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Abstract 

Chemotherapy is a commonly effective treatment for most types of cancer. However, many patients experience 
a relapse due to minimal residual disease (MRD) after chemotherapy. Previous studies have analyzed the changes 
induced by chemotherapy for specific types of cancer, but our study is the first to comprehensively analyze MRD 
across various types of cancer. We included both bulk and single-cell RNA sequencing datasets. We compared 
the expression of the entire genome and calculated scores for canonical pathway signatures and immune infiltrates 
before and after chemotherapy across different types of cancer. Our findings revealed that DUSP1 was the most signif-
icantly and widely enriched gene in pan-cancer MRD. DUSP1 was found to be essential for MRD formation and played 
a role in T cell-fibroblast communications and the cytotoxic function of CD4 + T cells. Overall, our analysis provides 
a comprehensive understanding of the changes caused by chemotherapy and identifies potential targets for prevent-
ing and eliminating MRD, which could lead to long-term survival benefits for patients.
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To the editor,
Chemotherapy is the conventional and widely accepted 
treatment for most types of cancer. Some patients can 
achieve complete regression with chemotherapy. How-
ever, one of the most important causes of relapse and 
treatment failure is minimal residual disease (MRD) 
[1]. Previous efforts to study MRD have been limited 

to specific single cancer types, such as breast cancer 
(BRCA), rectal cancer (READ) and ovarian cancer (OV) 
[2–4]. There has been a lack of analysis of MRD across 
multiple types of cancer. Recent advancements in 
genomic technologies and large-scale data analysis [5, 6] 
make it possible to conduct a comprehensive analysis of 
pan-cancer MRD. Our goal is to investigate MRD in vari-
ous cancer types in order to gain a more complete under-
standing of its role in disease progression and response to 
treatment.

To clarify the changes induced by chemotherapy and 
develop strategies to tackle with MRD, we collected 
bulk RNA-seq, array data as well as single cell RNA-
seq from 24 datasets and 8 cancer types involving 1502 
individuals with samples taken before and after chemo-
therapy (Fig. 1A). The 17 bulk RNA-seq and array data-
sets included 14–275 patients (Fig. 1B, Additional file 1: 
Table S1). A total of 323,664 cells from 65 patients across 
7 single cell RNA-seq datasets were analyzed (Fig.  1C). 
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The differential expression analysis was performed to 
characterize the MRD induced by chemotherapy. The 
percentage of significant differential expressed genes 
(DEGs) out of genome was calculated (Fig. 1D). Among 
the down-regulated genes in MRD, 16 genes were com-
mon in more than nine datasets, while 19 genes were up-
regulated in at least nine datasets (Fig. 1E, F, Additional 
file  2: Table  S2). Many of these down-regulated genes 
are associated with the regulation of the cell cycle, while 
a few of the up-regulated ones are associated with the 
extracellular matrix (ECM) pathway (Fig.  1F). Notably, 
DUSP1 emerged as the most up-regulated gene in ten 
datasets (Fig. 1G). Signature scores of canonical pathways 
were calculated, revealing that cell cycle-related pathways 
were the most depleted in MRD (Additional file  5: Fig. 
S1A, Additional file 3: Table S3).

We then analyzed the dynamic changes in tumor-infil-
trating lymphocytes using the MCPcounter algorithm 
[7]. We found that cancer-associated fibroblasts (CAFs) 
and myeloid cells were more abundant in minimal resid-
ual disease (MRD), while T cells were down-regulated in 
some tumors after chemotherapy (Fig. 1H and Additional 
file  4: Table  S4). We also examined the expression of 
immune regulators and immunogenic cell death follow-
ing chemotherapy. The results showed a general increase 
in immune inhibitory and stimulatory regulators in the 
MRD of READ, along with a decrease in the expression of 
HMGB1 and HSP90AA1 (Additional file 5: Fig. S1B, C).

