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Incorporation of functional elements 
enhances the antitumor capacity of CAR T cells
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Abstract 

As chimeric antigen receptor (CAR) T cells have displayed an unprecedented efficacy in the treatment of CD19-posi-
tive malignances, it is believed that this cell therapy will be a milestone in the history of mankind’s conquering of can-
cer. However, there are some issues that restrict CAR T cells from reaching their optimal anti-tumor capacity, especially 
in the treatment of solid tumors. Inhibitory cytokines, immune checkpoint molecules, hypoxia and other adverse fac-
tors have been reported to be involved in this process. To obtain better efficacy in the treatment of leukemia and solid 
tumors, we need to continuously upgrade CAR T cell technology by incorporating novel functional elements into CAR 
T cells to overcome these restrictions. In this review, we summarize recent advances regarding this topic.
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Background
Benefiting from the remarkable therapeutic outcome 
of chimeric antigen receptor (CAR) T cell treatment of 
refractory/relapsed B cell malignancy, CAR T cells are 
transitioning from the lab to the cancer ward. Several 
CAR-T products are in the advanced stage of clinical 
development [1–3]. CARs are recombinant receptors 
that generally consist of scFv, hinge, transmembrane 
domain, costimulatory molecule and CD3 ζ chain. Cur-
rent research on CAR T cells mainly focuses on explor-
ing new scFvs that are expressed at high levels on tumor 
cell surfaces rather than in healthy tissue and inves-
tigating an appropriate co-stimulatory intensity that 
enhances CAR T cell killing capacity and persistence 
[4–6]. However, there are some issues that restrict CAR 
T cells from reaching an optimal anti-tumor capacity, 
especially in the treatment of solid tumors [7]. Such as 
inhibitory cytokines, immune checkpoint molecules, 
hypoxia and other adverse factors hindering CAR T cell 
from efficiently expanding and killing tumor cells. Some 

researchers are attempting to combine some novel ele-
ments into CAR vectors to make CAR T cell slip the 
leash of aforementioned restrictions and thereby exhibit-
ing optimal antitumor capacity (Fig. 1). In this review, we 
summarize the progresses of the incorporation of novel 
functional elements to improve CAR T cells, which have 
obtained prominent results.

Cytokines
IL-12 is a heterodimeric inflammatory cytokine produced 
by activated antigen-presenting cells (APCs), neutrophils, 
and macrophages. Scientific research has shown that a 
hostile tumor microenvironment can be significantly 
regulated by IL-12 through multiple mechanisms, includ-
ing reactivation of anergic tumor-infiltrated lymphocytes 
(TILs), inhibition of Treg-mediated suppression of effec-
tor T cells, recruitment of NK cells to the tumor site, and 
inhibition of IL-10 and transforming growth factor-β 
(TGF-β) secretion by tumor-associated macrophages 
(TAM). In a novel syngeneic tumor model, Pegram et al. 
[8] demonstrated that tumor elimination requires both 
CD4+ and CD8+ T cell subsets, autocrine IL-12 stimu-
lation, and subsequent IFN-γ secretion by CAR T cells. 
Therefore, they modified CD19-targeted CAR T cells to 
constitutively secrete IL-12, and the results showed that 
this treatment was able to safely eradicate established 
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disease in the absence of prior conditioning and to 
acquire intrinsic resistance to Treg-mediated inhibi-
tion. You et al. [9] modified CAR T cell targeting MUC1 
antigen to co-express IL12 for the treatment of seminal 
vesicle cancer in a phase I clinical trial. Interestingly, they 
found that the co-expression of IL-12 may contribute 
to TIA-1 expression in tumors after MUC1 CAR T cell 
treatment. IL-4 is an immunosuppressive cytokine in the 
tumor microenvironment that can promote fibrogenesis, 
support tumor growth and protect malignant cells from 
immune destruction. To protect CAR-PSCA T cells from 
the inhibitory effects of IL4, Somala Mohammed trans-
genically expressed a custom inverted cytokine receptor 
(ICR) in which the IL-4 receptor ectodomain was fused 
to the IL-7 receptor endodomain, switching the inhibi-
tory effects to promoting effects to ultimately result in 
potent and sustained anti-tumor effects [10]. To achieve 
the selective expansion of CAR T cells, Whilding et  al. 
[11] co-expressed an IL-4-responsive fusion gene (4αβ), 
which fused the IL-4 receptor α ectodomain to the shared 
human IL-2/IL-15 receptor β transmembrane and endo-
domain regions. Binding of IL-4 led to the delivery of a 
potent and selective growth signal in 4αβ+ CAR T cells.

