oncology, The Affiliated Cancer Hospital 
of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, 
China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2499-1032
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40164-020-00169-z&domain=pdf


Page 2 of 12Dong et al. Exp Hematol Oncol            (2020) 9:13 

patients, but also effectively guides the following treat-
ment schedule [4–6]. Among the three breast cancer 
subtypes, Basal-like breast cancer has the poorest clini-
cal outcome and the highest probability to reoccur than 
other two subtypes of cancers [7]. Apart from molecu-
lar typing, tumor DNA sequencing is also an important 
reference for treatment decision. Patients with germline 
mutations in BRCA​ might benefit from PARP inhibitor 
treatment while patients harboring alterations in ERBB-2 
or ESR1 are more likely to develop resistance to standard 
therapies [8–13].

As a highly conservative signaling pathway, the reti-
nal determination gene network (RDGN) was originally 
found to regulate Drosophila eye specification. Then, 
RDGN was reported to participate in the organ develop-
ment in mammals [14]. At present, it has been well estab-
lished that aberrantly expressed RDGN signals involve 
in the proliferation, apoptosis, stemness, and metasta-
sis of cancer cells [15]. It has been known that RDGN 
comprises multiple members: dac/Dach (dominant sup-
pressor of ellipse), eya/Eya (tyrosine phosphatase eyes 
absent), so/Six (Six family transcription factor sine ocu-
lis), as well as ey/toy (Pax6-like homeodomain proteins) 
[16]. In the main components of RGDN, DACH family 
generally plays a role as tumor suppressor while EYA and 
SIX families most likely act as oncogenes [17–21]. How-
ever, there are contrary reports on RDGN’s function in 
different cancers. For example, DACH1 protein levels 
were increased with the invasiveness of the ovarian can-
cer and subcellular distribution of DACH1 changed from 
nucleus in normal tissue to cytoplasm in cancer [22]. As a 
negative regulator of Wnt pathway, SIX3 inhibited breast 
cancer carcinogenesis and metastasis through recruiting 
the LSD1/NuRD complex [23]. In consistent with this 
experimental study, expression profile analysis indicated 
that high SIX3 mRNA level was a protective factor for OS 
and RFS of basal-like breast cancer patients [24]. Several 
studies proved that EYA4 behaved as a tumor suppressor 
and associated with favorite prognosis in hepatocellular 
carcinoma and pancreatic ductal adenocarcinoma [25, 
26]. In summary, multiple studies suggested that mem-
bers of RDGN family played distinct roles depending on 
the cancer type. Our previous studies showed that RDGN 
was dysregulated in tumors with a coordinated fashion: 
downregulated DACH1 in accompany with upregulated 
EYA1 and SIX1 in tumors [24, 27, 28].

Several groups attempted to address the prognostic 
and therapeutic response value of DACH1 in breast 
cancer. Machine learning methods such as Artificial 
Neural Networks have been utilized to identify bio-
markers of breast cancer. Using Artificial Neural Net-
works approach, Powe et  al. [29] found that DACH1 

had a positive association with ER and exerted a strong 
influence on ER associated markers. Consisting with 
our study, nuclear DACH1 expression was observed in 
normal and Luminal breast cancer tissues. Patents with 
high expression of DACH1 demonstrated longer  sur-
vival and disease-free interval as well as reduced metas-
tasis risk [29]. However, prognostic value of DACH1 
was not independent of clinical stage and Nottingham 
Prognostic Index [29]. Aromatase inhibitors (AI) are 
standard adjuvant treatment for postmenopausal lumi-
nal A subtype breast cancer [30]. However, resistance 
is still a major clinical problem for improving long 
term survival. Thomsen et  al. [30] performed global 
gene expression analysis to measure gene expression 
profile of 23 ER positive breast cancer patients treated 
with adjuvant AI and collected follow-up informa-
tion for relapse. Twenty-six genes including DACH1 
were shown to exhibit altered expression in tumors 
from patients with relapse versus non-relapse. Ingenu-
ity pathway analysis indicated DACH1 was linked with 
cyclin D1, cyclin A1, NRG family, and PLC1 [30]. It 
is interesting to mention that four methylation mark-
ers (RASGRF1, CPXM1, HOXA10, and  DACH1) in 
circulating cell-free DNA could discriminate cancer 
from normal with high sensitivity (0.86) and specificity 
(0.83) in early breast cancer [31]. Among the 4 genes, 
RASGRF1 and CPXM1 represented common breast 
cancer marker, while HOXA10 and DACH1 repre-
sented luminal-dominant marker and triple negative 
dominant marker, respectively. CpG islands of those 4 
genes were located in the promoter region and associ-
ated with H3K4Me3 enrichment. Those studies clearly 
indicated that the unbalanced RDGN status might be 
a useful biomarker to predict the prognosis of breast 
cancer patients. In this study, based on the results of 
bioinformatics analyses, we combined several members 
of RDGN and some well-accepted prognostic indica-
tors to construct a predictive model for breast cancer 
patients.