We then aimed to compare the relationship between 
gene expression and immune infiltrates in patients before 
and after chemotherapy, with their response to chemo-
therapy and clinical outcomes. The distribution of z 
scores was similar in the pre-chemotherapy (control) and 
post-chemotherapy (MRD) groups (Additional file 5: Fig. 
S2A). The number of genes that can predict outcomes in 
both the pre- and post-chemotherapy samples is small 
(Additional file  5: Fig. S2B–E). We observed a positive 
correlation between the changes in gene expression after 
chemotherapy and their ability to predict overall survival 
(Additional file 5: Fig. S2F). The prediction direction for 
immune infiltrates is reversed when comparing pre- and 
post-chemotherapy samples (Additional file 5: Fig. S2G). 
In general, the features in the post-chemotherapy group 
do not outperform those in the pre-chemotherapy group.

To gain a better understanding of minimal residual 
disease (MRD) at the single-cell resolution and in the 
microenvironment, we analyzed seven single-cell RNA 
sequencing datasets totaling 323,664 cells (Fig.  1I). 
We observed an increase in CAFs and a decrease in T 
cells in MRD following chemotherapy (Fig.  1J). The 35 
genes that showed the most significant change follow-
ing chemotherapy in bulk RNA sequencing were mostly 
confirmed in the single-cell datasets (Fig.  1K). We then 
focused on the DUSP1, that is previously reported to be 
related to drug sensitivity [8, 9] and identified here as 
most up-regulated gene upon chemotherapy from bulk 
RNA-seq analysis. The expression of DUSP1 was found 

Fig. 1 Pan-cancer pre- and post-chemotherapy multi-omics analysis identified DUSP1 as a target enriched in minimal residual disease. A Schematic 
depicting the study design. We utilized 24 published datasets, consisting of 17 bulk RNAseq and array datasets, as well as 7 single cell RNA seq 
datasets. These datasets were obtained from 8 different cancer types and included a total of 1502 patients. BRCA: breast cancer, OV: ovarian 
cancer, NSCLC: non-small cell lung cancer, GBM: gliomablastoma, EAD: esophageal adenocarcinoma, ESCC: esophageal squamous cell carcinoma, 
COAD: colon adenocarcinoma, READ: rectal adenocarcinoma. B Bar graphs displaying the number of patients before and after chemotherapy 
in various bulk RNAseq and array datasets. C Bubble and bar graphs showing number of pre- and post-chemotherapy patients and cells 
across various single cell dataset. D Radar plot showing the percentage of genes that are significantly down-regulated (p < 0.05, log2(FC) < -1) 
and up-regulated (p < 0.05, log2(FC)- > 1) in patients who received chemotherapy compared to those who did not. The data is collected from 17 
datasets representing 6 different types of cancer. BRCA: B1-B8, B1,GSE122630; B2, GSE123845; B3, GSE180280; B4, GSE191127; B5, GSE32072; 
B6, GSE32603; B7, GSE43816; B8, GSE87455; COAD: C1, GSE207194; EAD: E1, GSE165252; GBM: G1, GSE63035; OV: O1-O3, O1, GSE146965; O2, 
GSE16274; O3, GSE227100; READ: R1-R3, R1, GSE15781; R2, GSE233517; R3, GSE94104. E Genes found to be recurrently significantly differentially 
expressed between post- and pre-chemotherapy patients in multiple datasets. F Bubble plot showing the log2(FC) and -log10p of 35 most widely 
differentially expressed genes (DEGs) across 17 datasets. The marked down and up DEGs are related to cell cycle and ECM pathway respectively. 
G Violin plot comparing the expression changes of DUSP1 between patients samples before and after chemotherapy. Two sided Welch’s t-test 
was applied to calculate p values: (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). H Heat map shows the log2(FC) of immune infiltrates 
(calculated by MCPcounter method) between post- and pre-treatment patients across 17 datasets. Color represents log2(FC). I UMAP embedding 
overlaid with unsupervised cluster cell type annotations (left), treatment annotations (medium) and dataset annotations (right) of totally 
323,664 cells integrating seven datasets. J The cell type composition in pre- and post-chemotherapy group of samples across various datasets 
and in the integrity. K Bubble plot showing the log2(FC) and -log10p of 35 most widely differentially expressed genes (DEGs) across 10 cell types 
and the integrity. L Comparison of DUSP1 expression between pre- and post-chemotherapy patient samples across fibroblast, T cell and mast cell. 
*p < 0.05

(See figure on next page.)
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to increase in CAFs and decrease in T cells and mast cells 
(Fig. 1L, Additional file 6: Table S5).

