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Introduction
Leukemias are lethal blood malignancies that are charac-
terized by abnormal clonal proliferation of hematopoietic 
cells [1]. Due to the malignant transformation of hemato-
poietic stem/progenitor cells induced by mutation, their 
normal hematopoietic function is damaged, resulting in 
uncontrolled proliferation, dysregulated differentiation, 
and impaired apoptosis.

Leukemias are clinically subcategorized according 
to morphology, immunophenotype, cytogenetic and 
molecular features [1], including acute myeloid leukemia 
(AML), acute lymphoblastic leukemia (ALL), chronic 
myeloid leukemia (CML) and chronic lymphoblastic 
leukemia (CLL) (Fig. 1a). According to the latest Global 
Burden of Disease (GBD) study in 2019 [2], AML had 
the highest death rate among the main types of leukemia 
while ALL showed the highest increase in occurrence 
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Abstract
Leukemias are refractory hematological malignancies, characterized by marked intrinsic heterogeneity which poses 
significant obstacles to effective treatment. However, traditional bulk sequencing techniques have not been able to 
effectively unravel the heterogeneity among individual tumor cells. With the emergence of single-cell sequencing 
technology, it has bestowed upon us an unprecedented resolution to comprehend the mechanisms underlying 
leukemogenesis and drug resistance across various levels, including the genome, epigenome, transcriptome 
and proteome. Here, we provide an overview of the currently prevalent single-cell sequencing technologies 
and a detailed summary of single-cell studies conducted on leukemia, with a specific focus on four key aspects: 
(1) leukemia’s clonal architecture, (2) frameworks to determine leukemia subtypes, (3) tumor microenvironment 
(TME) and (4) the drug-resistant mechanisms of leukemia. This review provides a comprehensive summary of 
current single-cell studies on leukemia and highlights the markers and mechanisms that show promising clinical 
implications for the diagnosis and treatment of leukemia.
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(Fig.  1b). Also, AML is the most severe leukemia type 
and prevails most in adults [3], while ALL occurs most 
frequently in children [4]. Over the last decade, there 
has been an unparalleled expansion of treatment options 
for leukemia, including novel chemotherapy regimens, 
monoclonal antibodies, small molecule inhibitors, and 
Chimeric antigen receptor T cell (CAR-T) therapy [5–8]. 
This was accompanied by an ever-growing comprehen-
sion of leukemia pathogenesis. However, the outcomes 
for AML and adult ALL remain unsatisfactory, and 
relapse of leukemias poses a significant challenge [6, 9]. 
This is partly due to the immense heterogeneity in dif-
ferent subtypes of leukemia, making it challenging to 
develop targeting drugs specifically. To gain a better 
understanding of the pathogenic mechanisms involved, 
comprehensive analyses of the entire genome have been 
utilized to identify heterogeneous molecular traits. How-
ever, the drawback of the bulk analysis approach is that 
while it offers an overall profile, it may mask the traits 
displayed by a specific subset of cells.

Recently, the transformative rise of single-cell sequenc-
ing technology offered an unprecedently high resolu-
tion for interrogation on a single cell. Compared to bulk 
sequencing, single-cell sequencing provides an exclusive 

advantage in identifying cell-specific information. In 
addition to profiling single cells, it also has the innate 
ability to decipher cell-cell interaction networks in intri-
cate cell systems [10] and can reconstruct the phyloge-
netic trajectory to better organize the clonal architecture 
in tumors [11]. For example, by inferring ligand-receptor 
activity specific to two cell types, single-cell transcrip-
tome profiling revealed distinct communication sta-
tuses in multiple tumor niches that are masked by bulk 
methods [12–14]. Also, in terms of profiling the intra-
tumor identity in subclones, traditional bulk methods 
assume mutations arise from the same subclone if they 
have similar mutant allele frequencies [15], which poses 
an immense drawback in that it is difficult to distinguish 
subclones if they have similar mutant allele frequencies. 
However, single-cell sequencing overcomes this issue by 
directly looking into the mutational landscape in single 
cells and it has seen a large application of incorporating 
single-cell genomics to group the clonal architecture in 
different cancers [16].

Single-cell technology is extremely helpful in char-
acterizing genetic and epigenetic regulation, transcrip-
tional, translational, and post-translational heterogeneity 
within a cell, and allows the integration of multi-omics 

