
Shang et al. 
Experimental Hematology & Oncology           (2024) 13:21  
https://doi.org/10.1186/s40164-024-00481-y

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Experimental Hematology & Oncology

Targeting natural killer cells: from basic 
biology to clinical application in hematologic 
malignancies
Juanjuan Shang1, Shunfeng Hu2* and Xin Wang1,2,3,4,5* 

Abstract 

Natural killer (NK) cell belongs to innate lymphoid cell family that contributes to host immunosurveillance 
and defense without pre-immunization. Emerging studies have sought to understand the underlying mechanism 
behind NK cell dysfunction in tumor environments, and provide numerous novel therapeutic targets for tumor treat-
ment. Strategies to enhance functional activities of NK cell have exhibited promising efficacy and favorable tolerance 
in clinical treatment of tumor patients, such as immune checkpoint blockade (ICB), chimeric antigen receptor NK 
(CAR-NK) cell, and bi/trispecific killer cell engager (BiKE/TriKE). Immunotherapy targeting NK cell provides remarkable 
advantages compared to T cell therapy, including a decreased rate of graft versus-host disease (GvHD) and neuro-
toxicity. Nevertheless, advanced details on how to support the maintenance and function of NK cell to obtain better 
response rate and longer duration still remain to be elucidated. This review systematically summarizes the profound 
role of NK cells in tumor development, highlights up-to-date advances and current challenges of therapy targeting 
NK cell in the clinical treatment of hematologic malignancies.
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Introduction
Recently, a remarkable potential has been demonstrated 
in immunotherapy for treating tumors, including adop-
tive cell therapy, CAR, ICB, and bi/trispecific immune 
cell engagers. Therapeutic strategies targeted immune 

cells have changed traditional tumor therapeutic regi-
men, particularly chimeric antigen receptor T (CAR-
T) cells that could confer higher specificity and affinity 
to T cells [1]. Established efficacy profiles of utilizing T 
cells has led to the emerging impetus to develop T cell-
targeted tumor immunotherapy and promoted extensive 
clinical investigations [2]. However, intolerable toxicities 
including GvHD and neurotoxicity [3] greatly limit clini-
cal application of T cell therapeutic strategies. Therefore, 
emerging studies have energized a shift of focus towards 
clinical utility of different immune cells, especially NK 
cells.

NK cell, identified with absence of surface T cell recep-
tor (TCR) and related cluster of differentiation (CD) 
3 molecule, acts as tumor suppressors and contribute 
to host immune surveillance and defense without pre-
immunization [4]. Under healthy conditions, NK cells 
are damped to protect normal cells from damage due to 
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the interaction between human leukocyte antigen (HLA) 
of normal nucleated cell and killer cell immunoglobu-
lin-like receptors (KIRs) [5, 6]. NK cells are rapidly acti-
vated and then exert cell-killing activity once encounter 
abnormal cells with decreased expression of HLA mol-
ecule, which contribute to the clearance of abnormal 
cells and the persistence of organism homeostasis [6]. 
NK cells perform their cytotoxic activity mainly through 
two ways: I) directly contact with target cells and release 
perforins and enzymes associated to cell lysis [7]. II) pro-
duce immunomodulatory factors including an array of 
cytokines and chemokines, mainly interferon-γ (IFN-γ), 
to modulate adaptive immunity and participate in other 
associated pathways [8, 9].

NK cell immune function is restricted in tumors, which 
suggests valuable therapeutic targets for tumor treat-
ment. The first application of NK cells in tumor therapy 
could be traced back to 1985, precleared autologous NK 
cells were transferred to patients with metastatic can-
cer and obviously decreased tumor volume (more than 
50 percent) [10]. Subsequent strategies for boosting NK 
cell function including being modified with CAR struc-
tures or engagers, and blocking inhibitory receptors with 
ICB, which attract more and more attention as encour-
aging anticancer therapeutics. Here, we review biological 
function and dysfunctional roles of NK cells in hemato-
logic tumors, recent advances and current challenges of 
NK cell-targeted clinical applications, which might offer 
novel therapeutic strategies for patients with hematologic 
malignancies.

The dysfunction of NK cells in hematologic 
malignancies
Decreased function of NK cells in tumor microenvironment
Abnormal features of receptors on NK cells
Activating, inhibitory and co-stimulatory receptors are 
needed for NK cell functions, which display obvious 
abnormalities in tumors. Figure  1 shows classical sur-
face receptors of NK cell. Natural killer group 2 member 
D (NKG2D) receptor and natural cytotoxicity receptor 
(NCR) are two prominently stimulatory receptors con-
tributing to NK cell activation [11, 12], decreased expres-
sion of them leads to NK cells dysfunction in tumor 
environment [13]. Previous studies have shown dramati-
cal changes of surface epitopes on tumor cells, such as 
NKG2D ligand (NKG2DL)-negative could help tumor 
cells to escape. Increasing NKG2DL levels of tumor cells 
through genetically or pharmacologically inhibiting poly-
ADP-ribose polymerase 1 (PARP1) could suppress leuke-
mogenesis in patient-derived xenotransplant models [14].

Published studies have suggested that the impair-
ment of NK cytolytic function derived in part from 
reduced specific molecules on tumor cell surface. Loss 

of the mismatched HLA in the genome of the leukemia 
impaired NK cell-mediated response, representing a vital 
immune escape mechanism of leukemia relapse after 
allogeneic hematopoietic cell transplantation [15, 16]. 
Tumor cells could downregulate the expression of stimu-
latory ligand through several strategies, including DNA 
methylation [17], expression pattern alteration of related 
gene [18, 19] and self-shedding from the cell surface [20]. 
For example, major histocompatibility complex (MHC)-I 
chain related protein A (MICA) molecules expressed on 
malignant cell activated NK cell via binding to NKG2D, 
while soluble MICA releasing from malignant cell sur-
face impaired NKG2D and facilitated escape of them 
from immunosurveillance [21, 22]. Inhibition of MICA 
shedding via antibodies or vaccines were demonstrated 
to promote anti-tumor immunity of NK cells, providing 
rationales for exploring novel clinical applications target-
ing NK cell receptors [23–25]. Exosomes, a population of 
vesicles in biological fluids, were demonstrated to down-
regulate the expression of NKG2D by inducing its inter-
nalization from NK cell surface in microenvironment of 
leukemia and multiple myeloma (MM) [26–28]. Alto-
gether, these findings provide a novel insight that related 
ligand levels of tumor cells may become a prognostic 
index, targeting these specific interactions will strengthen 
the killing effect of NK cells and improve therapeutic out-
comes for hematologic malignancies in the future.

Inhibitory receptors on NK cell surface constrain kill-
ing capacity of them, which are indispensable for self-tol-
erance [29]. Natural killer group 2 member A (NKG2A), 
KIRs family, T cell immunoglobulin and immunorecep-
tor tyrosine-based inhibitory motif domain (TIGIT) and 
programmed cell death protein 1 (PD-1) are representa-
tive inhibitory receptors. Among them, NKG2A-CD94 
complex on NK cell surface transduces inhibitory sig-
nals through binding to HLA-E of tumor cells, which 
rendered the lytic activity of NK cell impaired [13, 30]. 
Up-regulation of HLA-E was found in some hemato-
logic neoplasms such as chronic lymphocytic leukemia 
(CLL) and acute myeloid leukemia (AML), indicating a 
novel strategy to restore cytotoxic ability of NK cell via 
blocking NKG2A on cell surface [31]. TIGIT expression 
was demonstrated to be tightly restricted in lymphocytes 
including T cell subsets and NK cells [32]. Increasing evi-
dence has demonstrated that TIGIT was highly expressed 
on tumor-infiltrating NK cells in hematological malig-
nancies, such as AML, resulting in tumor progression 
and poor outcomes [33]. Zhang et al. found that TIGIT 
expression on tumor-infiltrating NK cells was associated 
with functional exhaustion of NK cells, and blockade of 
TIGIT via monoclonal antibodies reversed the exhaus-
tion of anti-tumor immunity [34]. Furthermore, a marked 
increase level of PD-1 was detected in tumor-infiltrating 
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NK cells of hematologic malignancies [35–38]. PD-1+ NK 
cells were proved to have a tendency to exhaust, charac-
terized by reduced proliferative capability and impaired 
cytotoxicity in tumor microenvironment (TME) [39]. 
Previous studies focusing on PD-1 and its ligands have 
found that blockade of the interaction can restore IFN-
γ-producing function of NK cells. Besides, soluble pro-
grammed cell death ligand 1 (PD-L1) in serum were 
found to be related to adverse prognosis in lymphoma 
[40, 41]. Taken together, interactions between inhibitory 
receptors and the ligands inhibit cytokines release and 
anti-tumor cytotoxicity of NK cell, which causes immune 
escape of tumor development. Further detailed research 
is still needed to explore the intricate network between 

inhibitory receptors and the ligand in TME of hemato-
logic malignancies.

