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Tinzaparin and other low-molecular-weight
heparins: what is the evidence for differential
dependence on renal clearance?
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Abstract

Since low-molecular-weight heparins (LMWHs) are eliminated preferentially via the kidneys, the potential for
accumulation of these agents (and an increased risk of bleeding) is of particular concern in populations with a high
prevalence of renal impairment, such as the elderly and patients with cancer. The risk of clinically relevant
accumulation of anticoagulant activity as a result of a reduction in renal elimination appears to differ between
LMWHs. This review describes the elimination pathways for LMWHs and assesses whether the relative balance
between renal and non-renal (cellular) clearance may provide a mechanistic explanation for the differences in
accumulation that have been observed between LMWHs in patients with impaired renal function. Clearance studies
in animals, cellular binding studies and clinical studies all indicate that the balance between renal and non-renal
clearance is dependent on the molecular weight (MW): the higher the MW of the LMWH, the more the balance is
shifted towards non-renal clearance. Animal studies have also provided insights into the balance between renal and
non-renal clearance by examining the effect of selective blocking of one of the elimination pathways, and it is most
likely that cellular clearance is increased to compensate for decreased renal function. Tinzaparin (6,500 Da) has the
highest average MW of the marketed LMWHs, and there is both clinical and preclinical evidence for significant
non-renal elimination of tinzaparin, making it less likely that tinzaparin accumulates in patients with renal
impairment compared with LMWHs with a lower MW distribution. On the basis of our findings, LMWHs that are less
dependent on renal clearance may be preferred in patient populations with a high prevalence of renal insufficiency.
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Introduction
Low-molecular-weight heparins (LMWHs) are not sin-
gle, well-described compounds; they are mixtures of gly-
cosaminoglycan chains with different chain lengths,
different biological activities and varying sulfation pat-
terns [1]. LMWHs are partially metabolized by depoly-
merization and/or desulfation and excreted preferentially
via the kidneys [2]. The elimination of these agents may
be reduced in subjects with impaired renal function. Ac-
cumulation of LMWHs is of particular concern in popu-
lations with a high prevalence of renal impairment, such
as the elderly [3] and patients with cancer [4]. Whether
a reduction in renal elimination will result in a clinically
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relevant accumulation of anticoagulant activity (and an
increased risk of bleeding after repeated dosing) depends
on several factors, including the severity of renal impair-
ment, the dose administered, the duration of treatment
and the dosing frequency. These factors are not neces-
sarily equally important for each LMWH. It is possible
that the risk of clinically significant accumulation in
patients with renal impairment will differ between different
LMWHs.
Tinzaparin has the highest average molecular weight

(MW; approximately 6,500 Da) of all marketed LMWHs.
No dose reduction of tinzaparin is needed in patients
with estimated creatinine clearance (CrCl) ≥20 mL/min
[5]. This is supported by several clinical studies that in-
dicate that there is no clinically significant accumulation
of anti-Xa activity (the standard marker of LMWH
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anticoagulant activity) after repeated once-daily dosing
with prophylactic [6] or therapeutic [7-9] doses of
tinzaparin in patients with renal impairment (CrCl down
to 20 mL/min). One of these studies compared pro-
phylactic doses of tinzaparin and enoxaparin in elderly
patients with moderate/severe renal impairment (CrCl
20–50 mL/min) [6]. No accumulation of anti-Xa activity
was observed after 8 days of treatment with tinzaparin,
but a statistically significant accumulation of peak anti-
Xa activity levels and anti-Xa activity exposure (assessed
by area under the curve [AUC] from 0 to 24 h) was ob-
served after 8 days of treatment with enoxaparin. The
results suggest that renal excretion is less important for
the overall elimination of tinzaparin compared with
enoxaparin, which has an average MW (approximately
4,400 Da) in the lowest range for LMWHs. Overall,
these clinical data are consistent with the hypothesis that
MW may influence the extent of renal clearance of
LMWHs, with the elimination of LMWHs with low
average MW, such as enoxaparin, being more dependent
on intact renal function than LMWHs with high average
MW, such as tinzaparin.
The primary purpose of this review is to describe the

renal and non-renal (cellular) elimination pathways for
LMWHs. We consider whether differences in the extent
of non-renal clearance can provide a mechanistic ex-
planation for the differences in accumulation that have
been observed between LMWHs in patients with im-
paired renal function; that is, does a greater degree of
non-renal clearance reduce the potential for a LMWH
to accumulate in renal impairment?

