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Background
Radiotherapy has been one of the most used treatments 
for cancer for more than a century, with about 60% of 
cancer patients using radiotherapy as a first-line treat-
ment [1, 2]. It is characterized by better local control 
rates and fewer side effects than chemotherapy, and is 
currently the most effective cytotoxic therapy for solid 
tumors [3]. Nevertheless, the effect of radiotherapy 
remains ambiguous due to the development of radioresis-
tance [4, 5]. In the presence of ionizing radiation, tumor 
cells may exhibit epigenetic reprogramming, leading to 
the emergence of radiation-resistant cell populations and 
ultimately to tumor recurrence [6, 7].
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Abstract
Radiotherapy is one of the mainstream approaches for cancer treatment, although the clinical outcomes are 
limited due to the radioresistance of tumor cells. Hypoxia and metabolic reprogramming are the hallmarks of 
tumor initiation and progression and are closely linked to radioresistance. Inside a tumor, the rate of angiogenesis 
lags behind cell proliferation, and the underdevelopment and abnormal functions of blood vessels in some loci 
result in oxygen deficiency in cancer cells, i.e., hypoxia. This prevents radiation from effectively eliminating the 
hypoxic cancer cells. Cancer cells switch to glycolysis as the main source of energy, a phenomenon known as the 
Warburg effect, to sustain their rapid proliferation rates. Therefore, pathways involved in metabolic reprogramming 
and hypoxia-induced radioresistance are promising intervention targets for cancer treatment. In this review, we 
discussed the mechanisms and pathways underlying radioresistance due to hypoxia and metabolic reprogramming 
in detail, including DNA repair, role of cancer stem cells, oxidative stress relief, autophagy regulation, angiogenesis 
and immune escape. In addition, we proposed the existence of a feedback loop between energy metabolic 
reprogramming and hypoxia, which is associated with the development and exacerbation of radioresistance 
in tumors. Simultaneous blockade of this feedback loop and other tumor-specific targets can be an effective 
approach to overcome radioresistance of cancer cells. This comprehensive overview provides new insights into the 
mechanisms underlying tumor radiosensitivity and progression.
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Neo-angiogenesis is one of the hallmarks of cancer that 
sustains the rapidly proliferating tumor cells [8]. How-
ever, the proliferation rate of the malignant cells often 
overwhelms that of angiogenesis in solid tumors, result-
ing in insufficient oxygen supply and hypoxia at some foci 
due to the abnormal vasculature. Cancer cells can adapt 
to hypoxia by undergoing metabolic reprogramming [9], 
resulting in a series of adaptive responses that culminate 
in enhanced resistance to radiation [10]. In fact, the cel-
lular response to radiotherapy strongly depends on oxy-
gen levels. The free radicals generated in the presence of 
oxygen exacerbate radiation-induced damage. According 
to the widely accepted hypothesis of “oxygen fixation”, 
DNA damage can be easily repaired in the absence of 
oxygen [11, 12]. Consistent with this, the levels of reac-
tive oxygen species (ROS) are significantly reduced dur-
ing hypoxia, which decreases radiation-induced DNA 
damage [13]. Furthermore, hypoxic conditions also acti-
vate autophagy, which accelerates the elimination of ROS 
products and enhances radioresistance [14].

Glucose is the main source of energy in mammals, and 
is metabolized into pyruvate via glycolysis. Under aerobic 
conditions, pyruvate is primarily metabolized through 

the tricarboxylic acid (TCA) cycle into carbon dioxide 
and NADH while inhibiting lactate production, a process 
known as Pasteur effect, NADH is fed into the mitochon-
drial transport chain to produce ATP through oxidative 
phosphorylation (OXPHOS). On the other hand, can-
cer cells produce abundant lactate even under aerobic 
conditions, a phenomenon known as “aerobic glycoly-
sis”, or “Warburg effect” (Fig.  1). High-throughput gly-
colysis provides energy, building blocks for biosynthetic 
pathways, as well as metabolic intermediates for other 
metabolic pathways [15–17]. It has been shown that 
phospho-pyruvate dehydrogenase (p-PDH) and pyruvate 
dehydrogenase kinase 1 (PDK1), which are involved in 
aerobic glycolysis, are positively associated with radio-
resistance [18]. Mechanistically, PDK1 inhibits pyruvate 
metabolism through the TCA cycle via inactivating PDH 
by phosphorylation [19]. Moreover, PDK1 is associ-
ated with multiple targets of AKT, including mTOR, and 
epithelial-mesenchymal transition (EMT), resulting in 
radioresistance [20, 21].

Hypoxia is inextricably linked to the metabolic repro-
gramming of tumor cells [22]. The cells close to the blood 
vessels mainly produce energy through OXPHOS, while 

Fig. 1 Aerobic glycolysis (Warburg effect), anaerobic glycolysis and aerobic respiration in cells. The yellow area in the figure represents oxygen sufficient 
conditions and the green represents hypoxia conditions. When oxygen is sufficient, normal cells mainly undergo aerobic respiration instead of glycolysis, 
as phenomenon known as Paster effect. However, cancer cells produce energy through glycolysis when oxygen is sufficient, which is known as Warburg 
effect
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those in the hypoxic regions of the tumor metabolize 
glucose via the glycolytic pathway. This results in a meta-
bolic symbiosis between the tumor cells in the normoxic 
and hypoxic areas, which allows the cells to adapt to the 
complex and hostile environment [23–25]. Therefore, 
drugs targeting either glycolysis or hypoxia alone can-
not reverse radioresistance. Hypoxia-inducible factor-1 
(HIF-1) is a key regulator of the cellular response to low 
oxygen levels [19, 26]. HIF-1 activation is associated with 
a decrease in ROS levels and increased accumulation of 
glutathione (GSH), which enhance the radioresistance of 
cancer cells [9]. Furthermore, HIF-1 also activates glycol-
ysis [27] and the pentose phosphate pathway (PPP) [28], 
promotes DNA damage repair [29] in cancer cells. In this 
review, the factors underlying radioresistance induced by 
hypoxia and metabolic reprogramming, including DNA 
repair, cancer stem cells (CSCs), oxidative stress relief, 
autophagy regulation, angiogenesis and immune escape, 
have been discussed in detail. A greater understanding of 
these mechanisms can aid in the development of novel 
radiotherapeutic strategies for treating cancer.