Disruption of killing pathways in NK cells
Activated NK cells take anti-tumor effect mainly through 
direct or indirect mode. In direct killing mode, immu-
nological synapses forming between tumor cell and 
NK cell led to release of lysosomes-like molecules such 
as granzymes and perforins, the perforation of tumor 
cell membrane, and the induction caspase-dependent 
or -independent apoptosis [7, 42]. Tumor initiation and 
metastasis were suppressed by NK cell released perfor-
ins, growth of tumor cells was proved to be inhibited 
by perforin-dependent cytotoxicity of NK cells in mice 

Fig. 1 General view of surface receptors between NK cell and tumor cell. The anti-tumor functions of NK cell depend on a suite of activating 
and inhibitory receptors which combined to ligands on tumor cell surface or regulatory cytokines. Dramatical changes of the interaction lead to NK 
cell dysfunction and then cause tumor escape and progression. Novel agents targeting these special interactions have been explored to augment 
NK cell-mediated killing effect and recruit them to boost anti-tumor immunity. (1) CD33 CAR molecule; (2)  CD-16/IL-15/CD33 TriKE;  (3) Anti-CD16/
CD19 BiKE; (4) Anti-TIGIT mAb, such as Tiragolumab; (5) Anti-KIR mAb, such as Lirilumab; (6) Anti-PD-1 mAb, such as Pembrolizumab; (7) Anti-NKG2A 
mAb, such as Monalizumab. BAT-3, HLA-B associated transcript 3; BiKE, bispecific killer cell engager; B7-H6, B7 homolog 6; CAR, chimeric antigen 
receptor; CD, cluster of differentiation; DAP10, DNAX-activation protein 10; Fas, factor related apoptosis; FcRγ, fragment crystallizable receptor γ; HLA, 
human leukocyte antigen; ICB, immune checkpoint blockade; IFN-αR, interferon-α receptor; IFN-γ, interferon-γ; IL-R, interleukin receptor; LILRB1, 
leukocyte immunoglobulin-like receptor B 1; mAb, monoclonal antibody; MICA, human MHC-I chain-related A; MICB, human MHC-I chain-related 
B; NKG2A, natural killer group 2 member A; NKG2D, natural killer group 2 member D; NKp30, natural killer receptor protein 30; NKp44, natural killer 
receptor protein 44; NKp46, natural killer receptor protein 46; KIRs, killer cell Ig-like receptors; PD-1, programmed cell death 1; PD-L1, programmed 
cell death ligand 1; PD-L2, programmed cell death ligand 2; PGDF-DD, platelet derived growth factor DD; TGFβR, transforming growth factor-β 
receptor; TIGIT, T cell Ig and ITIM domain; TRAIL-R, TNF-related apoptosis inducing ligand-receptor; TriKE, trispecific killer cell engager; ULBPs, ULl6 
binding proteins



Page 4 of 26Shang et al. Experimental Hematology & Oncology           (2024) 13:21 

[43]. It was confirmed that lacking perforin in NK cells 
contributed to failure in restraining the metastasis of 
malignant cells to lung [44]. Indirect way mainly refers to 
the effect of cytotoxic and regulatory cytokines. Factors 
secreted by NK cells including cytokines, chemokines 
(such as chemokine CC-chemokine ligand (CCL) 3, 
CCL4, CCL5), adenosine, and growth factors, exert func-
tions of regulating innate and adaptive immunoreactions 
[45]. For example, NK cell could facilitate the maturation 
of DCs through IFN-γ and tumor necrosis factor (TNF), 
and the initiation of  CD4+ T helper cells in the inflamed 
lymph node also relied on IFN-γ [46].

Metabolic alterations of TME impair NK cell functions
Metabolic reprogramming has been widely revealed in 
cancer cells with the appearance of increased glycolysis, 
lipid synthesis and amino acids catabolism, which not 
only serves as crucial determinant in signal pathways for 
sustaining tumorigenesis, but also has profound impli-
cation to immunocytes [47, 48]. Immune cells including 
NK cells have been subsequently found in engagement in 
metabolic manipulation due to competition for fuels with 
malignant cells in TME. Depletion of nutrients, aberrant 
accumulation of toxic metabolites and intermediates in 
TME influence NK cell proliferation and effector func-
tion. Clinical applications of targeting tumor metabolism 
have emerged and achieved remarkable progresses over 
the past decades, such as using metabolomics-based bio-
marker for early diagnosis and therapeutic approaches 
that aim at metabolic enzymes or metabolites [49, 50].

Glucose deficiency
Glucose is a widely described poor fuel in TME attrib-
uting to Warburg effect, a main character of tumor 
cells that avidly utilize and convert glucose to lactate 
even oxygen is sufficient [51–53]. Decreased concen-
tration of extracellular glucose and following reduced 
glycolysis and oxidative phosphorylation (OXPHOS) 
attenuate cytotoxic ability of NK cells, for example, by 
reducing IFN-γ and Fas ligand levels [54]. In addition, 
rapid growth of malignant cell consumes abundant glu-
cose and creates a high-lactate microenvironment [55, 
56]. Studies pointed out gradual loss of IFN-γ production 
of NK cells during tumor progress, partly attributing to 
low pH level and accumulation of lactate in TME. Patho-
physiological concentrations of lactate could affect levels 
of nuclear factor of activated T cell (NFAT) in NK cells, 
causing diminished IFN-γ production [57]. In lymphoid 
organs the quantity of NK cell and IFN-γ level could be 
recovered when systemic alkalified by oral delivery of 
bicarbonate [58]. Similar to the mechanism of elevated 
lactate in solid tumor environment, tumor cells of hema-
tologic malignancies take up a large amount of glucose 

and produce lactate via lactate dehydrogenase A (LDHA) 
due to genetic changes and tumor hypoxia. Lactic acids 
accumulate in cells and then are exported through mono-
carboxylate transporters (MCTs) on cell membrane, con-
tributing to an acidic TME [59]. Indeed, this provides us 
a novel idea for functional reversal of NK cells, as to con-
trol balance of glucose levels via crucial targets such as 
LDHA and MCTs. Reduction of LDHA function by small 
interfering RNA (siRNA) or a small-molecule inhibitor 
FX11 was proved to lead to tumor regression [60]. Selec-
tive MCTs inhibitors could decrease intracellular pH and 
impair the proliferation of malignant cells such as leuke-
mia cells, which were expected to become a promising 
adjunct in tumor treatment strategy [61–63]. AZD3965, 
an orally bioavailable MCT1 inhibitor, has been currently 
under phase I clinical trial in patients with advanced 
tumors including lymphoma [NCT01791595] [64]. These 
findings indicated that targeting glucose metabolism may 
be an opportunity for novel treatment strategies in hema-
tologic malignancies.