Overview of UFH/LMWH characteristics
The chemical and pharmacologic heterogeneity of un-
fractionated heparin (UFH) and LMWHs [1] means that
concentrations cannot be measured directly in the
plasma by practical analytical methods. Instead, pharma-
codynamic (PD) measurements, such as anti-Xa and
anti-IIa activity in plasma, act as surrogates for the frac-
tions of heparin molecules that inhibit factor Xa and fac-
tor IIa, respectively, and therefore serve as a proxy for
pharmacokinetic (PK) information in the traditional
meaning. This applies to all future references in this art-
icle to PK data.
Anti-Xa activity is generally accepted as the primary

biomarker for the anticoagulant effects of LMWHs and
is also the agreed international standard used for deter-
mining the strength of commercially available LMWH
preparations [10]. In addition to their anti-Xa activity,
LMWHs may also, to varying degrees, inhibit factor IIa,
induce release of tissue pathway factor inhibitor (TFPI)
from endothelial cells, and prolong the activated partial
thromboplastin time (APTT) [11,12], but none of these
biomarkers has gained clinical utility. In order to inhibit
factor IIa, heparin molecules must bind to both anti-
thrombin and factor IIa, which requires a heparin
molecule of >18 saccharides (corresponding to MW ~
5,400 Da) [13]. In contrast, binding to antithrombin
alone is sufficient for activation of antithrombin and in-
hibition of factor Xa. Factors IIa and Xa are inhibited to
a similar magnitude with UFH, since most heparin mole-
cules in UFH comprise >18 saccharides. In comparison,
LMWHs tend to have less anti-IIa activity versus anti-Xa
activity because they contain a higher proportion of
smaller heparin molecules that cannot simultaneously
bind to that coagulation factor and antithrombin.

The balance between renal and non-renal elimination
The influence of molecular weight
Dose-dependent PK with increasing half-life and de-
creasing clearance with increasing dose has been estab-
lished for UFH in both humans [14] and animals [15]. It
is best described as a combination of one saturable and
one non-saturable elimination mechanism, with the sat-
urable mechanism being the more efficient of the two in
the low-dose range. The saturable mechanism has been
attributed to binding and uptake by cellular systems, for
example, the reticuloendothelial system (RES) and/or
endothelial cells, while the non-saturable elimination is
related to renal excretion [16-18]. Clinical data indicate
that clearance of low doses of UFH is not affected by
poor renal function; however, as doses increase, non-
renal elimination processes become saturated and renal
elimination plays a larger role, giving rise to accumula-
tion [19].
Unlike UFH, the dose-dependent aspect of elimination

is generally less pronounced for LMWHs, suggesting
that a non-saturable renal mechanism plays a greater
role compared with a saturable cellular mechanism. In
a radiolabeled PK/PD study in rabbits comparing na-
droparin (CY 216; average MW 4,400 Da) with UFH, a
clear dose dependency was demonstrated for UFH
in terms of the half-life measured by the elimination
half-life of both the radioactivity and the anti-Xa activity,
but this dose dependency was much less pronounced for
nadroparin [20]. Lower doses of UFH were cleared more
rapidly than nadroparin, whereas at higher doses, na-
droparin was cleared more rapidly than UFH (Figure 1).
A separate study in rabbits compared the PD profiles of
nadroparin and UFH by measurement of the anti-Xa
and anti-IIa activities [21]. The elimination of anti-Xa
and anti-IIa activities was superimposable after UFH
administration, whereas elimination was considerably
faster for anti-IIa activity than for anti-Xa activity after
administration of nadroparin. Since only chains with
more than 18 saccharides (~5,400 Da) have anti-IIa ac-
tivity in addition to anti-Xa activity [13], the results in-
dicate that chains with more than 18 saccharides (and
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Figure 1 Effect of MW and dose on the balance between renal and non-renal elimination of UFH and LMWH: amount of 125I-UFH
(circles) and 125I-nadroparin (squares) cleared from the blood according to the dose delivered. The solid lines show the total elimination.
The curves have been decomposed by drawing a parallel to its linear part: the stippled lines (a) represent the non-saturable mechanism of
disappearance and the dotted lines (b) represent the saturable mechanism of disappearance for the two test articles (nadroparin and UFH).
Adapted and reprinted from Thrombosis Research, Vol 46, Boneu B et al, The disappearance of a low molecular weight heparin fraction (CY 216)
differs from standard heparin in rabbits, pages 845–853, copyright 1987, with permission from Elsevier [20].
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hence anti-IIa activity) are cleared more efficiently than
chains with less than 18 saccharides.
Faster clearance of higher-MW heparins was also ob-

