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Abstract 

Senescence, a state of permanent cell cycle arrest, can be induced by DNA damage. This process, which was initially 
described in fibroblasts, is now recognized to occur in stem cells. It has been well characterized in cell lines, but there 
is currently very limited data available on human senescence in vivo. We recently reported that the expression of 
transposable elements (TE), including endogenous retroviruses, was up-regulated along with inflammatory genes 
in human senescent hematopoietic stem and progenitor cells (HSPCs) in vivo. The mechanism of regulation of TE 
expression is not completely understood, but changes in DNA methylation and chromatin modifications are known 
to alter their expression. In order to elucidate the molecular mechanisms for TE up-regulation after senescence of 
HSPCs, we employed whole-genome bisulfite sequencing in paired senescent and active human HSPCs in vivo from 
healthy subjects. We found that the senescent HSPCs exhibited hypomethylated regions in the genome, which were 
enriched for TEs. This is the first report characterizing the methylome of senescent human HSPCs.
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Introduction
Aging is characterized by a progressive loss of organ 
function. The complex cellular process of stem cell aging 
likely contributes to the aging phenotype [1–3]. Cellu-
lar senescence, defined as a state of permanent cell cycle 
arrest, plays a distinct and important role in aging [4–6]. 
A plethora of stresses, such as telomere shortening, mito-
chondrial dysfunction, oxidative stress, DNA damage, 
and expression of oncogenes, can provoke senescence [7].

While the phenomenon of senescence was origi-
nally described in fibroblasts, it has now been shown 
to occur in stem and progenitor cells, with senescent 
hematopoietic, hepatic, endothelial, and skeletal mus-
cle progenitor populations identified [8–15]. However, 
comprehensive molecular features of human senescent 
cells in vivo have not been well investigated. We recently 

identified and isolated circulating senescent HSPCs from 
healthy human subjects and showed that their transcrip-
tome had elevated expression of transposable elements 
(TEs) [16].

Repetitive sequences comprise two-thirds of the 
human genome, out of which 50% are TEs [17]. TEs have 
been recognized to play an important role in the dynam-
ics of species evolution by creating genetic diversity and 
their expression has also been shown to be up-regu-
lated in both aging and senescence [18, 19]. We recently 
showed that the expression of TEs is suppressed in leu-
kemic stem cells [20] which also appears to prime the 
cells for immune-mediated clearance via activation of the 
interferon pathway [21–23]. Hence, tight regulation of 
TEs appears crucial for homeostasis.

Recent studies have begun to explore the mechanisms 
regulating the expression of TEs. Epigenetic mecha-
nisms, specifically DNA methylation and chromatin 
modifications, tightly regulate the expression of TEs 
[24–26]. DNA hypomethylation has been shown to 
activate TEs, which can subsequently lead to genomic 
instability, resulting in tumorigenesis [27, 28] or cellular 
clearance by the immune system [21, 22]. These studies 
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were primarily performed using cell lines in  vitro. We 
wanted to examine whether the TE induction observed 
in human senescent HSPCs in vivo was due to a simi-
lar loss of DNA methylation. For this, we performed 
whole-genome bisulfite sequencing (WGBS) on senes-
cent and active human HSPCs in  vivo and character-
ized their methylome.

Materials and methods
Human in vivo senescent CD34+ HSPC isolation
Human in vivo senescent CD34+ HSPC were obtained 
and isolated from healthy subjects as previously 
described [16]. Briefly, cells were drained from leuko-
cyte reduction system cones collected from healthy 
platelet donors. HSPCs were enriched using the Roset-
teSep human progenitor enrichment cocktail (StemCell 
Technologies). Following a 20-min incubation with the 
enrichment cocktail at room temperature, mononu-
clear cells were isolated by density gradient centrifuga-
tion using Ficoll-Paque premium (GE Healthcare). The 
mononuclear cells were suspended in IMDM contain-
ing 100  nM bafilomycin A1 for 1  h at 37  °C, followed 
by incubation with C12FDG at 37  °C for 90 min. Then, 
the cells were washed with sorting buffer and stained 
with PE-conjugated anti-CD34, PE-Cy7-conjugated 
anti-CD38, and APC-conjugated anti-CD45 (eBio-
sciences) and subjected to fluorescence-activated cell 
sorting (FACS) (BD FACS Aria III). Dead cells were 
excluded based on propidium iodide staining. Samples 
were sorted for CD34+ and CD45dim+ cells to identify 
HSPCs and then gated for C12FDG staining for senes-
cence-associated beta-galatosidase (SA-βgal) expres-
sion [29]. To identify CD38+ and CD38− populations, 
we used PE-Cy7-conjugated anti-CD38 antibody (eBi-
osciences). The protocol was approved by the Institu-
tional Review Board (Protocol # IRB-HS-12-00693).