Aberrant lipid accumulation
Malignant cells increase de novo fatty acid synthesis to 
provide enough energy for anabolic and signaling path-
ways, leading more aberrant metabolites accumula-
tion such as short-chain fatty acids, which have been 
confirmed to skew immunocytes towards immunosup-
pressive phenotypes [65]. Lipid metabolism associated 
transcriptional reprogramming of NK cells and abnor-
mality signaling mediated immunosuppressive microen-
vironment were detected in tumors such as in aggressive 
B cell lymphoma [66, 67]. Cellular metabolism and effec-
tor responses of NK cells are potently suppressed when 
exposed to fatty acids, which mainly due to a significant 
rewiring of lipid metabolic pathways [66, 68]. Tran-
scriptional and single cell analysis suggested significant 
upregulation of lipid and glycerol uptake-related genes 
expression of NK cells when exposed to lipid-enriched 
TME, leading to impairment and dysfunction of NK cells 
[69, 70]. Higher cholesterol concentration is also prone 
to facilitate the expression of ICBs of immune cells, 
resulting in lower proliferation and cytotoxicity capac-
ity. Metabolites and varieties of physiological substances 
of cholesterols also contribute to the immunological 
landscape. For instance, accumulation of 22-hydroxy-
cholesterol can recruit  CD11bhighGr1high neutrophils, an 
important immunosuppressive population in the TME 
[71]. Adrenal cortex hormones, transformed from cho-
lesterols, can significantly suppress the proliferation and 
activity of many immune cells including NK cells [72, 73]. 
NK cells were found to neutralize toxicity of increased 
lipid levels in TME through upregulating peroxisome 
proliferator-activated receptor (PPAR) related signaling 
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pathway to improve synthesis of lipid. Previous studies 
found that employing a specific agonist Rosiglitazone 
could stimulate PPAR-γ and thus recovered partial func-
tion of NK cells [66, 74]. Besides directly alters metabolic 
pathways of NK cell, the aberrant accumulation of lipid 
metabolites also contributes to immunosuppressive phe-
notypes by acting on immunoregulatory cells in TME 
such as DC and bone marrow derived suppressor cell 
(MDSC), which create an immunosuppressive microen-
vironment and impair NK cell activity [75].

Amino acids starvation and enzyme abnormality
Aberrant profile of amino acids metabolism has been 
found in diverse tumors. For instance, acute lympho-
blastic leukemia (ALL) cells need an exogenous source 
of asparagine, and exhausting the amino acid from 
blood has been a prominent component of ALL chemo-
therapy for decades [76]. Solute carrier family 1 mem-
ber 1 (SLC1A1), a soluble ectopic transporter on tumor 
cell membrane increased cellular glutamine uptake. Cell 
proliferation and tumor growth were both accelerated by 
this glutamine addiction [77]. When glutamine became 
deficient or L-amino acid transport was systematically 
blocked, NK cell growth response was impaired rapidly 
by regulating c-myc protein levels [78]. Arginine (Arg)-
starved NK cells show weak viability, decreased NKp46 
and NKp30 levels, and reduced intracellular production 
of IFN-γ [79]. Researchers proved MDSCs expressed 
arginase I and AML blasts secreted arginase II, both 
could specifically agitate M2 phenotypes in surround-
ing monocytes to inhibit NK cell immune response [80]. 
In addition, Arginase I can convert Arg to ornithine and 
then limit the proliferation of NK cells. CB-1158, a potent 
arginase I inhibitor with high affinity, partially restores 
NK cell function and blunts AML cell immune escape by 
inhibiting Arg depletion [81]. One of the obstacles is that 
few amino acids are only confined to tumor cells, sys-
temic blockades raise the likelihood of toxicity to normal 
cells thus affect organs such as brain and heart [76]. A 
more intense knowledge of amino acid utilization in both 
tumor cell and NK cell is still required to develop tumor 
therapies targeting amino acid metabolism.

Reactive oxygen species (ROS) cytotoxicity
ROS is generally deemed to by-product of oxygen con-
sumption and cell metabolism formed by the partial 
reduction of molecular oxygen [82]. ROS is certified to 
be related to tumor initiation and progression as it acti-
vates pro-tumorigenic signaling, drives genetic instabil-
ity and DNA damage, enhances cell proliferation and 
survival [83]. Tumor cells produce much more ROS than 
normal cells which damage killing effect of NK cells. For 
instance, chronic myelogenous leukemia (CML) cells can 

motivate nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase to generate and then paracrine ROS, 
contributing to the dysfunction of NK cells [84]. Johan 
Aurelius et  al. discovered an original mechanism of NK 
cells apoptosis depend on triggered PARP1, demonstrat-
ing that oxygen radicals could cause NK cells to undergo 
apoptosis [85]. Previous clinical trial investigated the 
effect of histamine dihydrochloride, a NADPH oxidase 
inhibitor, showed notable improvement of leukemia-free 
survival and AML relapse prevention [86]. Moreover, 
studies have confirmed that the levels of ROS and the 
activity of anti-oxidant enzymes are typically increased in 
drug resistant tumor cells, indicating ROS may become 
an attractive target for overcoming chemotherapy resist-
ance. Inhibitors targeting ROS production pathway, such 
as critical redox-regulating enzymes, show bright pros-
pects in immune recovery of NK cells [87].

Other immunosuppressive factors
Hypoxia in TME
Hypoxia, attributed to insufficient oxygen supply and 
rapid tumor growth, has been demonstrated to play a 
vital role in tumor progression and resistance to therapy. 
Similar to solid tumors, hypoxia condition was reported 
to be important for tumor neovasculogenesis, metastasis 
and drug resistance in hematologic malignancies [88, 89]. 
Published studies have revealed that hypoxia reduced the 
ability of NK cells to release cytokines, such as granulo-
cyte–macrophage colony stimulating factor (GM-CSF), 
IFN-γ and TNF-α, and decreased the expression of gran-
zyme B and degranulation marker CD107a, thus facili-
tated tumor immune escape [90]. Teng et al. found that 
the dysfunction of NK cells under hypoxic condition may 
be attributed to the activation of protein tyrosine phos-
phatase SHP-1. Knocking down SHP-1 or using a specific 
inhibitor TPI-1 was able to partially restore NK cell cyto-
toxicity under hypoxia [91]. These findings pointed out 
targeted inhibitors of hypoxia-activated molecules might 
provide promising therapeutic efficacy for patients with 
specific profile of hypoxia biomarkers.

Chemotactic environment abnormality
NK cells develop from bone marrow parenchyma and 
traffic into various tissues to perform specific functions 
[92]. Previous studies have noted that chemotactic com-
ponents abnormality in TME could disturb the recruit-
ing and function of NK cells. Dysregulation of C-X-C 
chemokine receptor 3 (CXCR3) and CXCR4 chemokine 
receptor-ligand axis was found to induce defective migra-
tion and retention of NK cells in MM [93]. Under the 
influence of CXCR1 and CXCR2 receptor agonists and 
other chemotactic factors produced by tumors, neutro-
phils and MDSCs extruded neutrophil extracellular traps, 
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which wrapped tumor cells and shield them from cyto-
toxicity mediated by NK cells [94]. Beyond the impact 
of NK cell trafficking, complex receptor-ligand mode in 
TME also leads to downregulation of cytotoxicity [95]. 
For example, IFN-γ secretion of NK cells could be acti-
vated through the CXCL10/CXCR3 axis when interferon 
regulatory factor 1 increased [96]. Hence, altering the 
expression levels of chemotactic factors in TME will help 
enhance the infiltration and activation of NK cells, pos-
sible further strengthen the therapeutic effect of NK cells.