Mechanisms underlying radioresistance due to 
hypoxia and metabolic reprogramming
DNA damage repair
DNA damage caused by radiation mainly includes single-
strand break (SSBs), double-strand break (DSBs), base 
and sugar damage, and cross-linking, of which DSBs 
are most lethal [30]. The DSBs activate the DNA dam-
age repair (DDR), which allows the cells to recover from 
radiation-induced damage by inducing cell cycle arrest 
and DNA repair. There are three main pathways of DNA 
repair, including the homologous recombination (HR)-
based pathway, non-homologous end joining (NHEJ), 
and alternative end joining, which respond to different 
types of DNA damage [31]. Inductions of the DDR is 
one of the main reasons for promoting radioresistance in 
irradiated cancer cell [32].

Solid tumors usually contain areas of hypoxia. Hypoxia 
activates AMP-activated protein kinase (AMPK) through 
activation of LKB1 or CaMKK2, AMPK and HIF exert 
synergistic protective effects under hypoxic conditions 
[33]. AMPK promotes radioresistance by activating 
ataxia telangiectasia-mutated (ATM) and DNA-depen-
dent protein kinase catalytic subunit (DNA-PKcs), which 
play important roles in DSB repair [34–36]. Lipocalin 
2 (LCN2) plays a mediating role in a variety of multiple 
cachexia-associated diseases [37, 38]. LCN2 was found to 
be highly expressed in the radioresistant nasopharyngeal 
carcinoma (NPC) cell line CNE2R, and there was a signif-
icant correlation between LCN2 expression and HIF-1α. 
Knockdown of LCN2 can impair the ability of NPC cells 
to repair DNA damage or proliferate and enhance the 
radiosensitivity of NPC cells [39]. Hypoxic exosomes 

attenuate radiation-induced apoptosis and accelerate 
DNA damage repair. MiR-340-5p is highly expressed in 
hypoxic exosomes and is translocated to normoxic cells, 
inducing radioresistance in oesophageal squamous cell 
carcinoma (OSCC) cells [40]. All these evidences illus-
trate the ability of hypoxic conditions to enhance DNA 
repair of cancer cell.

Much evidence suggests that radioresistance induced 
by the glycolytic pathway is associated with enhanced 
DNA damage repair. Elevated glycolysis promotes 
radiation-induced reattachment of DNA strand breaks 
through activation of the non-homologous end joining 
(NHEJ) and homologous recombination (HR) pathways 
of DSB repair, thereby reducing radiation-induced cyto-
genetic damage in cells [41]. Research has shown that the 
glycolytic pathway is strongly associated with radiore-
sistance in prostate cancer. Knockdown of lactate dehy-
drogenase A (LDHA) or inhibition of LDHA activity can 
reduce DNA repair capacity [42]. Mucin1 (MUC1), an 
oncogene overexpressed in many solid tumors, mediates 
DNA damage repair, and supports glycolysis and nucleo-
tide biosynthesis in cancer cells to enhance DNA repair 
and radioresistance [43–45]. Apigenin increases radio-
sensitivity of subcutaneous gliomas in mice by inhibit-
ing NF-κB/HIF-1α-mediated glycolysis and attenuating 
cell stemness and DNA damage repair [46]. Addition-
ally, heat shock transcription factor 1 (HSF1) are directly 
involved in the response of tumor cells to hypoxia and 
acidosis, and promote resistance to chemotherapy and 
radiotherapy. HSF1 is involved in DNA repair and pro-
motes tumorigenesis through the HSF1-PARP13-PARP1 
complex [47]. Cells lacking HSF1 have a reduced ability 
to repair radiation-induced DSB [48]. Meanwhile, the 
HSF1/LDHA axis promotes glycolysis that is required for 
breast cancer cell growth [49] Pyruvate kinase M2 iso-
form (PKM2) catalyzes the conversion of phosphoenol-
pyruvate to pyruvate and regulates the final rate-limiting 
step of glycolysis. It was shown that PKM2-produced 
pyruvate promotes DNA repair by regulating γH2AX 
loading to chromatin and establishes a critical role of 
this mechanism in glioblastoma radioresistance [50]. In 
addition, it has been revealed that PKM2 is also regu-
lated by hypoxia. It can be activated directly by HIF-1α 
or indirectly through the HIF-1α/ALYREF/PKM2 axis 
to promote glycolysis in cancer cells [51]. This double 
regulation of PKM2 further exacerbates DNA repair and 
radioresistance.

The mechanisms of DNA repair-mediated radioresis-
tance are depicted Fig. 2. The intermediates of glycolysis 
flow into many biosynthetic pathways, which generate 
biomolecules for DNA repair. Given the multiple path-
ways involved in DNA damage repair in cancer cells, and 
the pathways overlapping with those in normal cells, it is 
challenging to identify the suitable therapeutic targets. 
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However, studies appeared that carbon ions are more 
able to overcome the hypoxia-induced enhancement 
of DNA repair. In a study of on-small cell lung cancer 
(NSCLC), carbon ions were found to be effective in scav-
enging hypoxic tumor cells [52]. Moreover, carbon ions 
overcame the radioresistance of HNSCC associated with 
DNA repair, especially in CSCs, and were unaffected by 
the hypoxic microenvironment, which increased the 
activation of the NHEJ-c (DNA-PK) and HR pathways 
(RAD51) only after photon irradiation [53].

Role of cancer stem cells
CSCs are a rare subpopulation of tumor cells and exhibit 
self-renewal and multi-lineage differentiation abilities 
[54, 55]. The origin of CSCs is ambiguous; normal dif-
ferentiated cells may undergo carcinogenic transforma-
tion into stem-like cells [56], and some cancer cells can 
also dedifferentiate into CSCs with the help of tumor-
associated fibroblasts (CAF) [57]. CSCs primarily reside 
in the nutrient-deficient, hypoxic regions of solid tumors 
[58]. In addition, exosomes secreted by cancer cells under 
hypoxic stress are known to induce EMT into CSC-like 
phenotype [59]. Studies show that CSCs are the seed cells 

responsible for tumor metastasis and recurrence since 
they are recalcitrant to surgical resection, radiotherapy or 
chemotherapy, and may remain latent for many years [56, 
60, 61].