WGBS and methylation analysis
Libraries for whole-genome bisulfite sequencing were 
generated from 5  ng of purified DNA from paired 
senescent and active CD34+ cells from 3 healthy 
human donors (33, 45, and 53  years of age) using the 
NuGen Ovation Ultralow MethylSeq Kit following 
the manufacturer’s protocol, for a total of 6 individual 
libraries. Samples were not pooled prior to library gen-
eration. Reads were aligned using Biscuit and Metilene 
was used for calling of differentially methylated regions. 
Motif analysis of DMRs was conducted using the 
PWMEnrich package with Hocomoco and Factorbook 
motif databases provided in the motifbreakR package 
[30].

Chromatin conformation inference from WGBS data
Reads were aligned using biscuit and post-processed 
using biscuiteer [31] prior to compartment inference. 
Briefly, observed CpG loci were restricted to “open 
sea” regions and smoothed using a Dirichlet smooth-
ing approach. Loci that had less than 3× coverage were 
set to values of NA and any locus that had greater than 
50% NAs were removed from the dataset. Remaining 
NAs were imputed using k-nearest neighbors [32, 33]. 
Chromatin confirmation inference was performed as 
described previously [34] and implemented in compart-
map [35].

Results
Senescent human HSPCs isolated from peripheral blood 
of healthy subjects
In order to assess if epigenetic alterations such as changes 
in DNA methylation contributed to increased expres-
sion of TEs in senescent HSPCs, we subjected paired 
senescent and active HSPCs from 3 healthy humans 
to WGBS. We employed a modified FACS protocol 
[16] to identify and isolate senescent and non-senes-
cent HSPCs (CD34+ CD45dim+ cells) from peripheral 
blood of healthy platelet donors. Senescence-associated 
β-galactosidase (SA-β-gal) was used as a senescence 
marker [12–15, 36, 37] to identify and isolate circulating 
senescent HSPCs as previously described [16]. Using this 
technique, we isolated between 2800 and 4800 senescent 
HSPCs and 250,000 to 360,000 non-senescent HSPCs 
from each of our three individual donors. All samples 
were standardized to an input of 5  ng prior to WGBS 
library generation.

Senescent human HSPCs display focal loss of DNA 
methylation
WGBS yielded 7.5× genome coverage. Using the 
2-dimensional Komogorov-Smirnov approach imple-
mented in Metilene with cutoffs of 10% minimum 
difference, 10 CpGs and 10% FDR, we identified 61 dif-
ferentially methylated regions (DMRs) in senescent 
vs. active HSPCs, of which 51 were hypo-methylated 
(hypoDMRs) and 10 hyper-methylated (hyperDMRs) 
(Additional file 1: Table S1). Multi-resolution chromatin 
conformation inference for non-senescent and senescent 
HSPCs revealed representative genome-wide changes in 
open/closed compartments between cell types (Fig.  1). 
DNA methylation changes in the senescent cells were 
focal rather than global (Figs. 1 and 2). By mapping the 
hypoDMRs to chromatin states using ChIP-seq data of 
primary human CD34+ cells, we found the majority of 
DMRs to overlap with transcriptional enhancers (Fig. 3b). 
CCAAT/enhancer binding proteins (CEBPA/B/G) 
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were the dominant motif (8/10 top hits) in hypoDMRs 
(Fig. 3b). CBFA2T2, TIMM44, and Myc-associated factor 
X were among the top hits in hyper DMRs (Fig. 3b).

Enrichment of repetitive elements in the hypoDMRs 
of senescent HSPCS
Next we examined whether the hypoDMRs correlated 
with the repeat regions in the genome. Interestingly, all 
of the hypoDMRs (51/51) but only 4/10 of the hyper-
DMRs overlapped with repeat elements (Fig.  4, Addi-
tional file  2: Figure  S1 and Additional file  3: Table  S2). 
Based on the observation that ~ 50% of the genome is 
repetitive and that an overlap may equally likely affect 
hyper- and hypo-DMRs, Fisher’s Exact test showed a sig-
nificantly increased occurrence of repeat elements in the 

hypoDMRs (P < 10−6). This led us to conclude that senes-
cent HSPCs display focal loss of DNA methylation in the 
repetitive DNA-containing DMRs.

Discussion
This is the first study to perform WGBS in human senes-
cent cells in vivo. Previous WGBS studies on replicative 
senescence in cell lines showed global genome-wide loss 
of methylation [38]. Cruickshanks et al. [38] suggest that 
methylation signatures in senescence are fixed once the 
cell cycle ceases, and are therefore a reflection of previ-
ous epigenetic events. Our study using in vivo senescent 
HSPCs showed only focal loss of methylation, suggesting 
the mode of senescence in in vitro replicative senescent 
cells and in human in vivo senescent HSPCs were likely 

Fig. 1  Multiresolution chromatin confirmation. Multi-resolution chromatin conformation inference for non-senescent (red/gray) and senescent 
(yellow/gray) HSPCs across chromosome 6 reveals representative genome-wide changes in open/closed compartments between cell types. 
The 50 kb resolution shows widespread focal chromatin accessibility across chromosome 6, encompassing regions rich in TEs. Open chromatin 
(negative eigenvalues); closed chromatin (positive eigenvalues)