Methods
Gene expression profiles
Two gene expression profiles (GSE25066 and GSE1456) 
were downloaded from Gene Expression Ominibus 
(https​://www.ncbi.nlm.nih.gov/geo/). GSE25066 data-
set was uploaded by Hatzis et  al. [32] consisting of 
508 breast cancer samples. GSE1456 dataset with 159 
breast cancer samples was uploaded by Pawitan et  al. 
[33]. Both GSE25066 and GSE1456 datasets were based 
on Affymetrix Human Genome U133A Array Platform. 
The pre-processed gene expression data of The Cancer 
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Genome Atlas (TCGA) were obtained from UCSC 
Xena (https​://xena.ucsc.edu/).

Gene set enrichment analysis (GSEA)
GSEA software (version: 4.0.3) was utilized for enrich-
ment analysis [34]. Gene set databases c2.cp.kegg.
v7.0.symbols.gmt and c5.all.v7.0.symbols.gmt were 
used for KEGG pathways and GO-terms enrich-
ment analyses. We set gene size > 15, False discovery 
rate < 0.25, P < 0.05, |NES| > 1 as positive criteria.

Survival analysis
The survival analysis was conducted by online analysis 
tool Kaplan–Meier-plotter (https​://kmplo​t.com/analy​
sis/). Kaplan–Meier-plotter could assess the effect of 
over 54,000 genes on the prognosis of multiple cancers 
[35]. In this study, we used the overall survival (OS), 
relapse-free survival (RFS), distant metastasis-free sur-
vival (DMFS), and post-progression survival (PPS) as 
main parameters to evaluate to the influence of RDGN 
on the outcomes of breast cancer patients.

Predictive model construction and verification
The three members of RDGN (DACH1, EYA2, and 
SIX1) and several well-established molecular biomark-
ers were included in Cox univariate regression analysis. 
According to the results of Cox univariate regression 
analysis, we selected RDGN members with statisti-
cal significance (P < 0.10) and other verified molecu-
lar biomarkers to construct Cox proportional hazards 
model. Then, we used time-dependent ROC curves to 
evaluate the accuracy and specificity of the risk model. 
Lastly, we used K-M plotter curves to assess the differ-
ence in prognosis between patients with high risk index 
(33.3 in the top percentile) and low risk index (33.3 in 
the last percentile). GSE1456 was the training set and 
GSE25066 was the validation set.

Statistical analysis
The comparisons between different groups were con-
ducted by Students’t test. All statistical results with a 
P value < 0.05 were considered significant. The survival 
curves were performed by Kaplan–Meier curves with 
log-rank test. Statistical analyses were conducted with 
Graphpad Prism 8.0 and R software (version 3.6.0 with 
package survminer and survivalROC).

Results
KEGG pathways and GO‑terms enrichments
Based on dataset GSE25066, we separately analyzed 
the difference of gene profiles for high and low expres-
sion of DACH1, EYA2 and SIX1. The results of GSEA 