Fig. 1 Summary of major leukemia subtypes. (a) Summary of the most prevailing oncogenetic mutation for the four main subtypes of leukemia. (b) Visu-
alization of the global incidence and death of different leukemia types in 2019. Data was retrieved from the 2019 Global Burden of Disease (GBD) study [2]
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level interaction networks, opening the new world 
for leukemia characterization [17–20]. It was widely 
acknowledged that leukemia is a highly heterogeneous 
malignancy [1], exhibiting significant differences in (1) 
the mutations and regulatory elements involved in tumor 
evolution, (2) the surface biomarkers used to subtype leu-
kemia and predict prognosis, (3) the tumor microenvi-
ronment that may underlie its pathogenesis and relapse, 
and (4) the mechanisms that confer resistance to drugs 
and relapse. Single-cell studies have been extensively con-
ducted to determine the clonal architecture, subtyping 
leukemia, characterizing the tumor microenvironment, 
and revealing drug response and resistance. Prospects of 
these single-cell studies have facilitated the precise diag-
nosis, innovation of targeted therapy, and prognosis pre-
diction in leukemia. Here, we reviewed the application 
of single-cell sequencing technology in leukemia, with 
a focus on the advances in AML, CML, ALL, and CLL. 
We mainly summarized these studies into (1) disclosure 
of clonal evolution, (2) determining leukemia subtypes, 
(3) characterizing the tumor microenvironment, and (4) 
revealing drug-resistant mechanisms.

Single-cell omics
Single-cell sequencing technology has rolled its wheel 
with increasingly rapid speed since 2009, when Tang et 
al. first described single-cell RNA sequencing (scRNA-
seq [21]). Since then, multi-layered single-cell dissection 
techniques have emerged to characterize the cells thor-
oughly (Fig. 2). At the genomic level, methodologies such 
as single-cell DNA sequencing (scDNA-seq [22]) and 
single-cell whole exome sequencing (scWGS-seq [23]) 
enable the exhaustive examination of mutations and copy 
number alterations within single cells. Deeper into the 
regulatory complexities, methodologies were developed 
for the investigation of single-cell epigenetic landscapes. 
For example, single-cell Hi-C (scHi-C [24]) could provide 
insights into the higher-order chromosomal structure 
and elucidate the spatial organization of the genome, sin-
gle-cell bisulfite sequencing (scBS-seq, or scMethyl-seq 
[25]) focuses on the detecting methylation modification 
of DNA and thus unravel the methylation heterogeneity 
in single-cells. Besides these, single-cell Assay for Trans-
posase-Accessible Chromatin Sequencing (scATAC-seq 
[26]) and single-cell Chromatin Immunoprecipitation 
Sequencing (scChIP-seq [27]) further intricacies of chro-
matin biology by delineating profiles of open chromatin 
regions and protein-DNA interactions, respectively.

While the regulatory landscape is explored at the 
genomic and epigenomic levels, single-cell RNA 
sequencing (scRNA-seq) continues to occupy a central 
role in advancing single-cell studies, and has gained the 
largest application. Its widespread adoption is attributed 
to a well-established experimental and computational 

pipeline and its unparalleled ability to link expressional 
heterogeneity across diverse cell populations. Simul-
taneously, the advent of single-cell Mass Spectrom-
etry (scMass Spectrometry [28, 29]) has brought about 
another transformative dimension by allowing the direct 
association of molecular phenotype with protein expres-
sion at the single-cell level. Most recently, there have 
been notable advancements in characterizing the transla-
tome through single-cell Ribosome sequencing (scRibo-
seq [30]). By profiling the state of translational machines, 
and ribosomes, the technology is promising in adding an 
additional layer of information for exploring cell hetero-
geneity in terms of translational dynamics. These single-
cell technologies are also summarized in Fig. 2.

As the diversity of single-cell technology proliferated, 
the simultaneous conduction of multiple omics at the sin-
gle-cell level (single-cell multiomics) came to the front, 
enabling a more precise definition of cellular character-
ization and comprehensive exploration of transcriptional 
regulatory mechanisms [18]. For example, single-nucleus 
chromatin accessibility and mRNA expression sequenc-
ing (SNARE-seq) is a large-scale profiling method that 
simultaneously measures single-cell transcriptome with 
its chromatin-accessible region in one cell, enabling the 
elucidation of the chromatin accessibility landscape and 
its impact on transcription [31]. Single-cell triple omics 
sequencing technique (scTrio-seq) realized the tri-profil-
ing of copy number variation (CNV), DNA methylome, 
and transcriptome in the same single cell, thus making 
the links and regulatory networks among these vari-
ous layers [32]. The cellular indexing of transcriptomes 
and epitopes (CITE-seq [33]), utilizing oligonucleotide-
labeled antibodies to link the surface protein with the cel-
lular transcriptome, has recently gained large application 
in leukemia [34–38] with its ability to provide additional 
information on surface hallmarks of the cell and enabling 
the antigen-specific dissection of cancer.