served in a study in rabbits that compared the PD profile
of nadroparin (average MW 4,400 Da) with that of two
fractions of nadroparin with different MWs: above cri-
tical chain length material (ACLM) and below critical
chain length material (BCLM). ACLM had chains of
MW >5,400 Da (5,500–10,000) and BCLM had chains of
MW <5,400 Da (2,100–5,300) [22]. The ACLM fraction
was shown to have faster clearance measured by anti-Xa
activity than both the parent compound and the BCLM
fraction. The BCLM fraction showed the lowest clear-
ance and there was no dose dependency, indicating
elimination by predominantly renal (non-saturable)
clearance. In contrast, the ACLM fraction showed a
clear dose-dependent clearance compared with the
BCLM fraction and a slightly more pronounced dose
dependency compared with the parent compound, indi-
cating increasing involvement of the cellular (saturable)
clearance pathway with increasing MW.

The influence of antithrombin affinity
In addition to MW range, the balance between the sat-
urable and non-saturable routes of elimination is also
influenced by the affinity of the saccharide chains for an-
tithrombin, with higher-affinity material eliminated to a
greater extent by saturable cellular clearance than lower-
affinity material [23-25]. Palm and Mattsson investigated
the PK of UFH, dalteparin (average MW 5,700 Da), and
fractions of dalteparin with high affinity (HA) and low
affinity (LA) for antithrombin in rabbits [23]. HA
dalteparin had a lower clearance than LA dalteparin.
Furthermore, the PD of dalteparin, when measured by
anti-Xa, showed a dose dependency characterized by a
significant increase in half-life, a significant decrease in
total clearance and a slight increase in volume of distri-
bution with increasing dose. These data indicate that the
elimination of dalteparin is partially mediated by a satur-
able, cellular mechanism and not only by renal clear-
ance. In this study, 23–40% of the dalteparin-derived
radioactivity was eliminated from plasma via the kidneys
within 3 hours. The rapid renal excretion of 3H-
dalteparin was mainly caused by LA dalteparin (23% of
the total elimination of LA dalteparin), while only 8% of
the total elimination of HA dalteparin was through the
renal route. Only 5–8% of the UFH dose that entered
the circulation underwent elimination via the kidneys
within 3 hours. Thus, UFH and HA dalteparin are elimi-
nated via a non-renal, saturable mechanism to a higher
degree than dalteparin and its LA form.
A study in rats compared the elimination of radio-

labeled LMWH fractions with HA or LA for antithrom-
bin with that of a parent compound (average MW
5,800 Da) [25]. About 45% of LA material was excreted
into urine after 3 hours, versus 23% of HA material.
Over the same time period, hepatic uptake for LA ma-
terial was very low (8%) compared with HA material
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(25%) and the parent compound (17%). Blocking of the
scavenger-receptor-mediated hepatic RES uptake mech-
anism by maleylated bovine serum albumin significantly
reduced the hepatic uptake of HA material to 9%,
shifting the distribution pattern of HA material from
hepatic uptake to an increased blood concentration, but
only to a slight increase in urinary excretion.

The effect of blocking clearance routes
Other studies have also provided insights into the bal-
ance between renal and non-renal clearance by exa-
mining the effect of selective blocking of one of the
elimination pathways [17,26,27]. Using normal and ne-
phrectomized rabbits, Caranobe et al studied the dis-
appearance of anti-Xa activity after intravenous injection
of UFH and nadroparin [26]. Slower elimination of anti-
Xa activity was seen for both UFH and nadroparin after
nephrectomy. Furthermore, the balance between satur-
able cellular clearance and non-saturable renal clearance
was assessed for the two compounds. By subtracting the
cellular clearance in nephrectomized animals from the
total clearance in sham-operated animals, a measure of
the renal elimination was achieved. For UFH, 11–17% of
the anti-Xa activity was eliminated via the kidneys, com-
pared with 22–31% for nadroparin. However, this esti-
mate for clearance of nadroparin by the kidneys is low
compared with estimates from other studies [20]. The
most likely explanation is that the discontinuation of the
renal route in the nephrectomized rabbits has been com-
pensated by increased cellular clearance, resulting in a
general underestimation of the renal clearance.
The effects of nephrectomy or inhibition of RES clear-