Low ROS production, metabolic reprogramming, high 
antioxidant capacity, and GSH accumulation are known 
to enhance the radioresistance of CSCs [62]. For instance, 
the radioresistance of breast CSCs (BCSCs) is associated 
with an increased ability of these cells to scavenge free 
radicals, which enhances DNA repair [63]. The mecha-
nisms by which CSCs promote radioresistance under 
hypoxic conditions are shown in Table 1. PTEN dysregu-
lation due to hypoxia also activates HIF-1α and mTOR 
signaling, resulting in EMT [64]. The activation of HIF-1 
in the hypoxic tumor areas induces EMT, resulting in 
an increase in the number of radioresistant CSCs. Fur-
thermore, HIF-1α mediates the transformation of Hep-2 
human laryngeal squamous carcinoma cells to stem-like 
cells under hypoxic conditions, resulting in increased 
radioresistance [65]. Many cytokines that are secreted in 
tumor microenvironment (TME) are hypoxia-regulated 
and facilitate CSC formation. C/EBPδ links IL-6 and 
HIF-1 signaling in hypoxic environments and promotes 

Fig. 2 Mechanisms of DNA repair-mediated radioresistance. Radiation-induced cancer cell death is mediated by DNA damage. Hypoxia promotes DNA 
repair by upregulating HIF-1, AMPK, and the secretion of hypoxic exosomes. Glycolysis upregulates DNA repair through the expression of HSF1, PLKM2, 
and MUC1 genes. Moreover, glycolysis can also be affected by hypoxia through the HIF-1/NF-κB pathway. Together, these mechanisms exacerbate radio-
resistance of cancer cell
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BCSC-associated phenotypes [66]. Increased levels of 
the factors such as vascular endothelial growth factor 
(VEGF) and FGF are not only involved in angiogenesis, 
but also support the self-renewal and survival of CSCs 
[67, 68]. The “abnormalization” of angiogenesis that 
results from dysregulation of these angiogenic factors, 
which exacerbate hypoxia, is discussed in detail in the 
section of “Angiogenesis”. Characteristics of CSC and the 
formation of CSCs under hypoxic conditions are shown 
in Fig. 3.

CSCs can undergo OXPHOS or glycolysis depending 
on the cellular state and microenvironment, and can be 
quiescent by maintaining minimal energy expenditure, 
thereby enhancing resistance to chemotherapy or radio-
therapy [80]. Plasticity of energy metabolism regulates 
the balance between gain and loss of stemness in tumor 
cells [81]. Besides, and the CSCs of various tumors are 
glycolysis-dependent [82–84]. CSCs require glycolysis 
and lipid metabolism for energy and preferentially use 
glycolysis to maintain homeostasis [85, 86]. It has been 
shown that radioresistant medulloblastoma stem-like 
clones (rMSLCs) have a higher rate of conversion from 
pyruvate to lactate and a lower rate of conversion from 
pyruvate to acetyl CoA. Dichloroacetate (DCA) treat-
ment inhibits the glycolysis of rMSLCs and increases 
radiosensitivity [87]. Pigenin attenuates glycolysis by 

inhibiting HIF-1 expression, thereby increasing the radio-
sensitivity of glioma stem cells [88]. Similarly, targeting 
the ALDH1A3-mediated glycolytic pathway in glioma 
stem cells improves the outcome of radiotherapy [89]. In 
addition to the above examples directly related to radio-
resistance, energy metabolic reprogramming is also able 
to participate in the formation and maintenance of CSCs, 
and the following evidence can also provide additional 
references for the relationship between energy meta-
bolic reprogramming, CSCs and radioresistance. Tumor 
necrosis factor receptor associated protein 1 (TRAP1), a 
member of the HSP90 subfamily, is able to regulate the 
stemness of colorectal carcinoma cells through the Wnt/
β-catenin pathway [90]. It also increases aerobic glycoly-
sis and inhibit mitochondrial respiration; the opposite 
result is produced when TRAP1 is absent [91]. Aerobic 
glycolysis in cancer cells also enhances the secretion of 
exosomes [92], which is conducive to the formation of 
CSCs. Recent studies showed that the PI3K/AKT signal-
ing axis can increase glycolysis and lactate production 
[93], and upregulate the number of CSCs in nasopha-
ryngeal carcinoma [94]. PI3K/AKT signaling axis may be 
an important pathway linking CSCs and reprogramming 
of energy metabolism during malignant development of 
tumor cells.

During long-term or batch continuous irradiation, 
some CSC-like cells migrate and infiltrate into the sur-
rounding blood vessels under hypoxia, and are trans-
ported to other regions through the blood and lymphatic 
system [95–97]. The migration of CSC-like cells from pri-
mary tumors during radiotherapy is related to poor prog-
nosis and increased risk of metastasis. Photon radiation 
can induce EMT and increase the proportion of CSC-like 
cells [62, 98]. On the other hand, proton beam radiation 
has been shown to reduce the proportion of CSC-like 
cells and their ability to migrate [99]. This can be attrib-
uted to the increased expression of calreticulin on the 
surface of the irradiated CSCs, which activates the cyto-
toxic T-lymphocytes against the surviving CSCs. In addi-
tion, carbon ion radiotherapy can efficiently eradicate 
high-grade glioma cells and CSCs, and reduce immune 
escape under hypoxic conditions [100]. Therefore, proton 
and carbon ion radiotherapy may provide a better thera-
peutic strategy for the clearance of CSCs.

Oxidative stress relief
Ionizing radiation triggers ROS production and oxida-
tive stress in the tumor cells, resulting in DNA damage 
[11]. The cellular response to radiotherapy depends on 
the ability to scavenge ROS and repair DNA damage. As 
shown in Fig.  4, ROS have the paradoxical role in can-
cer cells. Therefore, intracellular ROS levels are tightly 
regulated by the antioxidant system to protect cells from 
high levels of ROS [101, 102]. Studies show that cells 

Table 1 The mechanisms associated with the development of 
radioresistance in CSCs under hypoxia
CSC-based mechanisms Cancer type References
Increasing DNA dependent protein 
kinase (DNA-PK) activity.

Laryngeal squamous 
carcinoma

 [65]

Cervical cancer  [69]
Activation of the checkpoint 
response and improvement to DNA 
repair

Cervical cancer  [70]

Up-regulated the Twist1, nuclear 
EGFR localization

Cervical cancer  [69]

Activation of IGF1Rβ/PI3K/Akt 
pathway

Non-small cell lung 
cancer

 [71]

Increasing autophagic activity Breast cancer  [72]
Enhancing the expression of HIF-1α Head and neck 

squamous cell 
carcinoma

 [73]

Hepatocellular 
carcinoma

 [74]

Increased expression of HIF-2α 
mRNA and miR-210

Glioma  [75]

Down-regulated miR-18a-5p Lung cancer  [76]
Activation of NF-κB/HIF-1 signaling 
pathway

Laryngeal squamous 
cell carcinoma

 [77]

Over expression of LncRNA 
PCGEM1

Gastric cancer  [78]

Cause immune escape Triple negative 
breast cancer

 [79]