Fig. 2  Whole genome bisulfite sequencing of senescent HSPCs. Focal loss of DNA methylation observed in senescent HSPCs obtained through 
whole genome bisulfite sequencing. Senescent population (CD34+ SA-β-Gal –) is represented in orange, with non-senescent population 
(CD34+ SA-β-Gal +) shown in blue. This shows alterations in methylation along a representative segment of chromosome 6, with focal 
hypomethylation of gene promoter regions of HLA-DRB5 and HLA-DRB6
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different. DNA methylation changes that accumulate 
over time during cell passage in  vitro may be a reason 
for this difference. We speculate that the senescence in 
HSPCs was likely due to a stress response, such as oxi-
dative stress. Our study showed that the hypoDMR 
regions were enriched for both TEs and enhancer marks. 
This finding is consistent with prior studies showing 
hypomethylated TE-rich genomic regions containing 
enhancer marks [25, 26]. TEs are known to play a signifi-
cant role in regulation of gene expression [39]. The physi-
cal proximity of the TE and enhancers regions is possibly 
a result of co-evolution. Future studies on how TEs coop-
erate with the nearby enhancer regions to modulate gene 
expression are warranted.

Several chromatin modifiers including CTCF, BORIS, 
DDM1, LSH1, KDM1A and transcription factors like 
p53, SIRT1, FOXA1, SP1 have been shown to maintain 
the TEs in a dormant state [40–42]. We found that CEBP 

binding sequences were enriched in the focally hypo-
methylated regions of the genome. Previous studies have 
shown methylation-specific increases in DNA binding 
affinity for CEBPβ [43–47], which also plays a significant 
role in regulating senescence associated secretory pheno-
type (SASP), an inflammatory phenotype known to occur 
with senescence induction [43–47]. It is possible that 
CEBPβ regulates TE expression in a methylation-specific 
manner, a mechanism that needs to be explored.

The major limitation of this study is the low sequenc-
ing depth, which may lead to the relatively low number 
of DMRs identified. We hypothesize that future deeper 
sequencing with high coverage will help elucidate addi-
tional DMRs, helping unlock additional upregulation of 
TEs. Because of the low depth of sequencing, it is pos-
sible that not all DMRs met the stringent requirements 
for our study, yet are still contributing to the overall 
upregulation of TEs. It is also important to note that 

Fig. 3  Characterization of the differentially methylated regions in senescent HSPCs. a Mapping of hypo- and hyperDMRs to chromatin states of 
CD34+ cells. Hypomethlation is spread diversely throughout different regions of the genome, with promoter and enhancer regions showing a 
propensity for hypomethylation. b Motif enrichment analysis of statistically significantly DMRs shows high concordance of both hypermethylated 
and hypomethylated regions of the genome, with selected targets noted. Hypomethylated regions show a clustering of CEBP enhancer regions

Fig. 4  Regions with loss of methylation overlapped with the repeat elements in the genome. Senescent population (CD34+ SA-β-Gal –) is 
represented in orange, with non-senescent population (CD34+ SA-β-Gal +) shown in blue in this representative region of chromosome 6 
(158507720:158508419) and region of hypomethylation overlapping with transposable element
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hypomethylation may not be the only factor contributing 
to the upregulation of TEs. Histone modifications are a 
major mechanism that may also play a role in this overex-
pression of TEs and should be further investigated. These 
changes can be evidenced by the widespread focal open-
ing of chromatin not solely accounted for by DMRs. High 
resolution mapping of chromosome 6 shows increasing 
numbers of focal open regions in senescent HSPCs when 
compared to non-senescent. This is consistent with a 
widespread focal opening of chromatin, which could lead 
to increased TE expression.

Recent studies have elucidated the role of TEs in vari-
ous pathologies, such as motor neuron disease, autoim-
mune diseases and cancers [48–55], motivating a deeper 
understanding of the dysregulation mechanisms of TEs. 
Understanding the regulation of TE expression could 
enable better understanding of the pathophysiology of 
the disease, facilitating the development of better treat-
ment options.

Dysregulation of TEs has also been implicated in accel-
erated aging in mouse models of senescence. Loss of 
methylation in TE-rich regions of the genome has been 
shown in both mice and human aging [56–58]. Recent 
studies have shown that hypomethylating agents in cell 
lines induce the expression of TEs, which causes activa-
tion of the viral recognition pathway and inflammatory 
gene expression [21, 22]. We speculate that similar mech-
anisms may underlie the inflammatory phenotype seen 
in senescence, warranting further mechanistic studies in 
senescence exploring the link between hypomethylation, 
activation of TE expression and immune activation.

Additional files

Additional file 1. Compiled list of differentially methylated regions in 
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