Tumor‑secreted immunosuppressive factors
A variety of immunosuppressive factors containing 
anti-inflammatory cytokines and specific enzymes have 
been elucidated to play a role in the immune escape of 
tumor cells in recent studies [17]. In many hematologic 
malignancies such as AML and CLL, anti-inflammatory 
cytokines including IL-4, IL-10, and TGF-β produced by 
tumor cells could render them less immunogenic, thus 
caused immune escape [97, 98]. Interestingly, Wang et al. 
found that effector function of bone marrow-derived 
NK cells in AML patients were impaired by higher lev-
els of TGF-β1 in TME. Galunisertib, TGF-β1 pathway 
inhibitor, could significantly restore the cytotoxicity 
and anti-tumor activity of NK cells, providing a poten-
tial therapeutic method to improve outcomes in AML 
patients [99]. Besides, there were hypothetical mecha-
nism that the suppression of proinflammatory growth 
factors such as granulocyte colony-stimulating factor 
(G-CSF) and IL-1β also played a role in immune escape 
[15]. Some immunomodulatory enzymes and metabo-
lites of catalytic reaction were found to be associated 
with immunosuppressive TME, further impaired NK cell 
function. Indoleamine 2,3-dioxygenase (IDO) expression 
was reported in both bone marrow and peripheral blood 
AML blasts, displayed anti-tumor effect by inducing Treg 
cells and impairing IFN-γ production of T and NK cells 
[100, 101]. These results highlighted that the measure-
ment of such specific enzymes may offer utility as pro-
spective prognostic markers, and targeted inhibitors may 
hold promise for the treatment of tumors.

Targeting NK cells in hematologic malignancies
Flourishing immunotherapy has become the fourth 
tumor treatment option after chemotherapy, radiother-
apy and surgery. With the development of T cell-based 
immunotherapy including CAR-T, non-specific immu-
nity has also gained attention with better efficacy and 
fewer side effects. Here follows NK cell-based immu-
notherapies being gradually explored for hematologic 
malignancies, of which general view is recapitulated in 
Fig. 2.

The source of NK cells for adoptive immunotherapy
Adoptive infusion of NK cells has overcome uncon-
trolled acute GvHD reaction, the principal barrier 
of adoptive T cell therapy [102]. The first exploited 
sources for adoptive NK cell therapy were autologous 
NK cell as early as 1985. Metastatic cancer patients 
who had failed in standard therapy were treated with 
1.8 to 18.4 ×  1010 autologous NK cells, observing objec-
tive regression (more than 50 percent of tumor volume) 
in 11 of the 25 patients [10]. Hareth Nahi et  al. dem-
onstrated the feasibility of infusing autologous NK cells 
in MM patients [103]. Another phase II clinical trial of 
adoptive transfer of haploidentical NK cells found no 
decrease of the cumulative incidence of relapse and no 
improvement of overall survival (OS) in AML patients, 
which mainly attributed to the limited persistence of 
alloreactive donor NK cells [104]. Further research dis-
covered that using activating factors such as IL-2 could 
assist augmentation of NK therapeutic efficacy. How-
ever, IL-2 also added toxicity and complication includ-
ing elevation of creatinine and bilirubin levels, oliguria, 
hypotension at the same time [105, 106]. Human umbil-
ical cord blood (UCB) and placenta are rich sources for 
cytotoxic  CD56+ NK cell which has high lytic capabili-
ties. It is estimated that around 30% of lymphoid popu-
lations in UCB are NK cells, which tend to be younger 
and have a stronger proliferation potential [107]. Harry 
Dolstra et al. evaluated the safety and functional effect 
of NK-cell product derived from HLA partly matched 
UCB. These NK cells were demonstrated to be well 

Fig. 2 General view of NK cell-based immunotherapies. (1) A number of NK cell sources were explored for infusion in adoptive NK cell therapy, 
including autologous NK cell from patients themselves, peripheral blood or umbilical cord blood and placenta-derived NK cell from healthy donors, 
and clonal NK cell lines such as NK-92, NK-YS, KHYG-1. (2) Strategies targeting to enhance anti-tumor activity of NK cell including employing CAR 
structures, using immune checkpoint blockades to block inhibitory receptors on NK cell surfaces, augmenting NK cells by cytokines, applying BiKEs 
and TriKEs, and inducing memory-like NK cells. (3) Biologically active agents or the “activated” NK cells were then infused to patients, causing lysis 
of tumor cells and further improving the clinical outcome. Ag, antigen; BiKE, bispecific killer cell engager; CAR, chimeric antigen receptor; CD, cluster 
of differentiation; IL, interleukin; ICB, immune checkpoint blockade; ML-NKs, memory-like natural killer cells; NKs, natural killer cells; PB, peripheral 
blood; TriKE, trispecific killer cell engager; UCB, umbilical cord blood

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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tolerated, and 2 of 4 AML patients became minimal 
residual disease (MRD) negative in bone marrow after 
adoptive infusion [108], indicating that immunotherapy 
based on UCB-derived NK cells has remarkable thera-
peutic potential. Subsequently, strategies targeting NK 
cells modification to obtain durable anti-tumor abil-
ity experienced great advances. Pluripotent stem cell-
derived NK cells engineered with key surface molecules 
such as high-affinity noncleavable variant of CD16a 
were demonstrated to improve antibody-dependent 
cellular cytotoxicity (ADCC) properties of NK cells 
and contribute to tumor regression in B-cell lymphoma 
xenograft studies [109, 110]. Clonal NK cell lines con-
taining NK-YS, KHYG-1, NK-92, has become alterna-
tive sources for adoptive NK cell therapy [111–113]. 
Due to potentially broad applicability against tumors 
and little risk potential for GvHD complications, NK-92 
cell line has become a popular agent in thriving clinic 
trials [114, 115]. However, application of clonal NK 
cell lines still faces challenges. For instance, irradia-
tion is required before cell infusion to prevent further 

hyper-proliferation, which in turn drastically limits cell 
persistence after infusion [116].

Chimeric antigen receptor NK cell therapy (CAR‑NK)
Clinical achievements and current shortcomings in 
CAR-T cell therapies consisting neurotoxicity and 
cytokines release syndrome (CRS) force the improve-
ment of alternative approaches. CAR-NK cells refer to 
engineered genetically to express specific CAR structures 
which mainly have three domains: I) extracellular region, 
containing a single-chain variable fragment (scFv), gener-
ally derives from antibodies that recognize surface anti-
gens of tumor cells. II) transmembrane region, anchors 
CAR to NK cell membrane. III) cytoplasmic domain, 
transmits activating signals then causes downstream pro-
cesses and facilitates the killing effects [117–119]. Key 
components of CAR are shown in Fig. 3. NK cells distinct 
biology allows them to offer alternative, and perhaps even 
superior immunotherapeutic strategy in comparison with 
CAR-T cell therapy. First, CAR-NK cells have reduced 
risk of GvHD due to a non-HLA-restricted modality 