Activation of the PI3K/AKT/mTOR 
signaling

Hepatocellular 
carcinoma

 [21]
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produce higher levels of ROS under hypoxic as opposed 
to normoxic conditions. For instance, ROS production 
is increased in GBM8401 and U87 cells cultured under 
acute hypoxia, which accelerates their growth in vivo and 
in vitro [103]. Nonetheless, cancer cells can rapidly scav-
enge ROS under hypoxic conditions due to activation of 
the antioxidant system, which may contribute to radiore-
sistance. HIF-1 increases GSH levels and enhances radio-
resistance under hypoxic conditions [22, 104]. GSH is the 
core endogenous antioxidant that adapts cells to oxida-
tive stress [105]. Piperlongumine (PL) can overcome 
hypoxia-induce radioresistance of cancer cells by inhib-
iting thioredoxin and glutathione S-transferase [106], 
thereby inducing excess ROS production. Buthionine 
sulfate (BSO) inhibits the rate limiting enzyme gluta-
mate-cysteine ligase involved in GSH synthesis, and has 
been shown to deplete GSH in the hypoxia tumor areas 

[107]. Auranofin (AF) is an irreversible inhibitor of thio-
doxin reductase, and can attenuate the radioresistance 
of hypoxic tumors by inducing ROS-mediated DNA 
damage, mitochondrial dysfunction, and apoptosis. Fur-
thermore, AF has been shown to amplify the radiothera-
peutic effects of BSO when used in combination [108], 
this radiation sensitizing effect is undoubtedly related to 
the multi-target inhibition of activated antioxidant sys-
tem induced by hypoxia. There is evidence that ROS can 
regulate the expression of HIF-1 and VEGF, with impor-
tant roles in angiogenesis and tumor growth [109].

Given their role in metabolism, the mitochondria are 
key players in the radioresistance of cancer cells induced 
by metabolic reprogramming. One study identified 31 
differentially expressed mitochondrial proteins in irradi-
ated cancer cells, such as solute carrier family 25 mem-
ber 22 (SLC25A22) and peroxisomal biogenesis factor 

Fig. 3 Formation of CSCs under hypoxic conditions. EMT is essential for the formation of CSCs, and is accelerated under hypoxic conditions by increased 
exosome secretion and HIF-1 expression, and dysregulation of PTEN. CSCs are characterized by low ROS production, strong antioxidant capacity, GSH 
accumulation and metabolic reprogramming. They suppress ROS levels and adapt to the hypoxic environment, thereby causing further radioresistance. 
High levels of FGF, VEGF and IL-6 in the tumor microenvironment are hypoxia-regulated and facilitate CSC formation. Moreover, FGF and VEGF are involved 
in pathological angiogenesis, which exacerbates hypoxia
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5 (PEX5) [110]. SLC25A22 is able to confer radioresis-
tance to cancer cells by rewiring metabolism [111]. PEX5 
can increase radioresistance through activation of the 
Wnt/β-catenin signaling [112]. Furthermore, cancer cells 
tolerate hypoxia by accelerating the conversion of ROS, 
which protects mitochondrial functions [113]. The mito-
chondrial respiratory chain and active NADPH oxidases 
(NOXs) are the most prominent endogenous sources of 
ROS [114, 115]. In the clinical setting, drugs targeting 
mitochondria have been able to overcome radioresistance 
of hypoxic tumors. Dichloroacetate (DCA), an inhibi-
tor of mitochondrial pyruvate dehydrogenase kinases 
(PDHK), can alter tumor metabolism by increasing ROS 
production in the mitochondria and inhibiting glycolysis 
[87]. In addition, targeting enzymes in the mitochondrial 
electron transport chain can also disrupt ROS homeo-
stasis. Arsenic trioxide is an inhibitor of mitochondrial 
complex IV, which can reduce the level of GSH in radio-
resistant cancer cells under hypoxia and increase intra-
cellular ROS production, thus reversing radioresistance 
[116]. However, increasing ROS levels is not a viable 
strategy for cancer treatment since it will undoubtedly 
cause systemic toxicity and damage normal cells. Nev-
ertheless, selective disruption of the redox homeosta-
sis in cancer cells by targeting key enzymes involved in 
metabolic reprogramming may reverse hypoxia-induced 
radioresistance.

Autophagy regulation
Autophagy is a self-catabolic process wherein cyto-
plasmic components are engulfed in vesicles, and are 
degraded following fusion with lysosomes. It is activated 
in stressed cells, and can either promote cell survival or 
lead to cell death [117]. It has been shown that autophagy 
is closely related to the maintenance of pluripotency of 
CSCs. Inhibition of autophagy greatly reduces pluripo-
tency and promotes CSC differentiation or senescence 
[118]. In addition, inhibition of autophagy may sensi-
tize tumor cells to radiotherapy under hypoxia stress. 
One study showed that autophagy-defective head and 
neck squamous cell carcinoma (HNSCC) cells lacking 
ATG12 have reduced hypoxia tolerance, and are sensi-
tive to anti-cancer therapies [119]. Under hypoxic con-
ditions, LC3 has been shown to activate autophagy and 
accelerate the removal of cellular ROS, thereby confer-
ring cells with resistance to irradiation [14]. It has also 
been shown that in breast cancer cells, hypoxic exposure 
can elevate autophagic activity and is associated with 
increased radioresistance [120]. Hypoxia also upregu-
lates autophagy by activating the HIF-1/Akt/mTOR/
P70S6K pathway and upregulates radioresistance in can-
cer cells [121]. In addition to the above examples, other 
relevant mechanisms of the increased radioresistance 
mediated by autophagy under hypoxic conditions are 
summarized and showed in Table  2. The AMPK-ULK1 

Fig. 4 Paradoxical role of ROS in cancer cells. (A) ROS promotes cancer development by activating pathways related to proliferation and EMT. (B) ROS can 
also inhibit cancer cells by triggering apoptosis through endogenous and exogenous pathways, as well as necroptosis and ferroptosis
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axis plays an integral role in the activation of autophagy 
in cancer cells [122]. Furthermore, AMPK also regu-
lates glucose metabolism with cAMP response element 

binding protein-1(CREB1) [123], and promotes glycoly-
sis in tumor cells [124, 125]. On the other hand, AMPK 
can also enhance OXPHOS and mitochondrial biosyn-
thesis via the p38/PGC1α pathway [126]. This suggests 
that AMPK functions as a “checkpoint” for metabolism 
and regulates both glycolysis and OXPHOS, as well as 
being an important bridge connecting energy metabo-
lism conversion and autophagy in tumors. It has also 
been suggested that high lactate mediates PIK3C3/
VPS34 emulsification and induces autophagy, thereby 
promoting cancer progression. Lactate is a bridge link-
ing glycolysis and autophagy [127]. Furthermore, cana-
gliflozin (CAN) can inhibit glucose uptake and lactate 
release, and modulate autophagy at the same time, thus 
enhancing the radiosensitivity of HepG2 cells. So, it is 
considered necessary to perform CAN treatment before 
radiotherapy [128]. Long intergenic non-coding RNA 
(lincRNA)-p21 is activated in response to hypoxia, and is 
a regulator of the cell cycle and Warburg effect. Knock-
down of lincRNA-p21 in hepatocellular carcinoma and 
glioma cells promotes apoptosis, reduces proliferative 
capacity, and decreases autophagy under hypoxic condi-
tions via the HIF-1/Akt/mTOR/P70S6K pathway [129]. 
Autophagy, as a cellular self-protective behavior, is able 
to resist radiation in hypoxic environments through 
various mechanisms. The acidic environment caused by 
glycolysis results in an up-regulation of autophagy. Fig-
ure 5 shows the autophagy-induced mechanisms causing 
radioresistance under hypoxic conditions and associated 