Immune checkpoint molecules
As an evasion mechanism, many tumors are able to 
express various immune checkpoint molecules, resulting 
in the exhaustion of T cells that cannot prevent tumor 
progression. Emerging clinical data have highlighted the 
importance of the PD-L1/PD-1 immune inhibitory axis, 
and immune checkpoint blockers targeting both PD1 
and PD-L1 have obtained great success in cancer therapy 
[12, 13]. Suarez et al. [14] developed a new combination 
immunotherapy that consists of human anti-carbonic 
anhydrase IX (CAIX)-targeted CAR T cells engineered 
to secrete human antibodies at the tumor site. Local 

anti-PD-L1 antibody delivery led to a fivefold reduc-
tion in tumor growth and a 50–80% reduction in tumor 
weight when compared with the anti-CAIX CAR T cells 
alone in a humanized mice model of clear cell renal cell 
carcinoma (ccRCC). What was more interesting was 
that because the isotype of the anti-PD-L1 antibody was 
IgG1, it had the potential to mediate ADCC and was 
able to recruit NK cells to the tumor site. Tanoue et  al. 
[15] designed a new immunotherapy strategy for the 
treatment of prostate cancer; this strategy comprised 
an oncolytic adenovirus (Onc.Ad), a helper-dependent 
adenovirus (HDAd) that expressed a PD-L1 blocking 
mini-antibody, and HER2.CAR T cells. The results dem-
onstrated that this combinatory therapy enhanced the 
anti-tumor effect compared with treatment with either 
HER2.CAR T cells alone or with HER2.CAR T cells plus 
Onc.Ad, and the benefits of locally produced PD-L1 
mini-body could not be replaced by the infusion of anti-
PD-L1 IgG. To overcome PD-L1 immunosuppressive 
effects on adoptively transferred T cells, Prosser et  al. 
[16] converted PD-1 to a T cell costimulatory receptor by 
substituting its transmembrane and intracellular domains 
with the CD28 domain. Rather than becoming exhausted 
upon engagement of PDL1+ tumors, adoptively trans-
ferred T cells modified to express this PD1:CD28 chimera 
exhibited enhanced functional attributes. In addition, 
several research groups have tried to rescue CAR T from 
exhaustion through gene editing. For example, Ren et al. 
[17] used the one-shot CRISPR protocol to generate allo-
geneic universal T cells, simultaneously editing four gene 
loci, to decrease the expression of both PD1 and CTLA-
4. Liu et al. [18] also constructed PD1 knockout universal 
CAR T cells.

Hypoxia
Hypoxia is a hallmark of a hostile tumor microenvi-
ronment, and tumor cells have high levels of oxidative 
stress and reactive oxygen species (ROS) production 
that substantially impair the antitumor activity of adop-
tively transferred T cells. Ligtenberg et al. [19] presented 
a strategy to render antitumor T cells more resilient 
toward ROS by co-expressing catalase along with a 
tumor-specific CAR to increase their anti-oxidative 
capacity by metabolizing H2O2. CAR T cells engineered 
to co-express catalase (CAR-CAT) showed increased lev-
els of intracellular catalase and sharp decreases in ROS 
accumulation while maintaining their antitumor activity 
despite high H2O2 levels. More importantly, CAR T cells 
co-expressing catalase substantially protected bystander 
effector cells from oxidative stress-mediated repres-
sion. The lung is an oxygen-rich environment that fre-
quently permits colonization by metastatic tumor cells. 
The prolyl hydroxylase domain (PHD) functions as an 

Fig. 1  Adverse factors including inhibitory cytokines, immune check-
point molecules and hypoxia restrict CAR T cells from reaching an 
optimal anti-tumor capacity in the tumor microenvironment
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intracellular sensor of oxygen. Clever et  al. [20] found 
that T cell intrinsic expression of PHD proteins main-
tained local tolerance against innocuous antigens in 
the lung. Meanwhile, PHD proteins also restrained the 
responses of the pulmonary-type helper Th-1 and CD8+ 
T cells, promoted Treg cell induction, and finally inten-
sively enabled the colonization of circulating tumor cells. 
Inhibition of PHD proteins by dimethyloxalylglycine 
(DMOG) increased Th1 differentiation and IFN-γ pro-
duction compared with vehicle-treated cultures. DMOG-
treated TRP-1 CD4+ T cells mediated superior clearance 
of established subcutaneous tumors and lung metastases 
of melanoma. Based on the hypoxic tumor microenvi-
ronment, Juillerat et al. [21] developed an oxygen-sensi-
tive CAR by introducing an oxygen-sensitive subdomain 
of HIF1α to a CAR scaffold. CAR begins to be expressed 
only when CAR T cells infiltrate a low oxygen environ-
ment, and expression is rapidly switched down once the 
cells get away from the hypoxic environment.