Fig. 3 Components and structures of mAb, CAR, BiKE and TriKE. A Taking anti-CD16 antibody for example, it can be divided into several 
components including Fab, Fab’, scFv and Fc. B CAR contains an antigen recognition domain, a transmembrane domain and a signal domain 
providing activating signal to NK cell. As above figure shows, extracellular scFv domain of a CD33 CAR molecule is composed of  VH and  VL 
anchored to the transmembrane domain by a flexible hinge, and intracellular part includes two signal domains. C A BiKE consists of two scFvs, 
and a short flexible polypeptide linker joins to prevent dissociation. Take CD16/CD33 BiKE for example, it constructs from  VH and  VL of anti-CD16 
and anti-CD33 antibodies which make it capable of binding both tumor cells and NK cells. AFM is a bispecific, tetravalent chimeric antibody 
construct that specifically recruits NK cells by two binding sites exclusively for each antigen. D Compared to BiKE, CD16/IL-15/CD33 TriKE adds 
a novel modified human IL-15 crosslinker which can assist in improvement of NK cell cytotoxicity. TriKE can be also designed with a scFv fragment 
of anti-CD16 mAb and two scFvs of tumor specific antigens. BiKE, bispecific killer cell engager; CAR, chimeric antigen receptor; CD, cluster 
of differentiation; Fab, fragment of antigen binding; IL-15, interleukin 15;  CH, constant heavy chain;  CL, constant light chain; mAb, monoclonal 
antibody; scFv, single-chain variable fragment;  VH, variable heavy chain;  VL, variable light chain; TriKE, trispecific killer cell engage
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[120]. Restricted lifespan of CAR-NK cells in circula-
tion allows no requirement for suicide vectors to prevent 
excessive expansion [121]. Activated NK cells release 
GM-CSF and IFN-γ, rather than proinflammatory fac-
tors consisting IL-1 and IL-6, implying less likely to occur 
CRS and neurotoxicity and preferable safety profile [120, 
122]. Besides, CAR-NK cells exert more killing modes 
containing executing cell degranulation, activating apop-
totic pathways, and mediating ADCC effects [123]. Can-
cer-initiating cells (CICs) which play a vital part in tumor 
recurrence are often characterized by resistant to drugs 
and irradiation therapy. It has been found that CICs 
were highly sensitive to NK cells, confirming therapeutic 
CAR-NK cells could become a strategy for recognition 
and clearance of CICs and thus prevent tumor recur-
rence [124]. NK cells have been identified with memory-
like function in previous studies, which could allow a 
more rapid and robust response [125]. Moreover, CAR-
NK cells also protect against pathogens such as bacteria 
and virus, helping to prevent concurrent and secondary 
infections, which plays an essential role in immunocom-
promised state in cancer patients.

CAR-NK cell therapies have revealed preliminary 
potential in a large number of animal experiments 
[126–128], which laid a sufficient foundation for human 
studies. For example, arming cytokine-induced NK cells 
with a neoepitope-specific CAR significantly enhanced 
their anti-tumor responses and avoided off-target toxic-
ity in AML models [129]. 30 CAR-NK cell related clini-
cal studies for hematologic malignancies were retrieved 
on https:// beta. clini caltr ials. gov [till Feb. 2023]. Most of 
them are in early-stage aiming to determine the safety 
and initial efficacy. In a phase I and II clinical trial per-
formed to assess the safety, relative efficacy and over-
all response rate (ORR), HLA-mismatched cord blood 
derived anti-CD19 CAR-NK cells were infused to 11 
enrolled patients with relapsed/refractory (R/R)  CD19+ 
tumors. One of three dose-regimes (1 ×  105, 1 ×  106, or 
1 ×  107 cells per kilogram of body weight) of CAR-NK 
cells were administered after chemotherapies. GvHD, 
CRS and neurotoxicity were not found after infusion 
and therapeutic evaluation result was encouraging. 
Among them, 8 achieved a response including 7 (3 with 
CLL and 4 with lymphoma) achieved complete response 
(CR) [NCT03056339] [130]. The shortcoming of this 
trial was that different therapeutic interventions were 
received before and after adoptive infusion of CAR-NK 
cells, exact conclusions regarding the efficacy cannot be 
drawn. Nkarta, a clinical-stage biotechnology company, 
announced positive preliminary results of NKX101 and 
NKX019 in Apr 2022. NKX101, engineered to target 
NKG2D ligands on cancer cells, showed striking early 
single-agent activity and no dose-limiting toxicities in 

R/R AML or myelodysplastic syndromes (MDS) patient 
populations [NCT04623944]. NKX019 is another leader 
CAR product engineered to target B-cell antigen CD19. 
Evaluating NKX019 in B cell malignancies found 3 of 6 
patients treated with higher dose level of three-dose regi-
mens achieved 50% CR. It was also proved with satisfying 
tolerance, the most frequent higher-grade adverse events 
(AEs) were myelosuppression [NCT05020678]. Although 
therapeutic potential and clinical outcomes may materi-
ally change as patient enrollment continues, progression 
of these candidates is worthy expecting. Details of other 
current clinical trials about CAR-NK cell therapy in 
hematologic tumors are concluded in Table 1.

Further researches are still needed to conquer existing 
barriers of CAR-NK cell therapy: I) choose more suitable 
CAR structures, optimize the distance between epitopes 
and NK cell surface to enhance their effect [131, 132]. 
II) seek efficient gene transfer approaches. Traditional 
method for T cells by viral transfection resulted transgene 
expression of NK cells in low levels and damped their sur-
vival [119, 132]. A variety of small molecular compounds 
have been employed to reduce the repulsion of NK cells 
to foreign viral particles via charging cells or colocaliz-
ing viruses and cells in close proximity [120, 133]. Novel 
non-viral methods such as electroporation have been also 
proved to increase transfection efficiency [119]. III) exog-
enous cytokines are indispensable for survival and prolif-
eration of infused NK cells, while these cytokines cause 
undesirable AEs like cross stimulating other subpopula-
tion of immunocytes consisting regulatory T cells, which 
lead immunosuppressive environment for NK cells [134]. 
Pharmacological interventions, designed CARs targeting 
NKG2DL-expressing MDSCs and strategies to disrupt 
TGF-β signaling show the potential to preserve NK cell 
therapy efficacy [135, 136].

NK cell‑based immune checkpoint blockade
Immune checkpoint receptors anchored on cell sur-
face could mediate the delivery of either inhibitory or 
activating signals, the balance of which decides if NK 
cells remain in a quiescent state or kill target cells [40, 
137]. Targeting these immune checkpoint receptors has 
exploited a prospective therapeutic strategy for hema-
tologic tumors. ICB serves the role of reactivating anti-
tumor immunoreaction through blocking inhibitory 
molecules on the surfaces of tumor-infiltrating lympho-
cytes [138]. Marketing approved and well-studied ICBs 
of NK cells in recent years were concluded in Table 2.

Targeting PD-1 and PD-L1 mAbs are one of the first 
research hotspots entering people’s vision, which have 
been observed to treat both hematologic and solid 
tumors [139, 140]. Genetic analyses identified that RS 
cells of Hodgkin Lymphoma (HL) exhibited frequent 

https://beta.clinicaltrials.gov
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Table 2 Immune-checkpoint blockade of NK cells in hematologic  malignancies[1]

Targeting 
Checkpoint 
Receptor

ICB Product Clinical Trial Disease Phase Status Marketing Approved

PD-1 Pembrolizumab
(MK-3475)

NCT05514990
NCT05507541
NCT05508867
NCT05493618
NCT05404945
NCT05400876
NCT05355051
NCT05313243
NCT05221645
NCT05204160
NCT05191472
NCT05180097
NCT05179603[3]

MM
B lymphoma
HL
MM
HL
Lymphoma
HL
T lymphoma
DLBCL
MM
MM
HL
HL/DLBCL

I/II
II
III
I/II
II
I/II
II
II
II
II
II
II
II

Recruiting
Not yet recruiting
Recruiting
Not yet recruiting
Recruiting
Recruiting
Recruiting
Not yet recruiting
Recruiting
Recruiting
Recruiting
Recruiting
Active, not recruiting

Keytruda, for classical HL and several solid 
tumors. Initial U.S. Approval: Sep. 2014
Kisplyx. Initial EU. Approval: Aug. 2016
Keytruda. Initial EU. Approval: Jul. 2015
Keytruda, for leukemia, lymphoma and solid 
tumors. Initial China. Approval: Jul. 2018

Nivolumab NCT05385263
NCT05352828
NCT05310591
NCT05272384
NCT05255601
NCT05253495
NCT05211336
NCT05162976[3]

B lymphoma
HL
ALL
B lymphoma
HL/NHL
HL/NHL
B lymphoma
HL

II
I
I/II
II
I/II
II
I
I

Recruiting
Recruiting
Not yet recruiting
Recruiting
Recruiting
Recruiting
Suspended
Recruiting

