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To the editor
Gastric cancer (GC) is the fifth most prevalent cancer 
globally and the fourth leading cause of cancer-related 
death [1]. Chemotherapy, including 5-fluorouracil, cis-
platin, and doxorubicin, is an important strategy for the 
treatment of gastric cancer (GC) and can be used before, 
after, or during surgery [2, 3]. However, due to the high 
side effects and low effectiveness of current treatments, 
there is a growing demand for the development of new 
therapeutic targets for gastric cancer, thus it is crucial to 
elucidate the molecular mechanisms of GC progression 
and identify effective therapeutic targets for treatment.
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Abstract
Background  Gastric cancer (GC) is a type of cancer with high incidence and mortality rates. Although various 
chemical interventions are being developed to treat gastric cancer, there is a constant demand for research into 
new GC treatment targets and modes of action (MOAs) because of the low effectiveness and side effects of current 
treatments.

Methods  Using the TCGA data portal, we identified EHMT2 overexpression in GC samples. Using RNA-seq and 
EHMT2-specific siRNA, we investigated the role of EHMT2 in GC cell proliferation and validated its function with two 
EHMT2-specific inhibitors. Through the application of 3D spheroid culture, patient-derived gastric cancer organoids 
(PDOs), and an in vivo model, we confirmed the role of EHMT2 in GC cell proliferation.

Results  In this study, we found that EHMT2, a histone 3 lysine 9 (H3K9) methyltransferase, is significantly 
overexpressed in GC patients compared with healthy individuals. Knockdown of EHMT2 with siRNA induced G1 cell 
cycle arrest and attenuated GC cell proliferation. Furthermore, we confirmed that TP53INP1 induction by EHMT2 
knockdown induced cell cycle arrest and inhibited GC cell proliferation. Moreover, specific EHMT2 inhibitors, BIX01294 
and UNC0638, induced cell cycle arrest in GC cell lines through TP53INP1 upregulation. The efficacy of EHMT2 
inhibition was further confirmed in a 3D spheroid culture system, PDOs, and a xenograft model.

Conclusions  Our findings suggest that EHMT2 is an attractive therapeutic target for GC treatment.
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Fig. 1 (See legend on next page.)

 



Page 3 of 6Ryu et al. Experimental Hematology & Oncology           (2024) 13:86 

Here, we demonstrated using RNA-seq results derived 
from TCGA portal that euchromatic histone lysine meth-
yltransferase 2 (EHMT2) is significantly overexpressed in 
GC patients (n = 408) compared with normal individu-
als (n = 36) and that this phenotype is associated with a 
poorer prognosis (Fig.  1A and B). EHMT2, also known 
as G9a, is a histone methyltransferase that regulates the 
mono- and di-methylation of H3K9 [4, 5]. In the Gene 
Ontology (GO) analysis with differentially expressed 
genes (359 upregulated genes and 347 downregulated 
genes) of the RNA-seq results, cell growth and cell cycle-
related terms were significantly enriched in the EHMT2 
knockdown group (Fig.  1C, Supplemental Fig.  1A and 
B). Moreover, we observed a reduction in cell growth 
(Fig. 1D, Supplemental Fig. 1C), Ki-67 intensity (Supple-
mental Fig. 1D), and G1 arrest (Fig. 1E) after the knock-
down of EHMT2. Next, we assessed cell cycle arrest 
mediated by EHMT2 in more detail, and we confirmed 
that these phenomena were induced by the epigenetic 
regulation of the tumor protein p53-inducible nuclear 
protein 1 (TP53INP1) [6, 7] by EHMT2. RNA-seq and 
Western blot analysis revealed that the expression level 
of TP53INP1 was increased by EHMT2 knockdown 
(Fig. 1F and G, Supplemental Fig. 2A). The H3K9 dimeth-
ylation level at the promoter region of TP53INP1 was 
decreased in the siEHMT2 group (Fig.  1H). Next, we 
carried out a recovery cell growth assay using siEHMT2 
and siTP53INP1 to identify TP53INP1-related antiprolif-
erative effects. After cotreatment with siEHMT2 and siT-
P53INP1, the growth inhibition and G1 arrest caused by 
EHMT2 knockdown were restored in the siEHMT2 and 
siTP53INP1 cotreatment group (Fig.  1I and J, Supple-
mental Fig.  2B and C). Thus, EHMT2 directly regulates 
TP53INP1 to promote GC cell proliferation.