ance (with dextran sulfate) were studied in rabbits given
3H-labeled UFH or 3H-dalteparin [17]. For UFH, both
nephrectomy and blockage of the RES led to a reduced
rate of elimination of radioactivity, indicating the in-
volvement of both renal and cellular systems in the elim-
ination; nephrectomy also resulted in reduced rate of
elimination of anti-Xa activity. For dalteparin, the rate of
elimination of radioactivity was reduced by nephrectomy
but not by RES blockage, indicating that only the renal
system is involved in animals with intact renal function.
This is in contrast to the findings of another study by
the same investigators in which significant non-renal
clearance of dalteparin with high affinity for antithrom-
bin was described [23]. There are probably two explana-
tions for the missing effect of the RES blockage on the
elimination of the radioactivity of dalteparin: 1) the PK
of radiolabeled dalteparin differs from that of dalteparin
with respect to anti-Xa activity, and hence with affinity
for antithrombin [23]; 2) the labeling procedure gives
a significant over-representation of 3H label in the
shorter chains of dalteparin (these shorter chains are
more prone to renal elimination than the longer anti-
Xa-activity-bearing chains, giving a distorted picture of
the balance between renal and non-renal elimination).

Cellular uptake and metabolism
A number of cellular systems have been shown to bind,
endocytose and metabolize UFH and LMWHs. The
main organ for cellular elimination is likely to be the
liver, where sinusoidal endothelial cells (part of the hep-
atic RES) perform their scavenger function by receptor-
mediated endocytosis [28]. In addition, the large surface
area of vascular endothelium in the body means that this
is also likely to play a role in the elimination of UFH
and LMWHs [18].

Liver sinusoidal endothelial cells
Human hyaluronic acid receptor for endocytosis (HA
RE)/stabilin-2 has been identified as the cellular clear-
ance receptor for both UFH and LMWHs [29]. HARE is
expressed in liver sinusoidal endothelial cells (LSECs)
and the lymphatic system, and it acts as a scavenger for
uptake and degradation of glycosaminoglycans (both as
free chains and as proteoglycan fragments). In rat LSECs
or cells expressing human HARE, both UFH and eno-
xaparin were cleared by HARE, but UFH had a higher
affinity for HARE compared with the smaller eno-
xaparin. The lower affinity of enoxaparin for HARE
partly explains the reduced liver clearance and, hence,
the longer in vivo circulating half-life of enoxaparin
compared with UFH. These data are consistent with a
more recent study by Pempe et al, who showed that only
heparin chains consisting of 10 saccharides or more
(equivalent to a MW of approximately 3,000 Da) bind
significantly to HARE and are associated with con-
comitant liver retention; the study also found that 3-O
-sulfation (which is required for binding to antithrombin
and hence for anticoagulant activity) further enhanced
binding to HARE [30]. Extrapolating these findings to
commercially available LMWHs implies that a greater
proportion of the higher-MW tinzaparin than the lower-
MW enoxaparin would be expected to bind to HARE
and thereby be retained by the liver and eliminated
by cellular clearance (the proportion of chain lengths
below 3,000 Da is approximately 39% for enoxaparin,
compared with only 15% for tinzaparin; unpublished
observations [KBJ] analyzed by the method of Schroeder
et al [31]).

Vascular endothelial cells
Bârzu et al investigated the effect of MW, degree of
sulfation and affinity for antithrombin on the bind-
ing of heparins in human umbilical vein endothelial
cells (HUVECs) [32]. Competition experiments using
125I-labeled UFH demonstrated an increased affinity
with increasing MW, and only heparin fractions with a



Table 1 Pharmacodynamic parameters based on anti-Xa
measurements* after single-dose subcutaneous
administration in 12 healthy volunteers

Average
MW

Dose AUCa t½
a Clearancea,b

(Da) (IU) (h · IU/mL) (h) (mL/min)