Opdualag, a combination of Nivolumab 
and Relatlimab, was approved for classical HL. 
Initial U.S. Approval: Mar. 2022
Opdivo, nivolumab injection, for intravenous 
use for classical HL. Initial FDA Approval: May. 
2016
Opdivo for HL. Initial EU. Approval: Jun. 2015
Opdivo for leukemia and lymphoma. Initial 
China Approval: Aug. 2019

Toripalimab
(JS-001)

NCT05564806[3] NHL I Not yet recruiting Toripalimab Injection for hematologic malig-
nancies. Initial China Approval: Dec. 2018

Geptanolimab 
(GB226)

NCT03639181
NCT03502629
NCT03374007

B lymphoma
T lymphoma
Lymphoma

II
II
I

Recruiting
Recruiting
Recruiting

Not yet

Nofazinlimab
(CS1003)

NCT03809767 Lymphoma I Active, not recruiting Not yet

SCT-I10A NCT03821363 Lymphoma I Unknown status Not yet

Sym021 NCT03311412 Lymphoma I Completed Not yet

PD-L1 Durvalumab 
(MEDI4736)

NCT05388006
NCT04688151
NCT04462328[2]

CLL
PCNSL
PCNSL

II
I
I

Recruiting
Not yet recruiting
Recruiting

Imfinzi, durvalumab injection, for intravenous 
use for solid tumors. Initial U.S. Approval: May. 
2017
Imfinzi for non-small cell lung cancer. Initial 
U.S. Approval: Feb. 2018
Imfinzi for non-small cell lung cancer. Initial EU. 
Approval: Sep. 2018
Imfinzi for solid tumors and hematological 
malignancies. Initial China. Approval: Dec.  
2019

Avelumab NCT03905135
NCT04328844[2]

T lymphoma
NHL

I
I

Completed
Recruiting

Bavencio, avelumab injection, for intravenous 
use for solid tumors. Initial U.S. Approval: Mar. 
2017
Bavencio for neuroendocrine tumors. Initial EU. 
Approval: Sep. 2017
Not yet for hematologic malignancies

LAG-3 Relatlimab
(BMS-986016)

NCT05255601
NCT04913922
NCT04150965
NCT02061761

HL/NHL
AML
MM
Hematologic 
Neoplasms

I/II
II
I/II
I/II

Recruiting
Recruiting
Recruiting
Completed

Opdualag, a combination of Nivolumab 
and Relatlimab, was approved for metastatic 
melanoma. Initial U.S. Approval: Mar. 2022
Opdualag was approved for melanoma. Initial 
EU. Approval: Sep. 2022
Not yet for hematologic malignancies

Fianlimab
(REGN-3767)

NCT04566978 B lymphoma Early I Recruiting Not yet

Sym022 NCT03311412 Lymphoma I Completed Not yet
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amplification of 9p24.1, leading to overexpression of 
correlative gene products PD-L1 and PD-L2. The ampli-
fication also increased JAK/STAT pathway in turn by act-
ing on JAK2 locus and further drove PD-L1 expression 
[140]. PD-L1 overexpression of malignant cells lays the 
groundwork for strengthening the anti-tumor functions 
of NK cell via blocking PD-1/PD-L1. Pembrolizumab is 
a humanized IgG4 PD-1 mAb with high-affinity. Philippe 
Armand et al. reported Pembrolizumab treatment in 31 
HL patients, showing only 5 grade 3 drug-related AEs. 
CR rate was 16% (5/31) and partial response (PR) rate was 
48% (15/31), most responses sustained at least 24 weeks 
with a median follow-up of 17  months [NCT01953692] 
[141]. The results identified considerable therapeu-
tic outcome on account of blocking inhibitory immune 

checkpoints. Moreover, application of PD-1 block-
ades has broken new ground for advanced R/R tumors. 
Patients with advanced Sezary syndrome (SS) and myco-
sis fungoides (MF) suffer worse disease progress and poor 
OS. One phase II trial found 38% (9/24) ORR including 2 
CR and 7 PR among 24 enrolled patients with advanced 
SS or MF in Pembrolizumab treatment regime of 2 mg/kg 
every 3 weeks [142]. Pembrolizumab also delineated sat-
isfactory therapeutic effect in other hematologic malig-
nancies such as MM and lymphoma [143, 144].

As above mentioned, KIRs are generally expressed on NK 
cells to preclude normal cells from damaging. Early study 
found that KIR epitope incompatible transplants could 
achieve higher engraftment rates [145]. Lacking of interac-
tion between KIR-MHC I was concluded to trigger NK cell 

[1] Source https:// beta. clini caltr ials. gov [till Feb. 2023]. Only approvals from the United States (U.S.), European Union (EU.) and China were recorded in this table
[2] Only clinical trials in nearly three years were recorded in this table
[3] Only clinical trials in nearly one years were recorded in this table

ALL, acute  lymphocytic leukemia, AML, acute myeloid leukemia, BCMA, B cell maturation antigen, CAR , chimeric antigen receptor, CB-NK cells, cord blood derived 
NK cells, CD, cluster of differentiation, CLL, chronic lymphocytic leukemia, CML, chronic myeloid leukemia, CR, complete response, CTCL, cutaneous T cell lymphoma, 
DLBCL, diffuse large B cell lymphoma, EU., European Union, FDA, the United States Food and Drug Administration, HL, Hodgkin lymphoma, ICB, immune checkpoint 
blockade, IL, interleukin, KIRs, killer cell Ig-like receptors, LAG-3, lymphocyte-activation gene 3, MDS, myelodysplastic syndromes, MM, multiple myeloma, NHL,non-
Hodgkin lymphoma, NKG2A, natural killer group 2 member A, PCNSL, primary central nervous system Lymphoma, PD-1, programmed cell death 1, PD-L1, programmed 
cell death ligand 1, PTCL, peripheral T cell lymphoma, TIGIT, T cell Ig and ITIM domain, TIM-3, T cell immunoglobulin domain and mucin domain-3, U.S., the United 
States

Table 2 (continued)

Targeting 
Checkpoint 
Receptor

ICB Product Clinical Trial Disease Phase Status Marketing Approved

KIRs Lirilumab NCT02599649
NCT02481297
NCT02399917
NCT01687387
NCT01592370

MDS
Leukemia
Leukemia
AML
MM/NHL

II
II
II
II
I/II

Terminated
Completed
Terminated
Completed
Active, not recruiting

Not yet

IPH4102 NCT05321147
NCT03902184
NCT02593045

PTCL
T lymphoma
CTCL

I
II
I

Recruiting
Recruiting
Completed

Not yet

IPH2101 NCT01248455
NCT01222286
NCT01217203
NCT00999830
NCT00552396

MM
MM
MM
MM
MM

II
II
I
II
I

Terminated
Completed
Completed
Completed
Completed

Not yet

NKG2A Monalizumab NCT02921685
NCT02557516

Hematologic 
malignancies
CLL

I
I/II

Unknown status
Terminated

Not yet

TIM-3 Sabatolimab
(MBG-453)

NCT05367401
NCT05201066
NCT04878432
NCT04823624
NCT04812548
NCT04810611
NCT04623216
NCT04266301[2]

MDS/AML
MDS
MDS
MDS
MDS
MDS
AML
MDS/CML

I/II
II
II
II
II
I
I/II
III

Not yet recruiting
Not yet recruiting
Recruiting
Not yet recruiting
Active, not recruiting
Recruiting
Recruiting
Active, not recruiting

Not yet

Sym023 NCT03489343 Lymphoma I Completed Not yet

TIGIT Tiragolumab NCT05315713
NCT04045028

NHL
MM/NHL

I/II
I

Recruiting
Recruiting

Not yet

BMS-986207 NCT04150965 MM I/II Recruiting Not yet

https://beta.clinicaltrials.gov
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activity, suggesting that specifically blocking the recogni-
tion and binding between them could rejuvenate NK cells 
[146]. Relevant clinical trials are booming, early safety eval-
uation test of anti-KIRs ICBs draw desirable results but the 
efficacy tests were inconsistent [147–149]. And addition of 
KIR blockade improved meaninglessly in the efficacy over 
single agent PD-1 blockade in some clinical studies [150]. 
Heterogeneous results may approximately due to that study 
populations were too small to overcome the biological het-
erogeneity within and across disease types. Thus, additional 
benefits accruing from the combination regimens still 
require longer follow-up time to assess.