BIX01294 and UNC0638 are specific inhibitors that 
decrease the activity of EHMT2 [8, 9]. After the AGS and 
NCI-N87 cell lines were treated with either BIX01294 
or UNC0638, we observed a reduction in cell prolifera-
tion (Fig. 2A, Supplemental Fig. 3A) and upregulation of 
TP53INP1 gene and protein expression (Fig. 2B, Supple-
mental Fig.  3B). In the ChIP assay, after treatment with 
BIX01294 or UNC0638, the H3K9 dimethylation status 

in the promoter region of TP53INP1 decreased, consis-
tent with the results of siEHMT2 treatment (Fig.  2C). 
Moreover, G1 arrest and a reduction in Ki-67 staining 
were observed after BIX01294 or UNC0638 treatment 
(Fig. 2D, Supplemental Fig. 3C and D). Finally, to inves-
tigate EHMT2 as a potential therapeutic target for GC, 
we examined this effect in a 3D culture system and in 
patient-derived cancer organoids (PDOs). We observed 
a decrease in the size of the 3D spheroids, confirming 
that BIX01294 also inhibits GC growth in a 3D spher-
oid culture system (Fig.  2E). We confirmed that the 
size of the patient-derived gastric organoids decreased 
(Fig.  2F). qRT‒PCR analysis revealed that the expres-
sion of TP53INP1 increased in response to BIX01294 
treatment in both the 3D culture system and the PDO 
system (Fig. 2G). Finally, to confirm the inhibitory effect 
of BIX01294 on tumor growth in vivo, we established 
a subcutaneous mouse model. The xenograft results 
revealed that the group treated with BIX01294 presented 
decreases in tumor size and weight (Fig. 2H, Supplemen-
tal Fig. 4A). Thus, we suggest that EHMT2 inhibition can 
effectively inhibit GC growth and propose that EHMT2 
is an attractive therapeutic target for GC (Supplemental 
Fig. 4B).

In this study, we analyzed RNA-seq data. Consider-
ing that EHMT2 is responsible for H3K9 dimethylation, 
we selected upregulated genes from the RNA-seq data 
after siEHMT2 treatment as primary targets [10]. After 
genes related to the cell cycle were assessed, TP53INP1 
was ultimately chosen as a potential target of EHMT2. 
The candidate approach to target selection certainly has 
limitations. EHMT2 indeed regulates the expression 
of TP53INP1, but it is likely to also regulate other cell 
cycle-related genes. In future studies, performing H3K9 
dimethylation ChIP-seq could enable a more accurate 
analysis of EHMT2-mediated cell cycle regulation. Here, 
we employed a specific inhibitor of EHMT2, BIX01294, 
to investigate the function of EHMT2. However, as 
shown in Fig.  2G, treatment with BIX01294 resulted in 
decreased expression of EHMT2 in the 3D spheroid and 
PDO system. While BIX01294 can increase the expres-
sion of TP53INP1 by reducing the activity of EHMT2, we 

(See figure on previous page.)
Fig. 1  EHMT2 knockdown suppresses the growth of AGS and NCI-N87 cells by inducing cell cycle arrest. A EHMT2 expression in normal and GC samples 
derived from the TCGA portal. All p values were calculated via Student’s t test (***p < 0.001). B Kaplan‒Meier plot of EHMT2 in GC samples. C DAVID-based 
GO analysis of the RNA-seq results for the 359 upregulated genes. The enriched terms are shown. D Cell growth assay after treatment with siEHMT2 and 
siCont for 48 h. AGS and NCI-N87 cells were fixed in 100% methanol and stained with crystal violet solution. Scale bar, 500 μm. E FACS analysis via PI stain-
ing was performed after the treatment of AGS and NCI-N87 cells with siEHMT2. All p values were calculated via Student’s t test (***p < 0.001). F Expression 
level of TP53INP1 by RNA-seq after treatment with siEHMT2. G Western blot analysis after EHMT2 knockdown via anti-EHMT2 and TP53INP1 antibodies. 
H Graphical abstract of the ChIP primer design for the TP53INP1 promoter region (upper). The ChIP assay was performed using an anti-H3K9me2 anti-
body. The results are expressed as a percentage of input chromatin compared with the control in AGS and NCI-N87 cells after siEHMT2 treatment. The 
means ± SDs of three independent experiments are shown. All p values were calculated via Student’s t tests (***p < 0.001) (lower). I CCK-8 solution was 
added to the culture medium, and the cells were incubated for 5 min at 37 °C. The intensity of cell growth was measured via a microplate reader (450 nm). 
The means ± SDs of three independent experiments are shown. All p values were calculated via Student’s t test (***p < 0.001). J FACS analysis via PI staining 
was performed after the cotransfection of AGS and NCI-N87 cells with siEHMT2 and siTP53INP1. All p values were calculated via Student’s t test (**p < 0.01)
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Fig. 2 (See legend on next page.)
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also anticipate that BIX01294 might regulate the expres-
sion of EHMT2 through nonspecific effects. Thus, the 
development of EHMT2-specific inhibitors with reduced 
side effects will be an important step in the development 
of treatments for gastric cancer.

In conclusion, EHMT2 has emerged as a promising 
therapeutic target for various cancer types, including 
GC, suggesting that the development of EHMT2-spe-
cific inhibitors could pave the way for effective cancer 
treatment.
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