Single-cell analyses further reveal clonal 
evolutionary patterns and driver events in 
leukemia
Clonal evolution is a landmark theory that attributes can-
cer pathogenesis to an evolutionary process driven by 
mutations and the selective advantages of subclones [39]. 
The identification of the pattern in cancer clonal evolu-
tion and the driver events that conferred selective advan-
tages in tumor progression is of clinical importance. 
Applying single-cell sequencing techniques can dissect 
tumors at the cellular level, further revealing the patho-
genesis and clonal evolution processes with ultra-high 
resolution. Here, we summarized the recent single-cell 
studies revealing leukemia clonal structure, sequential 
mutation gain and driver events (Fig. 3; Table 1).
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Revealing dynamic leukemia phylogeny characteristics
Back in 2015, a study using a self-established single-cell 
genotyping method revealed that the underlying clonal 
structure and evolutionary trajectory in AML may be 
more complex than the bulk data suggested [40]. The 
power of single-cell sequencing technology in clonal evo-
lution study was strongly depicted in 2019 when Chen et 

al. suggested the non-linear and parallel clonal evolution-
ary model of pre-myelodysplastic syndromes (pre-MDS) 
stem cells to MDS blast or to AML by targeted sequenc-
ing [41] (Fig. 3a). It revealed that AML progression was 
dominated by small stem cell subpopulations that are 
undetectable in MDS blast but expand dramatically in 
size during disease progression [41]. This is in parallel 

Fig. 2 Summary of single-cell technologies. Single-cell technologies are able to dissect multi-layered cell information lining the central dogma, rang-
ing from genomic, and epigenomic, to transcriptomic, proteomics, and even tranlatomics. scDNA-seq allowed variant detection, and phylogeny con-
struction, whereas scRNA-seq unravels heterogeneity based on expression dynamics. scHi-C, sc-ATAC-seq and scChIP-seq, and scMethyl-seq separately 
disclosed cell-specific epigenetic regulation by layers of 3D chromosomal conformation, chromosomal accessibility, DNA-binding protein and histone 
modifications, and DNA methylation. scMass-spectrometry allowed the dissection of the functional unit, linking direct phenotype, and scRibo-seq al-
lowed translational profiling. Multi-omics approaches like CITE-seq allowed simultaneous profiling of transcriptomics and epitope information
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with the previously described linear model that MDS 
is often considered a pre-leukemia state and was trans-
formed to AML by serial mutation gain [42].

In 2020, two studies more comprehensively revealed 
the clonal evolution trajectories in leukemia both by 
applying scDNA-seq with cell surface protein immu-
notyping [15, 43]. By analyzing 146 samples from 123 
patients with clonal hematopoiesis (CH), myeloprolif-
erative neoplasms (MPN), or AML, Miles et al. showed 
the clonal architecture and the evolutionary pattern in 
myeloid malignancies [15]. It has revealed that AML is 
primarily controlled by a small number of clones, which 
often contain co-occurring mutations in epigenetic regu-
lators. Additionally, the clonal size, diversity, and evolu-
tionary trajectory exhibit a growing complexity as the 
disease progresses from CH or MPN to AML, displaying 
the traits of co-mutation and differential clonal domi-
nance [15]. Another study by Morita et al. focused specif-
ically on the clonal evolution in AML [43]. It identified 
the co-occurrence and mutual exclusivity among driver 
genes. Mutual exclusivity of function-redundant muta-
tions is often observed in different subclones of AML. 
Using single-cell data, the authors reconstructed the 
phylogenetic trees, which found that about half of AML 
patients showed typical linear clonal patterns whereas 
another half showed a branched pattern with evolution-
ary convergence [43] (Fig.  3b). The convergent pattern 

of evolution is not rare in leukemia as another study in 
CLL also identified the existence of cells with analogous 
phenotypes despite substantial genetic heterogeneity 
[44]. Collectively, these studies highlighted the ability of 
single-cell sequencing to reconstruct the clonal archi-
tecture and evolutionary phylogeny, distinguishing the 
evolutionary model of linear or branched, convergent or 
divergent patterns in leukemia.

Revealing the sequential mutational gain of leukemia
Genetic mutation provides cells with the potential 
to be positively selected and may ultimately lead to 
clonal dominance [39]. Malignant development may be 
induced if cells acquire substantial pro-survival muta-
tions that confer unlimited growth and expansion [45]. 
Thus, understanding the acquisition and accumulation 
of mutations has been vital in depicting the phylogeny of 
leukemia. Emerging single-cell studies have enabled us 
to gain greater insights into the sequential acquisition of 
mutations, leading to better detection of disease progres-
sion and prognosis.

The study performed by Gawad et al. provided a 
remarkable insight into the initiation and development 
of ALL [46]. With targeted scDNA-seq, they discov-
ered that large deletions and most structural variants 
typically occur early in ALL development, followed by 
single nucleotide variants (SNV) acquisition. De Bie et 

Fig. 3 Single-cell sequencing reveals differential clonal evolutionary and mutational patterns in leukemia. (a) Non-linear, parallel clonal evolution was 
found from clonal hematopoiesis to MDS or AML [41]. (b) The typical AML leukemia evolutionary pattern is summarized. Mutual exclusive driver muta-
tions are frequently observed in different subclones, where subsequent branched or linear clonal architecture was found [43]. (c) The sequence of muta-
tion gain was also depicted by single-cell studies in AML and ALL, where DITA (DNMT3A, TET2, ASXL1 and/or IDH1 or IDH2) is the most prevalent initiating 
mutation in AML [15], and linage-related mutation often occurs earlier than kinase-activating mutations in ALL [49]
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Leu-
kemia 
Type