Table 2 The autophagy-based mechanisms of radioprotection 
in hypoxia-adapted cancer cells
Autophagy-based mechanisms Cancer type Refer-

ences
Increasing DNA damage repair Breast cancer cells  [130]

Breast cancer cells  [120]
Parkin-mediated digesting 
mitochondria

Breast cancer cells  [131]

Reducing ROS Osteosarcoma cells  [14]
Lung cancer cells  [132]

Activating HIF-1/Akt/mTOR/P70S6K 
pathway

Hepatoma and glioma 
cells

 [129]

Breast cancer cells  [121]
Activating HIF-1, c-Jun Lung cancer cells  [133]
HIF-1α/miR-210/Bcl-2 pathway Colon cancer cells  [134]
MiR-124 and miR-144 
downregulation

Prostate cancer cells  [135]

Higher level of miR-301a and miR-
301b expression

Prostate cancer cells  [136]

YAP over-expression promoted the 
transcription and translocation of 
HMGB1

Glioblastoma cells  [137]

Activation of the unfolded protein 
response (UPR)

Colon cancer, breast 
cancer and glioma cells

 [138]

Overexpression of p63 Oral squamous cell 
carcinoma

 [139]

Activating the AMPK/mTOR 
pathway

Nasopharyngeal 
carcinoma

 [140]

Fig. 5 The role of autophagy in radiation therapy under hypoxic conditions and the influence of metabolic reprogramming. In the regulation of energy 
metabolism, AMPK acts as an energy metabolism “checkpoint”, regulates both OXPHOS and glycolysis, and tightly links energy metabolic reprogram-
ming to autophagy. Moreover, lactate plays a role as a bridge between autophagy and glycolysis. Autophagy is upregulated under hypoxic conditions, 
exacerbating the effects of radiotherapy
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with energy metabolic reprogramming, as well as their 
interaction pathways.

Several additional studies, however, have hinted at the 
role of autophagy on the opposite side of radioresistance. 
Cancer cells resistant to apoptosis may use autophagy as 
a primary response to ionizing radiation. Radiosensitiza-
tion induced by inhibition of NF-κB is associated with 
autophagy; conversely, inhibition of autophagy decreases 
radiosensitization [141]. Consistent with this, inhibition 
of autophagy increased radioresistance of cervical cancer 
cells [142] and colorectal cancer cells [143]. Furthermore, 
hypoxia can enhance autophagy under high cell density 
and downregulate EGFR, leading to cell death and radio-
sensitization [144]. The PI3K/mTOR pathway inhibitor 
NVP-BEZ235 sensitized breast cancer cells to radiother-
apy under hypoxic conditions by inducing autophagy 
[145]. In contrast, other studies have shown that autoph-
agy promotes radioresistance of breast cancer cells [120, 
121, 130, 131], and autophagy inhibitors like chloroquine 
can increase the radiosensitivity of hypoxic cancer cells. 
Therefore, the role of autophagy in hypoxic tumors may 
depend on various factors. Nevertheless, autophagy 
regulation is an essential target for overcoming radiore-
sistance in hypoxic cancer cells and is closely related to 
metabolic reprogramming.

Angiogenesis
Tumor growth is accompanied by the continuous gen-
eration of new blood vessels to help sustain the rapidly 
proliferating cancer cells [146], and abnormal, pathologi-
cal angiogenesis is often associated with tumor invasion 
and metastasis [147]. It has long been recognized that the 
tumor vasculature is functionally and structurally hetero-
geneous, with a haphazard distribution, irregular branch-
ing, and the formation of arteriovenous shunts [148]. 
Traditionally, it was believed that anti-angiogenic agents 
would inhibit tumor angiogenesis, depriving the tumor 
of essential nutrients and oxygen. However, studies have 
shown that in tumor, excessive angiogenic factors can 
cause poor and disturbed vascular blood flow and leak-
age, leading to poor drug delivery and hypoxia [149]. In 
this pathological condition, angiogenic factors, acting as 
the “abnormalization factor”, promote a vascular “abnor-
malization switch” [150]. This abnormal and pathologi-
cally excessive angiogenesis may also be an important 
contributor to radioresistance. Anti-angiogenic therapy 
has been suggested to alter the structural and func-
tional defects of the tumor vasculature, a process known 
as “vascular normalization” [151]. A previous study has 
shown that the use of the anti-angiogenic agent SU6668 
increases radiosensitivity [152].

Insufficient oxygen supply and the resulting reduc-
tion in tissue oxygen tension often lead to angiogenesis 
to satisfy tissue needs [153]. Hypoxia upregulates the 

pro-angiogenic VEGF [154], placental growth factor 
(PlGF) and fibroblast growth factor (FGF) [155]. HIF-1α 
complexes with other molecules such as HIF-1β to 
enhance erythropoietin transcription [156]. So, hypoxia 
is a central driver of angiogenesis [157]. The angiopoi-
etin (Ang)-1 maintains vascular integrity, and inhibits 
Ang-2 expression in normal adult tissues. In the presence 
of VEGF and HIF-1, Ang-2 acts as an antagonist of Ang-
1, disrupting the normal balance of angiogenesis, and 
increased proliferation and migration of endothelial cells 
(ECs) leads to vascular instability and pathological angio-
genesis [158–160]. Based on the above mechanisms of 
abnormal angiogenesis under hypoxia, many studies have 
demonstrated the radiosensitizing effect of treatments 
targeting angiogenesis-related factors. Fucoidan-coated 
manganese dioxide nanoparticles (Fuco-MnO2-NPs) are 
able to inhibit the expression of phosphorylated vascu-
lar endothelial growth factor receptor 2 (VEGFR2) and 
CD31, overcoming radioresistance through dual tar-
geting of tumor hypoxia and angiogenesis [161]. Latent 
membrane protein 1 (LMP1) can increase the expression 
of VEGF through the JNKs/c-Jun signaling pathway, and 
LMP1-targeted DNAzyme (DZ1) can enhance the radio-
sensitivity of nasopharyngeal carcinoma (NPC) cells by 
inhibiting the activity of HIF-1/VEGF [162]. Besides, 
in a preclinical study, Motesanib (a potent inhibitor of 
VEGFR-1, 2, and 3, PDGFR, and Kit receptors) signifi-
cantly improves intertumoral hypoxia and achieves better 
therapeutic results when combined with radiation [163]. 
In addition, interstitial fluid pressure (IFP) is elevated in 
solid tumors, and angiogenesis inhibitors can reduce IFP 
to morphologically and functionally “normalize” the vas-
cular network, overcoming hypoxia, generating more free 
radicals, leading to more DNA damage, and increasing 
the sensitivity to radiotherapy [164].