Application of ICBs and the resultant breakthrough 
strategy of taking advantage of immune system for tumor 
therapy have displayed profound superiorities. However, 
there are still varieties of challenges need to be addressed. 
The major barrier is drug-resistant, either lacking of 
initial response to treatment or with initial promising 
response but developed resistance during therapeutic 
stage [151]. Published studies have revealed the minimal 
expression of PD-1 on NK cells in several tumors, which 
may lead to primary drug-resistant to ICBs [152]. Stra-
tegic approaches such as the combination of immune 
checkpoint treatments with other therapies including 
angiogenesis inhibitors and oncolytic viruses have been 
demonstrated to improve the responses to ICBs [153]. A 
complex of checks and balances were observed in human 
immune system that afford response or preserve toler-
ance. ICBs have the capacity for this homeostatic bal-
ance perturbation, causing immune related AEs (irAEs). 
IrAEs refer to inflammatory adverse events due to non-
specific stimulation of immune system by ICBs, gener-
ally involving endocrine glands, skin, gastrointestinal 
tract [154]. IrAEs have been described in many clini-
cal trials including nausea, vomiting, diarrhea, bilirubin 
increase, rash et al. [NCT01822509] [155]. Besides acute 
clinical toxicities of these agents, chronic irAEs (usually 
refer to > 12 weeks sustaining after ICBs discontinuation) 
are more prevalent [156]. Long-term potential chronic 
toxicity may be ignored because clinical studies tend to 
pay attention to the most frequent treatment-associated 
adverse effects. A generally limited life expectancy for 
patients with metastatic tumors constrains long follow-
up time to exhibit chronic irAEs. Endocrinopathies and 
rheumatological toxicities has become the most frequent 
chronic irAEs, and pneumonitis, neuropathy, dermatitis 
et al. are relatively low-prevalence events [157]. The onset 
of irAEs varies widely and is hard to predict. Terminating 
ICBs therapy and beginning high-dose corticosteroids 
treatment are most commonly used for irAEs control. 
But there still remains drawbacks including irAEs-over-
lapped drug toxicities, serious infections, and the risk of 
suppressing tumor immunosurveillance [158]. Deeper 

exploration of intrinsic and extrinsic factors that impact 
ICB response and standard managements built on these 
hallmarks are intensively needed.

Cytokine‑induced NK cell therapy
Cytokines appear to be critical in many aspects including 
regulating innate or adaptive immunity, cytogenesis, cell 
growth, as well as damaged tissue repairment [159]. Ear-
lier results have shown cytokines such as IL-2 could pro-
mote the regression of solid tumor models established in 
animals [160, 161], providing novel insights for augment-
ing anti-tumor effects of immunocytes containing NK 
cell by cytokines. Table 3 showed recent applications of 
cytokine-induced NK cells for treatment of hematologi-
cal malignancies.

Interleukins
Several interleukin immunotherapies have been permitted 
by the United States Food and Drug Administration (FDA) 
such as IL-2 for the treatment of metastatic neoplasms. 
IL-2 used directly for improving anti-tumor response of 
NK cell can trace back to 1985, finding that administrat-
ing recombinant IL-2 assisted generation of activated lym-
phokine killer cells [162]. However, there are contradictions 
between safety and efficacy of IL-2. Low dose can stimulate 
NK cells expansion, but limited anti-tumor efficacy [163], 
while high doses enough for efficient anti-tumor response 
may lead to severe side effects like capillary leak syndrome 
[164, 165]. IL-2 also assisted to generate and maintain Treg 
cells to inhibit NK cells via TGF-β and down-regulating 
surface NKG2D receptors of NK cell [166, 167]. IL-15 
was subsequently found to play a critical role in NK cell 
stimulation with no Treg-mediated immunosuppression. 
ALT-803 was a super-agonist complex of IL-15, which was 
evaluated in hematologic malignancies patients relapsed 
over 2 months, showing well tolerance and remarkable effi-
cacy [168]. IL‐21, with the function of promoting the dif-
ferentiation and proliferation, increasing IFN-γ production 
and cytotoxicity of NK cells, is also in exploring process of 
NK cell-based therapy [169]. A phase I study enrolled 21 
patients with B cell malignancies was performed to evalu-
ate the safety, maximum-tolerated dose (MTD) and effi-
cacy of rIL-21 combined with Rituximab, finding toxicities 
including flu-like symptoms, fatigue, and headache. The 
MTD was 100 μg/kg and 8 of 19 evaluable patients showed 
clinical responses after Rituximab-based treatment [170]. 
This preliminarily confirmed the value of interleukins-
based combination treatment regimen.

Interferon
Interferons (IFN) are one of the first cytokines to be dis-
covered and have been used therapeutically for decades. 
The recombinant human IFNs has been approved for 
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treating several tumors such as CML [171], and gradu-
ally appeared to be a vital component of combination 
anti-tumor treatment. Type I IFNs could activate IFN-γ 
generated of NK cell when combined with IL-12 [172]. 
Moreover, IFN has proved to be a potential candidate 
for boosting efficacy of tyrosine kinase inhibitor (TKI) 
treatment. Mechanism can be concluded that application 
of TKIs inhibited the degradation of IFN-α receptor on 
tumor cells, thus increased induction of pro-apoptotic 
genes and proteins [173, 174]. Combination therapy 
of IFN-α and Dasatinib in 40 newly diagnosed CML 
patients demonstrated a steep increase in acceptable tol-
erability and response rates compared to using Dasatinib 
only [174]. Engineered interferons in combined treat-
ment regimen have shown promising therapeutic effect 
in leukemia and lymphoma [174–176], supporting fur-
ther exploration for potential therapeutic value of IFN.

NK cell engagers
Bi- and tri-specific antibodies are designed to build effi-
cient immunological synapses between immune cells 
and malignant cells, specifically recruiting immune cells 
and forming more densely interconnected to tumor 
cells. Bispecific antibodies targeting CD3 and specific 
tumor epitopes to recruit T cells developed rapidly over 
the past decades. Blinatumomab is one FDA approved 
CD3/CD19 bispecific T cell engager (BiTE) in Dec. 2014 
for adult leukemia. Both CAR T cell therapy and BiTE 
applications are limited by severe toxicities [177], leading 
partial study focus more and more turn to NK cell engag-
ers. BiKEs or TrikEs are formed by single variable heavy 
 (VH) and light chain  (VL) of certain antibody, of which a 
flexible polypeptide linker joined to keep from dissoci-
ating [178]. Structures of BiKEs or TrikEs are visualized 
in Fig. 3. Current NK cell engagers are mainly designed 
with CD16 and tumor epitopes like CD33 simultane-
ously, which have several additional advantages com-
pared to mAbs. They are non-immunogenic so that could 
alleviate many complications of their CAR counterparts 
[179]. Size of NK cell engagers are small, mainly among 
50–80  kDa, which allows efficient tumor penetration 
and increased biodistribution of the agents. Small size of 
these fragments allows rapidly elimination through kid-
neys, contributing to maintain appropriate serum con-
centration levels and limit associated toxicities [180].

BiKE
The engagers targeting CD16 have been chosen in the 
first generation to trigger NK cell cytotoxicity [181], 
cooperated with the recognition of different epitopes of 
tumor cell surface including CD33 or CD33/CD123 on 
AML cells [182, 183], CD33 on MDS cells [184], CD30 
on HL cells [185, 186], CD19/CD20 or HLA-II on B cell 

lymphomas cells [187, 188]. Dual targeting molecules 
stand out to recruit NK cells to malignant cells with 
superior specificity and stronger lysis than traditional 
mono targeting agents, which extremely attracts further 
clinical development.