Major Methods Key Findings Clinical Relevance Ref-
er-
enc-
es

MDS, 
AML

Single-cell targeted DNA 
sequencing

Pre-MDS stem cells and MDS stem cells contributed to MDS 
transformation to AML in a nonlinear and parallel clonal evolu-
tionary pattern

Identified that crucial role of small 
and diverse aberrant stem cell 
subpopulations may confer leukemic 
transformation

[41]

CH, 
MPN, 
AML

scDNA-seq; Simultane-
ous single-cell mu-
tational profiling and 
immunophenotyping.

Increased clonal complexity was observed from CH to MPN 
to AML. Mutations in signaling genes often occur in distinct 
subclones more than once. Noted that epigenetic modifiers 
such as DTAI (DNMT3A, TET2, ASXL1, and/or IDH1 or IDH2) are 
the most prevalent AML-initiating mutation and the combina-
tion of them may confer clonal dominance.

Identified multiple important char-
acteristics in the clonal architecture 
along the progression of AML.

[15]

AML scDNA-seq; Simultane-
ous single-cell mu-
tational profiling and 
immunophenotyping.

Driver mutations of AML are often in a co-occurring and mu-
tually exclusive pattern. Linear and branching pattern of AML 
phylogeny was observed, and some of the branching patterns 
showed convergence.

Summarized the mutational and 
phylogenetic features in AML that 
may underly risk stratification and 
prognosis determination.

[43]

CLL scRNA-seq; single-cell 
targeted mutation analysis 
in DNA and RNA

LCP1 and WNK1 were identified as novel CLL drivers. Conver-
gent expression profile was detected in CLL despite genetic 
differences.

Identified novel driver mutation for 
therapeutic targeting CLL. Highlighted 
that the targeted scRNA mutation 
analysis may sensitively determine the 
mutation profile with transcriptomics.

[44]

ALL Targeted scDNA-seq of 
SNVs, deletions and lgH

Structural variants mostly occur before SNVs in ALL. KRAS 
occurs in late ALL development and is not enough to confer 
clonal dominance.

Ordered genetic events of ALL, which 
is prognostically informative. Charac-
terized the function of KRAS mutation 
in ALL.

[46]

T-ALL Targeted scDNA-seq; 
scRNA-seq

Mutation gain was ordered in T-ALL. Inactivation of CDKN2A/B 
and T-cell receptor deletions and fusion genes are intermedi-
ate events and NOTCH1 mutation is the late event.

Emphasized the importance of target-
ing NOTCH signaling in T-ALL.

[47]

T-ALL Targeted scDNA-seq NOTCH1 mutation can also be detected at diagnosis of the 
T-ALL although typically occurs later. The presence of small 
clones at diagnosis can evolve into major clones in later 
stages.

Revealed the heterogeneity of 
NOTCH1 mutation in different sub-
populations and provided evidence 
for differentially targeting the NOTCH 
pathway.

[48]

ALL scDNA-seq; 
Simultaneous targeted 
single-cell DNA sequenc-
ing and cell-surface protein 
expression analysis

Lineage related mutations (ETV6, IKZF1, and PAX5) occurs 
earlier than kinase activating mutations (JAK1, JAK2, KRAS, 
NRAS, FLT3)

Highlighted and summarized the 
sequential gain of the genetic event 
in ALL, which may be prognostically 
informative.

[49]

MPN, 
AML

scRNA-seq Increased expression of DUSP6 underlies JAKi resistance 
disease transformation from MPN to sAML. DUSP6 functions 
through the DUSP6-RSK1-S6 axis. Pharmacological inhibition 
of DUSP6 eliminated the resistance to JAKi.

Highlighted DUSP6-RSK1 is a vulner-
able, therapeutically targetable path-
way in myeloid malignancies.

[51]

MPN, 
AML

TARGET-seq The effect of chronic inflammation in TP53-mutation-driven 
clonal evolution in AML was characterized. Chronic inflamma-
tion suppressed TP53 WT HSCs while enhancing the fitness 
advantage of TP53-mutant cells and promoting genetic 
evolution.

First noted the importance of chronic 
inflammation in TP53-mutant AML 
progression. Facilitated the risk-stratifi-
cation, early detection and treatment 
strategies for TP53-mutant leukemia.

[52]

CLL scRNA-seq Putative driver SF3B1 mutation was found to dysregulate 
multiple cellular pathways including DNA damage response, 
telomere maintenance, and Notch signaling (mediated by 
KLF8 upregulation, increased TERC and TERT expression, or 
altered splicing of DVL2 transcript, respectively).

Characterized how SF3B1 mutation 
functions in CLL progression and of-
fers selective advantages. These path-
ways can be therapeutically targeted 
in SF3B1 mutated CLL patients.