Tumor ECs have highly glycolytic metabolism. Inhibi-
tion of glycolysis activator PFKFB3 in endothelial cells 
induces normalization of tumor vasculature, inhibits 
metastasis and improves therapeutic outcome [165]. Peri-
cytes help stabilize the vascular structure and support 
ECs through gap junctions [166, 167]. It has been shown 
that hexokinase 2 (HK2)-driven glycolysis is elevated in 
tumor pericytes, which upregulates their ROCK2-MLC2-
mediated contractility, leading to impaired vascular sup-
port function [168]. Lactate dehydrogenase (LDH-5) 
catalyses the conversion of pyruvate to lactate. Studies 
have shown that LDH-5 is highly expressed in endome-
trial adenocarcinomas and is strongly associated with 
the expression of phosphorylated VEGFR2/KDR recep-
tors in tumour-associated blood vessels. Administration 
of VEGF- tyrosine kinase receptor inhibitors may be an 
adjuvant to radiotherapy and chemotherapy [169]. In 
terms of energy metabolic reprogramming, glycolysis 
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exacerbates vascular abnormalities, which results in even 
more intensified hypoxia within tumor.

Angiogenesis under the influence of hypoxia and repro-
gramming of energy metabolism, regulated by angiogenic 
factors, is shown in Fig.  6. Both pre-existing normal 
blood vessels and neovascularisation may support tumor 
growth and progression. In contrast, excessive angio-
genesis vascular “abnormalization” under pathologi-
cal conditions can exacerbate hypoxia and contribute 
to radioresistance. Elucidation of the molecular mecha-
nisms of pathological angiogenesis and the homeostatic 
regulation of angiogenic factors may provide new targets 
for improving the radiosensitivity of cancer cells. Tumor 
growth and angiogenesis are an interdependent cycle that 
can be broken by antiangiogenic therapy, thereby reduc-
ing radioresistance [170]. However, irradiation and anti-
angiogenic therapies can cause angiogenesis to switch 
from sprouting to intussusception. This is a protective 
response of the tumour and is responsible for the devel-
opment of resistance and rapid recovery after cessation 
of treatment [171]. For anti-angiogenic therapy, how to 
adjust the optimal dose and course of treatment in order 
to normalise the tumour vasculature without harming 
normal tissues and how to be able to achieve radiosensi-
tiszation are questions worth pondering.

Immune escape
Tumor growth is largely dependent on the inability of 
the immune system to eliminate the malignant cells. 
Radiotherapy can affect the TME, which includes the 
immune system and associated cells [172]. Irradia-
tion promotes the formation of an anti-immunogenic 

microenvironment by recruiting tumor-associated mac-
rophages (TAMs) and myeloid-derived suppressor cells 
(MDSCs) [173–175]. In additional, there is the involve-
ment of Tregs [176], DCs [177], and some molecules such 
as transforming growth factor-β (TGF-β) [178], and C-C 
motif chemokine ligand 2 (CCL2) [179]. Programmed 
death-ligand 1 (PD-L1) is expressed on cancer cells and 
binds to programmed cell death-1 (PD-1) on immune 
cells, resulting in an immunosuppressive signal that 
inhibits lymphocyte activation. The PD-1/PD-L1 check-
point limits the immune response against multiple can-
cer cells [180]. PD-L1 upregulation prevents activation 
of T cells and NK cells [181]. Therefore, PD-L1-mediated 
immune escape is also an important cause of radioresis-
tance [182–184]. Mechanisms underlying immunosup-
pression caused by radiation are summarized in Table 3.

Under hypoxic conditions, HIF-1α upregulates PD-L1 
on cancer cells and MDSCs, thereby interfering with T 
cell effector function [194]. Much evidence suggests that 
hypoxic environments also have a regulatory effect on 
immunosuppressive cells. It has also been found that ter-
minally depleted CD8+ T cells and immunosuppressive 
cells, including Treg cells and M2 TAMs, are enriched 
in the core region of hypoxia to a greater extent than in 
the peripheral region [195]. Hypoxic tumor promotes 
the recruitment of Tregs via CCL28, which in turn sup-
presses the function of effector T cells [196]. Hypoxia sig-
nificantly alters MDSC function in the TME via HIF-1α 
and differentiation towards TAMs [197]. Moreover, 
TAMs inhibit T cell function under hypoxic conditions 
in a HIF-1α-dependent manner [198]. Hypoxia also pro-
motes the development of M2 macrophages, resulting 

Fig. 6 Physiological and pathological angiogenesis in tumors. Under hypoxic conditions, angiogenic factors such as VEGF are upregulated, resulting in 
dysregulation of Ang-2 and Ang-1, leading to excessive angiogenesis and abnormalisation. Glycolysis affects pericyte function as well as the expression 
of LDH-5 in cancer cells, thus exacerbating the abnormal vascularisation. This pathological angiogenesis exacerbates hypoxia and contributes to the 
development of radioresistance. Antiangiogenic therapy can reverse this process and in combination with radiotherapy can have a radiosensitizing effect
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in immunosuppression and decreased radiosensitivity 
[174]. Signal transducer and activator of transcription 3 
(STAT3) can be activated by HIF-1 under hypoxic con-
ditions [199]. Sustained activation of the STAT3 signal-
ing promotes cell proliferation, metastasis and immune 
escape. STAT3 inhibitors suppress STAT3 activation, 
down-regulate HIF-1α expression, and up-regulate the 
radiosensitivity of esophageal squamous cell carcinoma 
(ESCC) in vivo and in vitro [200]. Besides, HIF-1α is a 
metabolic switch between glycolysis-driven migration 
and oxidative phosphorylation-driven immunosuppres-
sive colonization in glioblastoma [201]. In summary, 
hypoxic conditions are more favorable for immune 
escape to occur.