Enoxaparin 4,400 4,000 3.47 ± 0.69 4.28 ± 1.06 19.2

Dalteparin 5,700 5,000 3.17 ± 0.82 2.31 ± 0.60 26.3

3.23 ± 0.85 2.45 ± 0.66 25.8

Tinzaparin 6,500 3,000 1.35 ± 0.39 2.97 ± 1.01 37.0

UFH 12,000–
15,000

5,000 1.33 ± 0.70 – 62.7

aTwo values are reported for dalteparin since the dosing was repeated to give
a measure of the intra-individual variation; bCl/F (clearance relative to
bioavailability), calculated from data in the publication.
*Clinical data were extracted from Eriksson et al 1995 [35] and compiled
specifically for this review (MW data from Schroeder et al 2011 [31]).
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MW above approximately 7,000 Da showed a binding
affinity of the same magnitude as UFH. The binding
affinities were also dependent on the degree of sulfation
and therefore charge density. An increase in sulfation
led to an increase in affinity. Furthermore, fractions
with high affinity for antithrombin also had higher bind-
ing affinity to HUVECs than fractions with low affinity
for antithrombin. The same group also showed that
UFH binds to HUVECs with approximately 20 times
higher affinity than the LMWH CY 222 (average MW
2,500 Da), indicating a preference for the binding and
uptake of UFH (larger chains) by these endothelial cells
[33]. A preference for binding of higher-MW heparin
components was also demonstrated in bovine adrenal
capillary endothelial (BACE) cells [34]. In competitive
binding experiments with 3H-labeled UFH, a LMWH
with an average MW of 2,100 Da was unable to bind
with any significant affinity, while a LMWH with an
average MW of 4,500 Da bound with 10% of the affinity
of UFH. Gel filtration experiments showed that the high-
MW components were selectively bound, internalized and
depolymerized by the BACE cells.

Renal excretion
Limited data are available regarding the mechanism and
determining factors for renal elimination per se of UFH
and LMWHs. A study of fluorescence-labeled UFH and
dalteparin in rats has shown that both are localized to
renal tubular cells and not the glomeruli after intravenous
injection [16]. This supports clearance mainly due to an
active renal tubular process. Fluorescence of the tubules
increased as a function of time after UFH injection but
reached a plateau after dalteparin injection, suggesting
that the rate of renal tubular uptake depends on the
molecular size of the heparin. A likely explanation for
the findings is that the higher-MW fractions are initially
cleared by hepatic and/or vascular endothelial cells,
where they are depolymerized to smaller fragments that
are then taken up by the renal tubular cells. In contrast,
the lower-MW fractions are likely to be taken up dir-
ectly by the renal tubular cells. Probenecid, a renal
organic anion inhibitor, decreased the renal tubular
uptake of the heparins, whereas cimetidine, a renal
cation inhibitor, had no effect [16]. These findings
suggest that renal excretion of UFH and LMWH primarily
reflects tubular uptake via an organic anion transport
mechanism.
The renal elimination of tinzaparin has been compared

with that of enoxaparin in normal and partly nephrec-
tomized rats [27]. In normal rats, renal elimination was
significantly greater for enoxaparin compared with the
higher-MW tinzaparin. Furthermore, the renal elimin-
ation of tinzaparin did not differ significantly between
normal and partly nephrectomized rats. In contrast, the
elimination of the lower-MW enoxaparin was signi-
ficantly reduced in partly nephrectomized, compared
with normal, rats.
PD/PK studies of LMWHs in healthy volunteers
Few PK studies with LMWHs in humans have focused
on the balance between saturable or cellular and non-
saturable or renal clearance and elimination, but cross-
comparison between clinical studies of commercially
available LMWHs permits the description of differences
in PK in general and clearance and elimination in
particular.
The PD of tinzaparin, dalteparin and enoxaparin

were compared to that of UFH by examining the anti-Xa
and anti-IIa activities after single-dose administration
to 12 healthy volunteers (Table 1) [35]. Calculation of
the total clearance clearly indicated a different rate of
elimination for each heparin; this difference in clearance
and the related elimination half-life seems to be dependent
on MW, with LMWHs of higher MW being cleared and
eliminated more quickly. A similar study in 20 healthy
volunteers compared the anti-Xa and anti-IIa activities
of dalteparin, enoxaparin and nadroparin after a single
prophylactic dose (Table 2) [36]. Renal excretion was
significantly higher following injection of enoxaparin
compared with nadroparin or dalteparin, indicating that
enoxaparin is less extensively biodegraded to inactive
polysaccharide fragments than the other LMWHs. This
was confirmed by the data on total clearance, which
was significantly lower for enoxaparin compared with
nadroparin or dalteparin. The total clearance of dal-
teparin was 1.5-fold higher than that of nadroparin.
These differences in total clearance reflect differences
in the rate and extent of elimination, which induce
differences in terms of apparent elimination half-life.