showed that DACH1 level was negatively related with 
cell cycle, DNA replication, mismatch repair, and 
homologous recombination pathways (Fig.  1a–d). The 
GO-terms enrichment demonstrated that DACH1 level 
was negatively correlated with cell cycle G1/S phase 
translation, meiotic chromosome segregation but posi-
tively related to mammary gland morphogenesis pro-
cesses (Fig.  2a–d). On the contrary, EYA2 level was 
positively related with cell cycle, DNA replication, Wnt 
signaling pathway, regulation of action cytoskeleton 
pathways (Fig.  1e–h). Correspondingly, the GO-terms 
enrichment indicated that EYA2 was positively corre-
lated to cell cycle G1/S phase translation, NF-κB path-
way, Wnt pathway, DNA repair processes (Fig.  2e–j). 
Similar to EYA2, SIX1 level was positively correlated 
to DNA replication, mTOR pathway, cell adhesion mol-
ecules, and antigen presentation pathways (Fig.  1i–l). 
The results of SIX1 GO-terms enrichment analysis 
revealed that SIX1 was negatively related to anti-tumor 
immune response and T cell activity but positively cor-
related to embryonic development (Fig. 2k–p).

Decreased DACH1 predicting poor prognosis of breast 
cancer
Based on the expression profiles from TCGA database, 
we compared the DACH1 level between normal breast 
tissues and breast cancer samples. The results showed 
that DACH1 level in tumor tissues was significantly 
lower than normal tissues (P < 0.05) (Fig.  3a). Further 
analysis showed that DACH1 was remarkably downregu-
lated in Basal-like subtype compared with Luminal A or 
B or Her-2 subtypes (P < 0.0001) (Fig.  3b). The follow-
ing survival analyses confirmed that high DACH1 level 
was a favorable factor for patients’ prognosis. Patients 
with higher DACH1 (above median level) had longer OS 
(HR = 0.66, P = 0.01) (Fig. 3c), RFS (HR = 0.71, P < 0.0001) 
(Fig. 3d), DMFS (HR = 0.64, P = 0.0062) (Fig. 3e), and PPS 
(HR = 0.59, P = 0.0039) (Fig. 3f ).

Increased EYA2 and SIX1 predicting poor prognosis 
of breast cancer
The expression data of EYA2 and SIX1 were extracted 
from TCGA database. EYA2 level was lower in can-
cer samples than normal breast samples while SIX1 
level was higher in cancer samples than normal breast 
samples (Figs.  4a and 5a). Moreover, among all breast 
cancer subtypes, Basal-like subtype possessed the high-
est EYA2 level (Fig.  4b). Contrarily, the SIX1 level in 
Basal-like subtype was markedly lower than Lumi-
nal and Her2-enriched subtypes (Fig.  5b). Generally, 
both EYA2 and SIX1 were risk factors for prognosis of 
breast cancer patients. Patients with high EYA2 (above 
median value) had shorter OS (HR = 1.28, P = 0.024) 
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(Fig.  4c), RFS (HR = 1.2, P = 0.00084) (Fig.  4d), DMFS 
(HR = 1.4, P = 0.00062) (Fig.  4e), but had no effect on 
PPS (HR = 1.07, P = 0.58) (Fig.  4f ). Similarly, patients 
with higher SIX1 (above median value) had poorer 
OS (HR = 1.38, P = 0.0034) (Fig.  5c), RFS (HR = 1.2, 
P = 0.0011) (Fig.  5d), DMFS (HR = 1.21, P = 0.054) 
(Fig. 5e), as well as PPS (HR = 1.33, P = 0.021) (Fig. 5f ).

Predictive model construction and verification
According to the clinical information and gene matrix 
of GSE1456, we performed Cox univariate regression 
analysis to select prognosis indicators from RDGN. 
Eventually, we utilized DACH1 (HR = 0.758, P = 0.083), 

SIX1 (HR = 1.365, P = 0.036), as well as other previously 
verified molecular factors to construct a predictive 
model for potential relapse of breast cancer patients 
(Fig. 6a). Besides, we referred to the gene set designed 
by Pawitan et  al. [33] and involved ERBB2, ESR, Cyc-
lin E2, as well as TOP2A in our model to increase pre-
dictive power. By Cox proportional hazard model, we 
constructed the risk index = − 0.186*DACH1 + 0.287*
SIX1 + 0.041*ERBB2 − 0.044*ESR1 (ESR) + 0.108*Cyc-
lin E2 + 0.505*TOP2A. Then, the time-dependent ROC 
curves showed that this index could effectively distinct 
patients with high relapse risk within 3, 5, and 8 years 
(AUC > 0.7 in all conditions) (Fig.  6b–d). By K-M 