Metabolic reprogramming plays a central role in the 
immune escape of tumor cells [202]. The TME consists 
of stroma and various components of the immune sys-
tem, and alterations in the microenvironment that lead 

to metabolic reprogramming inhibit immune cell activity 
against cancer cells [203]. The activated T cells also pro-
duce ATP through aerobic glycolysis following induction 
of LDHA, in order to reduce the burden on mitochondria 
[204]. In T effector cells, LDHA is induced via PI3K-Akt-
Foxo1 signaling, which in turn is regulated by glycolytic 
ATP [205]. Furthermore, LDHA controls the immune 
microenvironment by regulating the function of MDSCs 
[206]. Tumor-derived d-2-hydroxyglutarate (d-2HG) is 
taken up by CD8+ T cells, resulting in metabolic changes 
and a decrease in immune function via LDH [207]. CD8+ 
T cell depletion can also be induced by mitochondrial 
dysfunction produced by prolonged hypoxic stimula-
tion [208]. Lactate promotes immune escape by inhibit-
ing migration of monocytes, the precursors of TAMs, 
and the secretion of tumor necrosis factor (TNF) and 
interleukin-6 (IL-6) [209, 210]. Lactate can also inhibit 
the function of T cells and NK cells [211]. Furthermore, 
the upregulation of glucose transporter 1 (Glut1) in Treg 
cells via TLR (Toll-like receptor) increases glucose uptake 
and lactate production, which suppresses the effector 
T cells and DCs, thereby enhancing cancer cell survival 
[212]. However, Treg cells are not affected by pH value 
and lactate levels [213]. These evidences suggest that 
the ability of factors involved in reprogramming energy 
metabolism and the acidic environment to influence the 
ability of immune cells, thus preventing complete clear-
ance of cancer cells.

The relationship between hypoxia, metabolic repro-
gramming and immune escape of cancer cells is depicted 
in Fig.  7. To summarize, the acidic and hypoxic TME 
modulates immunosuppressive cells and affects the 
functioning of immune cells to perform their functions, 
thus allowing cancer cells to evade the immune system 
and probably even leading to the development of radio-
resistance. Therefore, the combination of radiotherapy 
and immunotherapy is a promising strategy for cancer 
treatment.

The feedback loop between metabolic reprogramming 
and hypoxia
Studies increasingly show that cancer is a metabolic dis-
order. During tumor development, genetic mutations 
lead to metabolic reprogramming that efficiently pro-
duces ATP, macromolecules and organelles, and acti-
vates autophagy to sustain the high proliferation rates. 
In addition, the Warburg effect is also associated with 
the activation of the antioxidant system and pathologi-
cal angiogenesis, resulting in hypoxia. The hypoxic envi-
ronment induces HIF-1, exosomes and HSPs, which 
further increases metabolic reprogramming and gly-
colysis in cancer cells. As shown in Fig. 8, This feedback 
loop between metabolic reprogramming and hypoxia is 
akin to “yin” and “yang” in the traditional Chinese “Taiji 

Table 3 Mechanisms underlying immunosuppression caused by 
radiation
Immune escape mechanism Cancer type Refer-

ences
Programmed cell death ligand 
1(PD-L1) activation

Melanoma  [182]
Cutaneous squamous-cell 
carcinoma of the head and 
neck area (cSCC-HN)

 [183]

Prostate cancer  [184]
CircIGF2BP3 reduces PD-L1 
ubiquitination

Non-small cell lung cancer  [185]

DNA repair mitigates radiation-
induced replication stress

Breast cancer  [186]

Effect of regulation factor TGF- β, 
Functions of MIF, CCL2, CXCL5, 
CXCL8 and CXCL12

Rhabdomyosarcoma  [187]

STAT3 serine 727 phosphorylation Glioblastoma  [188]
CSC causes NK cells lose 
cytotoxicity

Triple negative breast 
cancer

 [79]

Upregulation of B7-H3 on circulat-
ing epithelial tumor cells (CETCs)

Breast cancer  [189]

Lactate regulates dendritic cell 
activation

Melanoma and prostate 
carcinoma

 [190]

Host STING-dependent MDSC 
mobilization

Colon cancer  [191]

Activation of noncanonical NFκB 
pathway through the cGAS-STING 
DNA

Colon cancer  [192]

Activation of TGFβ Breast cancer  [178]
Up-regulation of Treg cells Prostate cancer  [176]
Regulation of the Treg-dendritic 
cell axis

Head and neck squamous 
cell carcinoma (HNSCC)

 [177]

Effect of Mac-1 (CD11b/CD18) Squamous cell carcinoma  [173]
MDSCs impair the activity of T cells Lung cancer  [193]
Generation of CCL2 Pancreatic ductal 

adenocarcinoma
 [179]

M2 differentiated tumor 
macrophages

Breast cancer  [175]
Prostate cancer  [174]
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diagram”, which drives radioresistance and the malignant 
progression of tumors.

The detailed feedback loop is shown in Fig.  9. Under 
hypoxic conditions, HIF-1 increases glucose uptake and 
reduces metabolite entry into the TCA cycle by upregu-
lating GLUTs, pyruvate dehydrogenase kinase 1 (PDK1) 
and LDHA. This inhibits mitochondrial respiration and 
reduces acetyl Co-A production, increases glycolysis and 
lactate levels [214], and activates the antioxidant sys-
tem. A previous study identified a positive feedback loop 
consisting of p21/HIF-1α that exacerbates radioresis-
tance in glioblastoma cells by promoting Glut1/LDHA-
mediated glycolysis [215]. In addition, HIF-1 induces 
HSP and activates the synthesis of ribonucleotides, thus 
increasing DNA repair and promoting radioresistance. 
The feedback loop between metabolic reprogramming 
and hypoxia also activates the HIF-1, AMPK and PI3K\
AKT\mTOR pathways, and maintains CSCs by activat-
ing autophagy and EMT, which eventually attenuate 
radiosensitivity as described in the preceding sections. In 
addition, the Warburg effect results in lactate accumula-
tion that induces VEGF production by ECs, resulting in 

the formation of hyperplastic vessels that cannot supply 
sufficient oxygen to the rapidly proliferating cells, and 
thus aggravate hypoxia. Lactate overload also suppresses 
immune cell activity, which along with hypoxia-induced 
PD-L1 expression, aids in the immune escape of cancer 
cells. Therefore, hypoxia and metabolic reprogramming 
synergistically enhance the radioresistance of cancer cells 
and promote tumor progression.