[54]

AML scRNA-seq Myc targets are upregulated along the progression of AML, 
among which are splicing factors. The tipping point of HSC 
transformation into leukemia cells was characterized by dra-
matically increased splicing factors and unusual RNA velocity. 
Exon 4 skipping of Tmem134 in high-risk subset resulted in 
the production of cell-cycle-promoting Tmem134β.

Characterized that Myc-driven CLL 
progression was related to the RNA 
splicing events, promoting that the 
splicing factor may underly important 
therapeutic targets.

[55]

Table 1 Summary of key findings related to clonal evolution in leukemia by single-cell sequencing
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al. combined scDNA-seq and scRNA-seq to investigate 
the order of mutation acquisition in T-ALL [47]. Their 
findings suggested that mutations in certain genes with 
ambiguous significance may occur early, laying the foun-
dation for later mutation gain. This is followed by inter-
mediate events such as inactivation of CDKN2A/B, T-cell 
receptor (TCR) gene deletions, and gene fusions. Inter-
estingly, they discovered that mutation in NOTCH1 was 
a relatively late event in T-ALL [47]. This was in line with 
another later study using targeted scDNA-seq, imply-
ing NOTCH1 mutations were usually acquired at the 
later stage of T-ALL [48]. However, high heterogeneity 
of NOTCH1 mutations was also found at diagnosis in 
their study. The sequential mutation events in ALL were 
further explained by combining scDNA-seq and protein 
analysis, where a study found that the lineage-related 
mutations (ETV6, IKZF1, and PAX5) occurred early, and 
kinase-activating mutations (JAK1, JAK2, KRAS, NRAS, 
FLT3) were acquired in a later evolutionary trajectory 
[49] (Fig.  3c). Similarly, in AML, a study revealed that 
the order of mutation gain implied epigenetic modifiers 
such as DTAI (DNMT3A, TET2, ASXL1, and/or IDH1 or 
IDH2) are the most prevalent AML initiating mutation, 
and combinations of those mutations (e.g., DNMT3A-
IDH2) may contribute to clonal dominance [15] (Fig. 3c). 
Comparably, mutations in signaling genes such as FLT3, 
JAK2, and NRAS are often subclonal. When serving as 
the initiating mutations, these signaling gene mutations 
may not easily result in large clonal trajectories.

Characterizing the driver events underlying leukemia 
initiation and progression
Leukemogenesis of AML may involve stages from CH, 
MDS, and MPN [15]. The presence of driver mutations 
was presumed to fuel the transformation from CH to 
MDS, MPN and finally, AML. MPN is derived from 
hematopoietic stem cells (HSC) by driver mutation in 
JAK/STAT signaling genes and exhibits a propensity for 
transformation to secondary AML (sAML) by additional 
mutation gain (e.g. TP53, ASXL1, EZH2, SRSF2, IDH1). 
However, inhibition of JAK2 showed limited effect and 
didn’t prevent the disease progression [50]. In light of 
this, one recent single-cell study confirmed DUSP6, a 

MAPK pathway member, as the driver of leukemic pro-
gression and JAK2 inhibition resistance [51]. By scRNA-
seq on serial MPN and sAML patients, increased DUSP6 
expression along disease progression from MPN to sAML 
was found, which mediated JAK2 resistance by activating 
RSK1 and then S6 phosphorylation. Another study shed 
light on the TP53-mutant MPN by first proposing the 
role of chronic inflammation as a driver of TP53-mutant 
leukemic evolution [52]. Utilizing TARGET-seq [53], a 
single-cell multiomics technology that allows allelic-res-
olution genotyping, whole transcriptome, and immuno-
phenotypic analysis from the same cell, the authors found 
that the presence of chronic inflammation induced with 
both poly(I:C) and LPS promoted the fitness advantage of 
TP-53 mutant cells, conferring their genomic instability 
and leading to clonal dominance.

Studies are also highlighting the role of RNA splicing 
in driving leukemia initiation and progression. A study 
employing scRNA-seq in CLL has substantiated that 
the mutated putative driver SF3B1 results in substantial 
splicing alterations. Consequently, this leads to the dys-
regulation of DNA damage response and Notch signal-
ing pathways, ultimately conferring apoptotic resistance 
and selective proliferation to the leukemia cells [54]. The 
importance of RNA splicing in leukemogenesis was also 
noted in a recent single-cell study in AML. With a series 
of longitudinal scRNA-seq data in a Myc-driven AML 
mouse model, the authors found progressively dete-
riorated RNA splicing during AML progression, where 
increasingly higher expression of splicing factors and 
stronger enriched spliceosome pathway was observed 
[55]. Notably, an unusually high RNA splicing factor 
activity was observed at the tipping point of transforma-
tion from HSCs to preleukemic and leukemic cells [55].