Fig. 1  The results of GSEA (KEGG pathways). The gene profiles of samples with DACH1 low expression were significantly enriched in cell cycle 
(a), DNA replication (b), mismatch repair (c), and homologous recombination (d); The gene profiles of samples with EYA2 high expression were 
significantly enriched in cell cycle (e), DNA replication (f), Wnt signaling pathway (g), and regulation of actin cytoskeleton (h); The gene profiles of 
samples with SIX1 high expression were significantly enriched in DNA replication (i) and mTOR pathway (j); The gene profiles of samples with SIX1 
low expression were significantly enriched in adhesion molecules (k) and antigen processing and presentation pathway (l)
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Fig. 2  The results of GSEA (GO terms). The gene profiles of samples with DACH1 low expression were significantly enriched in cell cycle G1-S 
transition (a), meiotic chromosome separation (b) and chromosome separation (c); The gene profiles of samples with DACH1 high expression were 
significantly enriched in mammary gland morphogenesis (d); The gene profiles of samples with EYA2 high expression were significantly enriched in 
(positive regulation) cell cycle G1-S transition (e and f), (positive regulation) NF-κB signaling pathway (g and h); positive regulation of Wnt pathway 
(i) and positive regulation of DNA repair pathway (j); The gene profiles of samples with SIX1 low expression were significantly enriched in (immune) 
response to tumor (k and l), positive regulation of cell killing (m), and T cell receptor pathway (n); The gene profiles of samples with SIX1 high 
expression were significantly enriched in base excision repair (o) and embryonic development (p)
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Fig. 6  The construction and verification of predictive model. a The results of Cox univariate regression analysis; The time dependent ROC curves 
predicting the relapse within 3 (b), 5 (c), and 8 (d) years; (e) The K-M plotter curves of patients with high or low risk index in training set GSE1456; (f) 
The K-M plotter curves of patients with high or low risk index in training set GSE25066
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plotter method, we found that patients with high risk 
index exhibited shorter RFS in GSE1456 (P < 0.0001) 
(Fig.  6e). Subsequently, we utilized another dataset 
GSE25066 as verification. In GSE25066, patients with 
high risk index also had shorten RFS than individuals 
with low risk index (P = 0.029) (Fig. 6f ).

Discussion
RDGN is a highly conserved signal for proper organ 
development across taxa [36]. However, dysregulated 
RGDN expression is highly related to cancer initiation 
and progression. For breast cancer, decreased DACH1 
led to accelerated cell cycle, enhanced stemness, inva-
sion, and metastasis. In the previous study, we found 
that DACH1 regulated cell cycle via inhibiting Cyclin D1 
[37] and reprogramed cell stemness by downregulating 
stemness-associated molecules such as SOX2, Nanog, 
as well as KLF4 [38]. Besides, it has been verified that 
DACH1 could suppress epithelial-mesenchymal transi-
tion (EMT), migration, metastasis by antagonizing YB-
1-mediated transcriptional events, SNAI1-E-cadherin 
pathway, and IL-8 transcription in breast cancer cells 
[39–41]. Notably, it has been revealed that DACH1 was 
expressed in estrogen receptor breast cancer cells and 
acted as an endogenous inhibitor of estrogen signaling 
[42].

Contrary to DACH1, EYA2 facilitates proliferation, 
migration, invasion, and metastasis of breast cancer cells. 
EYA2 promoted breast cancer cellular proliferation and 
distant metastasis as the downstream of EGFR [28, 43]. 
Different from the other members of RDGN, EYA2 had 
a phosphatase activity. Inhibiting the phosphatase activ-
ity of EYA2 could suppress EYA2-mediated malignant 
biological behavior [44, 45]. Similar to EYA2, SIX1 also 
play a pro-tumor role. SIX1 facilitated tumor growth by 
enhancing Warburg effect. Besides, SIX1 promoted EMT, 
metastasis, and chemotherapy resistance in breast cancer 
cells [46–48]. Our previous meta-analysis showed that 
increased SIX1 was closely related to poor prognosis of 
breast cancer patients [24].