Chemotherapeutic drugs and kinase inhibitors
Chemotherapeutic drugs and kinase inhibitors play 
important roles in clinical cancer treatment. In order 
to elicit stronger antitumor activity, some research-
ers are attempting to combine CAR T cell therapy with 
these drugs. Fraietta et  al. [22] found that T cells from 
chronic lymphocytic leukemia (CLL) patients usually 
exhibit deficiencies in proliferation, and this proliferative 
defect is completely reversed after long-term ibrutinib 
therapy. Ibrutinib is a first-in-class irreversible inhibitor 
of Bruton tyrosine kinase (BTK), which can irreversibly 
inhibit the IL-2 inducible T cell kinase (ITK). Ibrutinib 
inhibits Th2-polarized CD4 T cells, thus skewing T cells 
toward a Th1 anti-tumor immune response. Therefore, 
Fraietta et al. combined ibrutinib with CTL019 for treat-
ment of CLL, and the results demonstrated that Ibruti-
nib increased the expansion of CTL019 and decreased 
PD-1 and CD200 expression from CLL patients ex vivo. 
Moreover, they found that continuous ibrutinib treat-
ment could enhance CTL019 efficacy in drug-resistant 
ALL and CLL mouse models. Ruella et al. [23] also added 
Ibrutinib to CTL019 for the treatment of mantle cell lym-
phoma; the results demonstrated that 80–100% of mice 
in the CTL019+ ibrutinib arm and 0–20% of mice in the 
CTL019 arm remained in long-term remission (p < 0.05). 
Prostaglandin E2 (PGE2) and adenosine are two other 
critical immunosuppressive mediators that are present in 
solid tumors. PGE2 and adenosine activate protein kinase 
A (PKA), which then inhibits T cell receptor (TCR) acti-
vation. This inhibition process requires PKA to localize 
to the immune synapse by binding to the membrane pro-
tein ezrin. Newick et al. [24] manufactured anti-mesothe-
lin CAR T cells that co-expressed a small peptide called 

the “regulatory subunit I anchoring disruptor” (RIAD). 
RIAD can prevent the association of PKA with ezrin, 
thus eliminating the negative effects of PKA on TCR 
activation. Lenalidomide is a synthetic derivative of tha-
lidomide, which has multifaceted immunomodulatory 
efficacies. The most outstanding function of lenalidomide 
is to restore and facilitate immune synapse formation 
between T cells and antigen presenting cells. Kuramitsu 
et  al. [25] added lenalidomide to EGFRvIII (epidermal 
growth factor receptor variant III)-targeted CAR T cells 
against glioblastoma multiforme (GBM). An interesting 
and novel finding of their study was that lenalidomide 
enhanced immunological synapse formation between the 
effector cells and the target cells and then enhanced the 
persistent antitumor activity of CAR T cells. The inter-
action between HVEM (TNFRSF14) and BTLA (B and 
T lymphocyte attenuator) is lost in most follicular lym-
phomas due to an HVEM mutation. HVEM deficiency 
induces a tumor-supportive microenvironment. Boice 
et al. [26] modified anti-CAD19 CAR T cells to become 
in  vivo micro-pharmacies for the local delivery of solu-
ble HVEM, and these modified CAR-T cells showed 
enhanced therapeutic activity against xenografted 
lymphomas.

Conclusion
In the above studies, in order to achieve better anti-tumor 
efficacy in the CAR T cell therapy, CAR T cells were 
modified to contain another single functional elements. 
The results demonstrate that incorporation of functional 
elements can significantly enhance the anti-tumor effi-
cacy of CAR T cells. However, CAR T cells will encounter 
a more complicated and wicked tumor microenviron-
ment after infuse into patients. Therefore, in order to 
make CAR T cells display the best anti-tumor capacity in 
clinic, it is better to simultaneously incorporate multiple 
functional elements into CAR T cells. For example, CAR 
T cells co-express PD1:CD28 chimera and IL12 can break 
the restriction imposed by immune inhibitory molecules 
and by the lack of cytokine signals. Expand CAR T cells 
with DMOG in  vitro is also an option to make CAR T 
cells better overcome the hypoxic tumor microenviron-
ment. By combining these approaches, CAR T cells can 
resist several adverse factors and finally we obtain more 
powerful CAR T cells.
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