With the maturity of single-cell sequencing, increas-
ing studies are discovering novel drivers and charac-
terizing the heterogeneity within the driver events in 
leukemia. For example, by utilizing targeted scRNA-seq 
and scDNA-seq to reconstruct the phylogeny and sub-
clonal structures in CLL patients, Wang et al. discovered 
mutated LCP1 and WNK1 as novel CLL drivers, sup-
ported by implicating their impact on CLL pathways [44]. 
Also, a study in AML using the combination of CITE-seq 

Leu-
kemia 
Type

Major Methods Key Findings Clinical Relevance Ref-
er-
enc-
es

AML CITE-seq; ATAC-seq Flt3-ITD mutation, when cooperates with NUP98 and Runx1 
mutations, activates distinct transcriptional programs. Flt3-
ITD/Runx1del caused aberrant expansion of myeloid progeni-
tors, while Flt3ITD/NHD13 selectively controlled IFN-I signaling 
to drive the clonal expansion of the pre-AML population.

Provided insight into how to context-
specifically treat pediatric and adult 
AML, since Flt3-ITD/NHD13 and Flt3-
ITD/RUNX1del respectively represent 
the most prevailing mutation in 
pediatric and adult AML.

[34]

Table 1 (continued) 
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Fig. 4 (See legend on next page.)
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and epigenomic profiling found that Flt3ITD mutation, 
frequently discovered in all age groups, when com-
bined with NHD13 and RUNX1 mutations, drove dis-
tinct transcriptional programs in mice AML model [34]. 
Flt3ITD/Runx1del caused aberrant expansion of myeloid 
progenitors, while Flt3ITD/NHD13 selectively controlled 
IFN-I signaling to drive the clonal expansion of the pre-
AML population. This is of important clinical relevance 
as Flt3ITD/NHD13 and Flt3ITD/RUNX1del respectively 
represent the most prevailing mutation in pediatric and 
adult AML, providing insight into why pediatric and 
adult initiating mutations were differentially skewed [34].

Collectively, these findings decipher the underlying 
events that drove the initiation and progression of leuke-
mia and depicted the mutations that conferred differen-
tial clonal dominance in the evolution of leukemia.

Single-cell analysis provides rigorous high-
resolution baselines for defining leukemia 
heterogeneity
Leukemia is a highly heterogeneous disease with exten-
sive differential subpopulations, which has led to limited 
effectiveness in targeted therapy and the prediction of 
prognosis. Conventional classification of leukemia relied 
on morphological, immunologic, and clinical manifesta-
tions, which simply referred to the status of white blood 
cells in patients [1, 56, 57]. Prior to the advent of single-
cell sequencing, the heterogeneity of leukemia cells was 
primarily identified through flow cytometry. However, 
this method was hindered by the quality of antibodies 
and the limited quantity of antibody labels. The emer-
gence of single-cell sequencing technology has expanded 
our understanding of leukemia cell heterogeneity to an 
unprecedented level. Specifically, single-cell sequencing 
technologies have facilitated the development of systemic 
frameworks that integrate multiomics and inductive 
algorithms, leading to improved insights into leukemia 
heterogeneity. These multi-dimensional approaches offer 
increased accuracy in defining subtle yet important sub-
populations that may contribute to drug resistance and 
relapse and were summarized in (Fig. 4; Table 2).

Single-cell transcriptome in defining leukemia subtypes
Leukemia cells exhibit significant heterogeneity, encom-
passing both primitive, often referred to as leukemia stem 

cell (LSC), and differentiated cell types. The utilization of 
scRNA-seq presents an opportunity to precisely partition 
leukemia cell subgroups, and even further subdivide the 
LSC cell population, based on transcriptional variations 
at the single-cell level.

van Galen et al. employed scRNA-seq to establish a 
hierarchical framework of normal hematopoietic cells 
using bone marrow cells from healthy volunteers [58]. 
They utilized this reference to classify AML cells into 
distinct subgroups, such as HSC-like, progenitor-like, 
granulocyte-macrophage progenitor (GMP)-like, pro-
monocyte-like, monocyte-like, or conventional dendritic 
cell (cDC)-like malignant cells, along the HSC to the 
myeloid axis. Zeng et al. employed the method of self-
assembling manifolds to analyze the scRNA-seq data of 
AML patients from van Galen et al. [59]. They further 
subdivided leukemia stem and progenitor cells (LSPCs) 
into Quiescent, Primed, and Cycling LSPCs (Fig.  4a). 
Utilizing the AML hierarchy established by the scRNA-
seq data, they characterized the cellular heterogeneity of 
more than 1000 AML patients by deconvolution of bulk 
transcriptome data. Variations between different hierar-
chies provide different predictive biomarker information, 
with the Primitive versus GMP axis showing strong prog-
nostic value in terms of chemotherapy outcome, and the 
Primitive versus Mature axis capturing ex vivo drug sen-
sitivity [59]. This study incorporated the stem-cell feature 
with the AML hierarchies, providing a novel framework 
for understanding biomarkers underlying different hier-
archical compositions and guiding precise therapeutic 
selection.