Early back to 1997, F Hartmann et  al. had reported a 
phase I/II clinical research for 15 refractory HL patients 
with HRS-3/A9, a CD16/CD30 BiKE, finding no explicit 
dose-side effect till the highest dose administered with 
64  mg/m2 [185]. AFM13 is a tetravalent chimeric anti-
body structure that designed to specifically recruit NK 
cells by combining to CD16A with two binding sites for 
each epitope but without Fc domain. A dose-escalation 
trial of AFM13 with administration doses from 0.01 to 
7  mg per kilogram of body weight only found mild to 
medium AEs like headache, nausea, nasopharyngitis, 
fever, chills and infusion reaction [NCT01221571] [189]. 
Addition of AFM13 to Pembrolizumab regime in R/R HL 
patients showed generally well tolerance, and 88% (21/24) 
ORR at the highest treatment dose [NCT02665650] 
[190]. Latest research demonstrated that UCB-derived 
NK cells loaded with AFM13 opening up promising pros-
pects for treatment of RR  CD30+ lymphoma patients 
[191]. Clinical trials about AFM13 in patients with other 
hematologic tumors like T cell lymphoma are in progress 
[NCT03192202, NCT04074746, NCT04101331].

The platform of BiKE designing is flexible, which ena-
bles varieties of alterative components to be assembled. 
Adding components to BiKE such as scFvs against KIRs, 
TIGIT, NKG2A and PD-1 receptors provides ability to 
circumvent inhibitory immune checkpoints therefore 
drives NK cell associated anti-tumor reactions. Addi-
tion of a scFv fragment of TGF-β blocking has also been 
proved to decrease negative signals in TME [192]. The 
function of engineered bi-specific antibody combining an 
anti-CS1 (tumor-specific antigen on MM cells) scFv and 
an anti-NKG2D scFv was tested in a MM mouse model. 
The result revealed intensive immune synapse formed 
between  NKG2D+ effector cells and  CS1+ MM cells, 
promoting NK cells to improve clearance of tumor cells 
[193].

TriKE
Cytokines with activating role such as IL-15, have been 
cooperated into NK cell engagers to further increase 
cytotoxicity. When compared with CD16 and CD33 
BiKE, addition of IL-15 crosslinker induced superior 
cytotoxicity, degranulation, and cytokines release of 
NK cells. It was confirmed that in the immunodeficient 
mouse model where CD16/IL-15/CD33 TriKE induced 
maintain and survival of NK cells and exhibited superior 
anti-tumor effect [194]. C-type lectin domain family 12 
member A (CLEC12A) is a specific epitope of AML cells. 
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CD16/IL-15/CLEC12A TriKE was proved to specifically 
boost proliferation and enhance stimulation of NK cells 
in  vitro experiments. In addition, off-target toxicities 
were minimized due to absence of CLEC12A on nor-
mal cells [195]. Laurent Gauthier et.al reported the gen-
eration of tri-functional engagers based on NKp46 and 
CD16, two activating receptors on NK cell surface, and 
a tumor-specific surface epitope. This TriKE was more 
potent in vitro and had similar pharmacokinetics to full 
IgG antibodies in  vivo. It had no off-target effect and 
effectively inhibited tumor development in the mouse 
model [196]. They further explored the efficacy of a 
TriKE targeting NKp46, CD16a on NK cells and CD123 
on AML blasts, finding that it had prolonged anti-tumor 
pharmacodynamic effects and very low inflammatory 
cytokine induction [197].

NK cell engagers have shown highly efficient anti-
tumor functions in  vitro and preclinical experiments. It 
has also provided profound preliminary results that the 
engagers are safe due to their low possibility of non-spe-
cific cytokine release, and their activation only occurs 
with the presence of tumor cells [198]. However, chal-
lenges still remain in this field. Chronic stimulation of 
NK engager therapies may cause NK cell exhaustion, 
plausible injection protocols need attempt to limit con-
stant NK cell activation [198]. Antigen-low or -negative 
malignant cells appear to emerge after killer engagers 
therapy which could contribute to tumor escape and dis-
ease relapse. Thus, additional approaches are required 
containing combining different engagers and increasing 
response at lower antigen levels [195]. BiKEs and TriKEs 
have significant potential for clinical applications with 
these improved functional characteristics, further explo-
rations are still needed to endow NK cells with superior 
anti-tumor activities.

Memory‑like NK (ML NK) cells
It was previously believed innate immunocytes consist-
ing NK cells lack antigen-specificity and immunologic 
memory because their receptor genes cannot undergo 
somatic rearrangements. However, “ML NK cells” were 
subsequently observed in mice, NK cells possessing 
expression of Ly49H receptors had ability to drive the 
expansion during infectious phase. Expanded effector 
NK cells then established a pool of long-lived antigen-
specific cells with a unique transcriptional signature [199, 
200]. NK cells pre-activated through cytokines and then 
adoptive transferred into vivo showed enhanced prolifer-
ation and exhibited restimulation responses to cytokines 
[201]. Effector function and persistence of syngeneic IL-
preactivated NK cells were observed, which also mark-
edly reduced the growth of established mouse tumors 
[202]. A phase I study observed 5 clinical responses of 9 

evaluable AML patients adoptively transferred ML NK 
cells, demonstrating robust responses of these immuno-
cytes to leukemia cells [203]. An innovative proposal to 
enhance tumor-specific recognition of ML NK cells by 
modifying with CARs was come up to increase IFN-γ 
generation, degranulation and cytotoxicity of NK cells. 
For instance, ML NK cells derived from lymphoma 
patients engineered with anti-CD19 CAR reduced lym-
phoma burden and thus obtained survival improvement 
in human xenograft models [204]. Han Dong et al. found 
that arming ML NK cells with a neoepitope-specific CAR 
significantly enhanced anti-tumor response and avoided 
off-target toxicity in AML, suggesting that ML NK cells 
represented a promising cellular platform for modi-
fied adoptive cell therapy [129]. CAR-ML NK cells offer 
apparent advantages including inducing response to NK 
cell-resistant tumor targets through an obvious syner-
gistic cooperation of CAR-mediated effects and “mem-
ory”, representing a powerful tumor immunotherapy 
approach.

Conclusions
The roles of NK cell in hematologic malignancies have 
been revealed in emerging studies, providing scien-
tific basis for novel approaches of immunotherapy. 
Approaches targeting to combat immunosuppression of 
NK cells in TME including modifying NK cell with CAR 
structures or specific engagers, activating NK cell via 
cytokines or ICBs, inducing ML NK cells, are in differ-
ent phases of clinical trials and some have been permit-
ted to clinical use already. These immunotherapies have 
performed encouraging results in safety, persistence and 
efficiency, especially for patients with tumor relapse and 
metastasis.

Nevertheless, poor or even no response to these inno-
vative therapies is still remained in a relevant percentage 
of patients due to dropped expressions of tumor antigen 
after treatment or complicated immunosuppressive com-
ponents in TME. Additional explorations are constantly 
needed to strengthen efficacy of immune therapy based 
on NK cells. For instance, choose purified, active and 
low-immunogenic NK cell sources for adoptive infusion 
to endow superior anti-tumor functions and circum-
vent detrimental AEs. When designing CAR or engager 
structure on diverse platforms, it is essential to balance 
details of different components to ensure high specific-
ity and sensitivity. Moreover, efficacy of combination 
regimen based on NK cells and other wide-used agents 
expects for evaluation in more studies. In conclusion, 
immunotherapy targeting NK cell has become a potential 
armamentarium and will continually add powerful tools 
to improve the prognosis of intricate patients with hema-
tologic malignancies in the future.
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