Table 2 Pharmacodynamic parameters based on anti-Xa
measurements* after subcutaneous administration in 20
healthy volunteers

Average
MW

Mna Dose t½ Renal
clearance

Total
clearanceb

(Da) (Da) (IU) (h) (% of
dose)

(mL/min)

Enoxaparin 4,400 3,100 2,000 3.95 ±
0.65

6.4 ± 6.5 16.67 ± 5.50

4,000 4.37 ±
0.47

8.7 ± 3.4 13.83 ± 3.17

Nadroparin 4,400 3,700 3,075 3.74 ±
0.68

3.9 ± 1.8 21.50 ± 7.00

Dalteparin 5,700 4,750 2,500 2.81 ±
0.84

3.4 ± 1.5 33.33 ± 11.83

aNumber average MW; bCl/F.
*Clinical data were extracted from Collignon et al [36] and compiled
specifically for this review (MW data from Schroeder et al [31]).
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On the basis of five studies in healthy volunteers, the
effect of dose on elimination and clearance of tinzaparin
has been investigated using clearance data taken either
directly from the references or calculated from data
published in the references [12,35,37-39]. These data
support the dose-dependent PK of tinzaparin – the
lower clearance seen at higher doses suggests that a
saturable or cellular (non-renal) component plays a
significant role (Table 3). Unlike tinzaparin, the PK
profile of enoxaparin in 12 healthy volunteers was charac-
terized by a linear relationship between dose, and max-
imum concentration (Cmax) and AUC measured by
anti-Xa activity [40]. No significant variations in half-
life and clearance were found between the different
doses of enoxaparin, indicating predominantly renal
clearance.
Table 3 Clearance* of tinzaparin after subcutaneous
administration in healthy volunteers (summary of five
published studies)

Tinzaparin
dose

N
(subjects)

Mean AUC
(h · IU/mL)

Mean clearance
(mL/min)

Reference

4,500 IU or
50 IU/kg

12 1.35 37.0c [35]

30 1.96a 38.3c [39]

2.35b 31.9c

30 1.81 44.3d [12]

12,500 IU or
175 IU/kg

30 9.23 22.6c [39]

30 9.70 21.7c [37]

14 9.01 23.0d [38]
aTinzaparin was formulated with preservative; bTinzaparin was formulated
without preservative; cCl/F, calculated from data in the publication; dCl/F,
published data.
*Clearance was followed by measuring anti-Xa activity.
Conclusions and clinical considerations
In humans and animals, the dose-dependent PK of UFH
has been shown to result from the combination of a sat-
urable and a non-saturable elimination mechanism. The
saturable elimination is mediated by cellular binding and
uptake by LSECs and/or vascular endothelial cells. The
non-saturable elimination is related to renal tubular
excretion. For LMWHs, our review of the literature re-
veals a MW dependency on the balance between the
non-saturable and saturable routes of elimination. For
LMWHs below approximately 5,000 Da (e.g. nadroparin,
enoxaparin), the PK was dose independent in preclinical
experiments, indicating primarily renal excretion. For
fragments above 5,000 Da, the PK was dose dependent,
indicating the concomitant involvement of cellular bind-
ing and elimination for LMWHs with high average MW
(e.g. tinzaparin). The balance between the two routes of
elimination is also influenced by the affinity of the
LMWH fragments for antithrombin, with high-affinity
material eliminated by the saturable mechanism via the
liver to a greater extent than low-affinity material.
In summary, the balance between renal and non-renal

clearance is dependent on MW: the higher the MW, the
more the balance is shifted towards non-renal clearance.
Tinzaparin (6,500 Da) has the highest average MW of
the marketed LMWHs, and there is both clinical and
preclinical evidence for significant non-renal elimination
of tinzaparin, making it less likely that tinzaparin accu-
mulates in subjects with renal impairment compared
with LMWHs with a lower MW distribution. On the
basis of the findings of this literature review, LMWHs
that are less dependent on renal clearance may be pre-
ferred in patient populations with a high prevalence of
renal insufficiency, such as the elderly and patients with
cancer.
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