Heterogeneity in the ribosomal proteins (RP) expres-
sion of leukemia is also characterized by scRNA-seq 
and provides prognostic information. In one study that 
combined scRNA-seq with single-cell single-molecule 
real-time sequencing (SMRT-seq), it was shown that an 
AML progenitor cell cluster is associated with dysregula-
tion of RP, characterized by the expression of high-level 
RP genes and exhibiting poor remission [60]. Another 
study using scRNA-seq on childhood ALL (cALL) also 
indicated that the RP expression profile is distinctive and 
inversely correlated with the transcriptomic heterogene-
ity in ALL. This could be a common contributor to intra-
individual heterogeneity in cALL patients [61] (Fig. 4b). 
These findings suggest that there may be heterogeneity 

(See figure on previous page.)
Fig. 4 Interrogation on different cellular layers further classifies and defines leukemia in single-cell studies. (a) AML heterogeneity was better defined 
with deconvolution of bulk data by single-cell referencing. By deconvolution > 1000 AML patients bulk RNA-seq data using single-cell referencing, AML 
composition was converged into four overall classes, Primitive (LSPC-enriched), Mature (Mono-like and cDC-like blasts), GMP and Intermediate (bal-
anced dstribution) and used as references for patient sample [59]. (b) Ribosomal protein expression levels are indicative of heterogeneity in prognosis 
in different leukemia subtypes. Higher expression of RPs may associated with poor outcomes [60, 61]. (c) Different malignant epigenetic layers indicate 
leukemia-specific modifications and provide references for subtyping [67, 68]. (d) Multi-omics framework (CITE-seq, scATAC-seq and scRNA-seq) defined 
the normal epigenetic baseline of healthy blood development and were used to deconvolve aberrant molecular features of MPAL patients [35]. (e) 
Multiple frameworks combining the mitochondrial mutational landscape with transcriptome and genetic mutation information (MutaSeq + mitoClone; 
CloneTracer) more confidently differentiated HSCs from LSCs [75]
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in the RP expression of leukemia patients and high RP 
expression indicates poor prognosis. Recently, the advent 
of scRibo-seq has opened up exciting new possibilities 
for gaining a deeper understanding of the role of trans-
lational heterogeneity in characterizing different tumor 
subtypes [30].

In addition to RPs, recent scRNA-seq studies are iden-
tifying an increasing number of markers that provide 
insights into heterogeneity. For example, C1Q labeled 
out the C1Q+ macrophage-like leukemia subset, show-
ing tissue-infiltrative ability and could reconstitute the 
extramedullary infiltration phenotype of AML [62]. The 
authors showed that C1Q regulates the cancer infiltration 
pathways and promotes the chemoresistance of C1Q+ 
leukemia cells, which is an adverse prognosis indicator. 
Another study highlighted the transcription factor NFIC 
as a promoter of survival and a potential therapeutic tar-
get in AML [63]. By scRNA-seq, they demonstrated that 
overexpression of NFIC in monocytes increased growth 
and survival gene expression. The ex vivo NFIC know-
down resulted in impaired cell growth and colony forma-
tion ability in the MLL::AF9 preleukemic stem cell model.

Collaboratively, these studies decipher the power of 
using scRNA-seq in deciphering markers for leukemia 
subsets, thus being therapeutic insightful and prognosis 
informative.

Frameworks integrating diverse epigenome layers 
provides better reference for leukemia heterogeneity
Epigenetic modification plays a crucial role in shaping 
leukemia heterogeneity [64, 65], where the highly vari-
able epigenetic allele burden has been linked to infe-
rior outcomes in AML [66], and frequent dysregulation 
of DNA methylation has been observed in CLL [67]. 
Recently, more studies have incorporated single-cell epig-
enomics and integrated high-throughput multi-omics 
data to gain higher resolution and better decode leuke-
mia heterogeneity. For instance, a study revealed that 
locally aberrant DNA methylation is a stochastic process 
that becomes more pronounced during CLL progression 
[67] (Fig. 4c). Another study integrated single-cell DNA 
methylation sequencing and scRNA-seq with ChIP-seq, 
establishing a connection between epigenomic modifi-
cations and transcriptional profiles [68]. They found the 
co-mapping of mutually exclusive activating (H3K27ac) 
and repressing (H3K27me3) histone modifications was 
more pronounced in CLL compared with normal B cells 
(Fig. 4c). Most of the co-mapped regions were originally 
repressed in normal B cells, suggesting an acquisition of 
activation induced by heightened H3K27ac modification 
in CLL samples [68].