In the present study, we firstly explored the effects of 
DACH1, EYA2, and SIX1 on downstream signaling path-
ways. We found that DACH1 was negatively related to 
cell proliferation-associated pathways while EYA2 and 
SIX1 were positively correlated with cell cycle or DNA 
replication pathways. Moreover, increased EYA2 and 
SIX1 were highly related with some upregulated onco-
genic pathways such as Wnt and NF-κB pathways. It was 
worth mentioning that SIX1 level was positively cor-
related to DNA repair activity which might contribute 
to chemotherapy resistance in breast cancer patients 
with high SIX1 expression [48]. The following survival 

analyses showed DACH1, EYA2, and SIX1 were predic-
tive biomarkers of prognosis of breast cancer patients. 
Then, we constructed a RDGN-based framework which 
could effectively distinguish patients with high risk of 
relapse.

Actually, gene expression profiling has been utilized 
in clinical practice for treatment decision of early stage 
breast cancer patients with ER positive and lymph node 
metastasis negative [49, 50]. Based on the results of 
gene expression profiling, patients could be categorized 
into high risk, middle risk, and low risk groups. Patients 
belonging to high risk group might benefit from adjuvant 
chemotherapy while patients belonging to low risk group 
could avoid unnecessary treatment [51]. Up to now, sev-
eral commercial gene expression profiling tests are avail-
able including Oncotype DX (21 genes assay), Prosigna 
(PAM 50), MammaPrint (70 genes assay), and Endo-
Predict [52–54]. These test panels are usually used after 
breast cancer surgery with known hormone receptor 
and lymph node metastasis statuses. As a typical exam-
ple of precious medicine, gene expression profiling is a 
valuable aid to guide whether or not conduct subsequent 
chemotherapy. Among them, Oncotype DX is the most 
commonly used panel [55]. In the 21 genes of Oncotype 
DX, 16 genes were oncogenic pathway-associated genes 
and 5 genes were control genes [56]. According to the 
results of a prospective study (NCT00310180), 93.8% of 
lymph node negative, ER positive, and HER2 negative 
breast cancer patients with low Oncotype DX relapse 
scores were free of disease progression after 5 years fol-
low-up [57]. Besides, a phase 3 trial SWOG-8814 indi-
cated patients with high Oncotype DX relapse score 
could benefit from additional chemotherapy (HR = 0.59, 
P = 0.033) while patients with low relapse score had no 
improvement in survival (HR = 1.02, P = 0.97) [58]. It 
has been clear that patients with high risk scores benefit 
from additional chemotherapy. However, for predictive 
models such as Oncotype DX, it is still uncertain about 
whether patients with middle relapse scores could ben-
efit from additional chemotherapy [59]. Our predictive 
model was constructed based on RDGN members which 
was different from commercially available predictive 
tests. Theoretically, this RDGN-based model would pro-
vide complementary prognostic information. This model 
might provide extra information for deciding personal 
therapeutic scheme when patients are diagnosed as mid-
dle relapse risk individuals by other commercial tests.

We hereby constructed a prognostic model to predict 
the outcomes of breast cancer patients. To the best of 
our knowledge, this is the first RDGN-based predictive 
model for the risk of breast cancer relapse. Despite the 
promising results, some questions still remain. Firstly, 
due to the absence of housekeeping genes, it is hard to 
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set a cutoff value for other extended data sets and avoid 
the impact of sequencing batches. Besides, this predictive 
model was constructed and validated by public database 
and retrospective studies. This model may need to be 
further validated in a randomized controlled trial. Most 
importantly, it is unclear that this predictive model could 
keep its validity on other sequencing platforms. Further 
studies are required to resolve the problem properly.

Conclusion
Dysregulated RDGN is well known for breast cancers. 
Downregulated DACH1 and upregulated EYA2 and SIX1 
were highly related to DNA replication and cell cycle 
pathways. Besides, decreased DACH1 and increased 
EYA2 and SIX1 heralded the poor prognosis of breast 
cancer patients. Combining RDGN members and other 
molecular biomarkers, we constructed a predictive 
model for the potential relapse risk. This RDGN-based 
model exhibited high accuracy and specificity to distin-
guish patients with high risk of relapse. The results of 
repeatability test in a verification set showed this model 
is stable. Generally, we believed that this model would 
be an important complement for commercially available 
predictive tests.
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