To investigate the mechanism by which DUSP1 
influence micro-environment and minimal residual 
disease, we examined the communication between 
T cells (divided into two groups based on DUSP1 
expression:  DUSP1+ and  DUSP1−) and other cell 
types. It was observed that  DUSP1+ T cells communi-
cated with CAFs specifically through the SEMA4D–
PLXNB2 ligand-receptor group (Fig. 2A). Additionally, 
 DUSP1+ T cells, but not  DUSP1− T cells, communi-
cated with myeloid cells through the CD99–CD99, 
MIF–(CD74 + CD44), and SEMA4D–PLXNB2 ligand-
receptor groups (Fig.  2A). We then focused on the T 
cells and CAFs, and integrated a total of 163,101 and 
35,742 cells respectively (Fig. 2B, D). DUSP1 was found 
to be enriched in  CD4+ cytotoxic T cells (CTL) and 
 CD4+ T cells with an interferon response (ISG), sug-
gesting its possible involvement in  CD4+ T cell cyto-
toxic function (Fig. 2C). The enrichment of DUSP1 was 
also seen in inflammatory and vascular CAFs, which 
indicates the correlation between DUSP1 and tumor 
angiogenesis (Fig. 2E).

To further investigate the role of DUSP1 in drug tol-
erance, we utilized the drug-tolerant persister (DTP) 
model previously described in our study [10]. Briefly, 
we treated the cells with chemotherapeutic agent at 
LD100 combined with mTOR inhibitors to induce the 

DTP cells. We examined the exchange of transcrip-
tional profiles and protein expression between DTP and 
control cells and found that DUSP1 was more abun-
dant in persister cells (Fig. 2F, G). And persister cell is 
compromised in the DUSP1 knockout (KO) condition 
(Fig. 2H). In an in vivo mouse model, the lack of DUSP1 
led to a reduction in minimal residual disease, result-
ing in a longer relapse-free period (Fig. 2I) and overall 
survival (Fig. 2J). Interestingly, the transcriptional pro-
files of DUSP1 KO cells showed significant enrichment 
for IFN response signaling and the T cell cytotoxicity 
pathway, as indicated by Gene Set Enrichment Analysis 
(GSEA) of 2900 canonical signaling pathways (Fig. 2K). 
Flow cytometry analysis further demonstrated a nota-
ble increase in the proportion of  CD4+ T cells and 
their ability to secrete IFN-γ in the absence of DUSP1 
(Fig. 2L, M).

Although a few studies have investigated the changes 
induced by chemotherapy [11, 12], this type of analy-
sis is problematic due to the limited number of tumors 
analyzed and technical challenges that increase the 
likelihood of false discoveries. Here, we thoroughly 
examined the multi-omic profile of MRD and found 
that DUSP1 is highly enriched in MRD. We demon-
strated that DUSP1 is indispensable for MRD induction 
and immuno-suppresive micro-environment forma-
tion, thus identifing DUSP1 as a pan-cancer target for 
the strategy of preventing and eliminating MRD.