Discussion and prospects
Metabolic reprogramming and hypoxia are the hallmarks 
of tumor initiation and progression. Cancer cells switch 
to glycolysis, which is independent of oxygen supply and 
the mitochondria, as the main source of energy to sus-
tain their high proliferation rates since it is a simpler pro-
cess compared to mitochondrial OXPHOS. Hypoxia and 
metabolic reprogramming form a complex, multidirec-
tional loop that can induce radioresistance through DNA 
repair, autophagy, maintenance of CSCs, immune escape, 
angiogenesis, and oxidative stress relief. HIF-1 and lac-
tate regulate almost all mechanisms that generate radio-
resistance. Some of the pathways involved in this loop 

Fig. 7 Relationship between hypoxia, metabolic reprogramming and immune escape of cancer cells. The PD1/PDL1 axis is an immune checkpoint that 
is activated by HIF-1α in hypoxic TME. Hypoxia also inhibits T-cell function by promoting differentiation of M2 TAMs and activation of STAT3, thereby pro-
moting immune escape. Lactate inhibits immune cell function and thus promotes immune escape. MDSCs are affected by LDHA, thus suppressing the 
immune microenvironment. Treg cells can be up-regulated by hypoxia and lactate, and exert immunosuppressive effects. Treg cells also increase Glut1 
levels by up-regulating TLR, thus promoting glucose uptake and lactate production
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counteract the effects of radiation therapy by supporting 
cell proliferation and blocking apoptosis, while the others 
protect cancer cells from radiation damage by decreas-
ing ROS production or reducing oxygen supply through 
pathological angiogenesis.

Although tumor cells can be sensitized to radiation 
by targeting specific pathways, there is currently no 
drug that can effectively reverse radioresistance. Since 
most studies have focused on the effects rather than 
the regulators of the feedback loop between metabolic 
reprogramming and hypoxia, the clinical consequences 
of blocking a specific pathway are not completely clear. 
For example, while HIF-1 inhibitors may improve the 
outcomes of radiotherapy, severe and prolonged dys-
function of HIF-1 exacerbates tumor hypoxia by full 
blockade of angiogenesis [9, 216, 217]. Therefore, com-
bining HIF-1 inhibitor with artificial oxygenation is a 
viable strategy to sensitize hypoxic tumors to radio-
therapy [9]. Furthermore, one research group was able 
to achieve radiosensitization of lung cancer EDB-1 cells 
and breast cancer MDA-MB-231 cells using nano oxygen 
bubbles [218]. SLC3A2 is a member of the solute carrier 
family of proteins, and is expressed in proliferative cells. 

SLC3A2-deficient HNSCC cells exhibit higher radiosen-
sitivity and increased levels of autophagy, and inhibit-
ing autophagy in these cells through ATG5 knockdown 
or bafilomycin A1 treatment further increased radio-
sensitivity. Thus, autophagy inhibition combined with 
SLC3A2-targeted therapy could be a promising strategy 
for the radiosensitization of HNSCC cells [219]. Like-
wise, prostate cancer cells can be sensitized to radiation 
by inducing glutamine deprivation, which can lead to 
oxidative stress, DNA damage, depletion of CSCs, and 
autophagy. Therefore, simultaneous inhibition of gluta-
mine metabolism and autophagy could be a more effec-
tive therapeutic strategy [220]. Several targets of the 
feedback loop have a two-sided role in cancer, and the 
current research on them is ambiguous. For example, 
autophagy may cause cell death or facilitate cell survival, 
and the effect of tumor vasculature depends on whether 
angiogenesis is physiological or pathological. Neverthe-
less, the mechanisms underlying these paradoxical effects 
have to be elucidated in order to regulate the feedback 
loop between metabolic reprogramming and hypoxia, 
and reverse radioresistance of cancer cells.

Fig. 8 “Taiji diagram” showing the relationship between metabolism reprogramming and hypoxia. Black and white represent “yin” (energy metabolic 
reprogramming) and “yang” (hypoxia) respectively. Metabolic reprogramming and hypoxia form a synergistic relationship regulated by oxidative stress, 
angiogenesis, CSCs maintenance, immune escape and DNA repair to promote radioresistance
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Precision radiotherapy refers to the individualized 
treatment of cancer patients based on biomarkers and 
advanced radiotherapy techniques in order to improve 
treatment outcomes and reduce adverse effects [221]. 
Based on the studies so far, we can surmise that the 
feedback loop between hypoxia and reprogramming of 
energy metabolism might be the root cause of radioresis-
tance. There are no marketed HIF-1 inhibitors for use as 
anticancer therapy in clinical practice. However, VEGF 
is a downstream gene of HIF-1, and bevacizumab, which 
targets VEGF, is already in clinical use. Combination of 
Bevacizumab and radiotherapy improves overall sur-
vival (OS) and reduces radiation necrosis (RN) [222]. The 
therapeutic effect of bevacizumab is most likely related 
to overcoming tumor hypoxia and inhibiting excessive 
angiogenesis. In terms of energy metabolic reprogram-
ming, there are no clinically proven marketed drugs tar-
geting aerobic glycolysis. As early as 1958, researchers 
showed that 2-deoxy-D-glucose (2-DG), which inhib-
its glycolysis, had significant adverse side effects and 

limited efficacy in humans [223]. However, clinical tri-
als of the anti-tumor effects of 2-DG remain promising 
(NCT00096707, NCT05314933) [224], and significant 
radiosensitization of 2-DG has been demonstrated in 
combination with radiotherapy [225, 226]. The use of 
lactate by cancer cells is dependent on the expression of 
monocarboxylic acid transporters (MCTs). Clinical trials 
of the MCT inhibitor AZD3965 in the treatment of B-cell 
lymphoma cancer are also underway (NCT01791595) 
[227]. And the combination of AZD3965 with radio-
therapy prolongs survival and improves radiosensitivity 
[228]. These promising drugs combined with radiation 
may have a significant enhancing effect on the efficacy 
of radiotherapy in the clinic. However, cancer cells share 
several metabolic networks with normal cells, and 
mechanisms that maintain critical metabolic fluxes in 
cancer cells are currently unknown. How to avoid off-
target effects and systemic toxicity is an important issue. 
Moreover, the significant heterogeneity and complex-
ity of the tumor microenvironment within tumor makes 

Fig. 9 The feedback loop between energy metabolic reprogramming and hypoxia. The key molecules, metabolites, and signaling pathways linking 
hypoxia and glycolysis are illustrated. This vicious cycle of hypoxia and metabolic reprogramming makes the tumor cells recalcitrant to radiotherapy. The 
orange line indicates the direction of metabolic reprogramming → hypoxia, and the black line indicates the direction of hypoxia → metabolic reprogram-
ming. The dotted lines indicate more distant relationships
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it challenging to identify specific therapeutic targets. A 
greater understanding of this feedback loop will unearth 
potential targets for improving radiosensitivity of cancer 
cells and inhibiting tumor development.
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