(See figure on next page.)
Fig. 2 DUSP1 is indispensable for minimal residual disease and  CD4+ T cell cytotoxity. A Significant ligand-receptor pairs of cell communication 
between T cells, which were grouped as  DUSP1+ and  DUSP1−, with other cell types. B UMAP embedding overlaid with unsupervised cluster cell 
type annotations of T cells integrating seven datasets. C DUSP1 expression in pre- and post-chemotherapy patient sample in  CD4+ T_CTL cell (left) 
and  CD4+ T_TSG cell (right). *p < 0.05. D UMAP embedding overlaid with unsupervised cluster cell type annotations of fibroblast cells integrating 
seven datasets. E DUSP1 expression in pre- and post-chemotherapy patient sample in inflammatory CAF cell (left) and vascular CAF cell (right). 
*p < 0.05. F Volcano plot showing the gene profile change between persister and control cells of RNA seq results. The red dots represent the genes 
that are significantly up-regulated in persister cells, and the blue dots represent the genes that are significantly down-regulated in persister cells. G 
Western blot showing DUSP1 expression in persister cells of three different cell line. H Microscopic images of human cancer cells treated with Torin1 
plus chemotherapeutic agents (10 nM paclitaxel). The images are representative of three biological replicates. The average cell count per image 
is indicated in the lower right corner. Scale bar, 100 μm. The column blot shows the number of persister. *p < 0.05. I Tumor growth of mouse 
subcutaneous xenograft model using control or DUSP1 KO cells treated or not with chemotherapeutics. The minimal residual disease and relapase 
time line is shown across groups. *p < 0.05. J Survival of mice bearing wild type and DUSP1 knockout tumors with or without chemotherapeutics 
treatment for 4 weeks. *p < 0.05. K GSEA results using the canonical pathway gene sets in DUSP1 KO vs wild type pair. Normalized enrichment 
scores (NES). L, M. Flow cytometry was used to analyze the proportion and cytotoxicity of  CD4+ T cells in the DUSP1 KO and wild type cells. *p < 0.05
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Additional file 1: Table S1. Clinical information of the 1440 patients 
across 17 datasets.

Additional file 2: Table S2. Illma differential expression analysis of mRNA 
expression.

Additional file 3: Table S3. Illma differential expression analysis of 
signature score.

Additional file 4: Table S4. Illma differential expression analysis of 
immune infiltrates.

Additional file 5: Figure S1. Canonical pathway signature scores, 
immune infiltrates and modulators changes induced by chemotherapy. A 
Heat map illustrating log2(FC) of 10 most widely significantly differentially 
expressed canonical pathway signature scores across 17 datasets. B Heat 
map shows the changes in expression (log2(FC)) of inhibitory and stimula-
tory immune modulators in patients before and after chemotherapy. C 
Heat map shows the changes in expression (log2(FC)) of seven immuno-
genic cell death (ICD) modulators between post- and pre-chemotherapy 
patients. Figure S2. Predictivity of features in pre- and post-chemotherapy 
samples for drug response and survival. A Distrbution of z score of whole 
transcriptomic genes for the prediction of overall survival (OS), recurrence 
free survival (RFS), recurrence (Re) and drug response (DR) in pre-chem-
otherapy and post-chemotherapy patients samples across nine datasets 
in three cancers. B Radar plot showing the percentage of significant gene 
(p<0.05) for the prediction of OS, RFS, Re and DR in pre-chemotherapy 
and post-chemotherapy patients samples across 9 datasets in three 
cancers. C Bar plot displaying the fraction of shared significant prognostic 
genes (overlap) between significant genes derived from patient samples 
before chemotherapy and significant genes derived from patient samples 
after chemotherapy. D The number of significant prognostic genes in 
patient samples before and after chemotherapy was compared across 
nine datasets in three types of cancer. Each dot represents one dataset. 
E Kaplan-Meier plots displaying the prognostic ability of ADH in pre-
chemotherapy patient sample and in post-chemotherapy patient sample 
in dataset GSE146965. F Pearson correlation between the gene expression 
changes (log2(FC) of post- vs pre-chemotherapy) and the z score of genes 
in COX regression models for OS in pre-chemetherapy patient samples. G 
Heat map showing the z score of immune infiltrates for prediction of OS, 
RFS, Re and DR in pre-chemotherapy and post-chemotherapy patients 
samples across nine datasets in three cancers.

Additional file 6: Table S5. P value and logFC of differential gene expres-
sion analysis results of single cell sequencing datasets.
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