With the advent of scATAC-seq technology, numer-
ous software tools and pipelines have been developed 
to integrate scATAC-seq with other single-cell omics 

techniques, thereby enriching our understanding of chro-
matin accessibility heterogeneity [69, 35]. One such tool, 
sc-compReg [69], was developed to integrate scATAC-
seq data and scRNA-seq data and was used to build regu-
latory networks among cell subsets in CLL. They found a 
tumor-specific B cell subpopulation in CLL that is regu-
lated by the TOX2 gene. Another comprehensive frame-
work combining CITE-seq, scATAC-seq and scRNA-seq 
was used to deconvolve aberrant molecular features in 
mixed-phenotype acute leukemia (MPAL) (Fig. 4d) [35]. 
They discovered 91,601 putative peak-to-gene linkages, 
as well as transcription factors that govern genes specific 
to leukemia. For instance, regulatory elements closely 
linked to the marker gene CD69 were found to be associ-
ated with RUNX1 [35].

These studies demonstrate how the integration of sin-
gle-cell epigenomics sequencing with other single-cell 
omics methods offers valuable insights into the epig-
enomic characteristics of various types of leukemia, facil-
itating a deeper understanding of the disease.

Combining mitochondria variants confidently separates 
LSCs from HSCs
Cancer stem cells represent distinct cellular subsets 
within the heterogeneous tumor, exhibiting striking 
capacity for initiating disease and underpinning resis-
tance and relapse [70, 71]. In leukemia, LSCs are also 
thought to have high proliferative potential, are capable 
of fueling constant tumor growth, and account for sus-
taining the disease and relapse [71–74]. The journey from 
normal HSCs to LSCs involves the sequential accumula-
tion of mutations, resulting in the emergence of pre-LSCs 
and subsequently, LSCs [45]. LSC has been recognized 
as an unfavorable prognostic indicator. However, effec-
tively targeting LSCs while preserving HSCs has proven 
to be a formidable task due to their limited abundance 
and molecular resemblance to HSCs. To overcome this 
obstacle, a single-cell study adopted a lineage-tracking 
approach, incorporating both MutaSeq (a scRNA-seq 
workflow that amplifies nuclear mutations from cDNA) 
and mitoClone (a clone discovering computational tool 
using mitochondrial marker mutations) [75], to charac-
terize simultaneous nuclear and mitochondrial mutations 
within scRNA-seq data, and thoroughly delineate the 
characteristics of AML LSCs [75] (Fig. 4e). By analyzing 
the transcriptomes, genetic alterations, and mitochon-
drial variants, HSCs, pre-LSCs, and LSCs could be dis-
cerned, with genetic mutations distinguishing between 
healthy and diseased states, and expression profiles iden-
tifying stem or progenitor cell states [75].

Most recently, one study introduced another set of 
approaches, the “Optimized 10x” (a scRNA-seq method 
specifically covering surface antigen expression, nuclear 
SNVs, and mitochondrial SNV) and CloneTracer (a 
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Leukemia 
Type

Major Methods Key Findings Clinical Relevance References

AML scRNA-seq; Target-
ed DNA sequenc-
ing; Single-cell 
short/long read 
sequencing

Machine learning was performed on high-throughput 
single-cell data and identified six malignant AML cell 
types, HSC-like, progenitor-like, GMP-like, promonocyte-
like, monocyte-like, or cDC-like malignant cells, along 
the HSC to myeloid axis.

Related the AML developmental 
hierarchies to genotypes, providing 
information on how primitive AML cell 
types are prognosis informative.

[58]

AML Bulk transcriptome 
deconvolution 
using single-cell 
references

AML hierarchy was subtyped into four overall classes, 
spanning Primitive, Mature, GMP, and Intermediate. 
LSPC cells were divided into Quiescent, Primed, and 
Cycling LSPC.

Noted that Primitive vs. GMP axes are 
chemotherapy responsive whereas 
Primitive vs. Mature axes is associated 
with drug sensitivity.

[59]

AML scRNA-seq; 
SMRT-seq

AML progenitor cells cluster with novel AML mark-
ers associated with dysregulated RP expression were 
identified.

Highlighted that the high ribosomal 
protein involved in the p53 pathway in 
the progenitor cells subtype was associ-
ated with poor outcome.

[60]

cALL scRNA-seq Ribosomal protein expression profile is distinctive and 
inversely correlated with the presumptive ALL develop-
mental state.

Highlighted that ribosomal protein 
may be considered as a marker for 
intra-individual heterogeneity in cALL 
patients.

[61]

AML scRNA-seq C1Q + macrophage-like leukemia subset was identified 
and verified in multiple patients with AML. C1Q + leuke-
mia cells represent a highly tissue-infiltrative leukemia 
population and could reconstitute extramedullary 
infiltration phenotype of AML. C1Q interacts with 
C1Q–globular C1Q receptor on fibroblasts, regulating 
the cancer infiltration pathways and promoting the 
chemoresistance of C1Q + leukemia cells.

Put forwarded that C1Q can serve as a 
marker for AML with adverse prognosis 
and the cancer infiltration pathways. 
Also, C1Q is a great therapeutic target.

[62]

AML scRNA-seq NFIC protein is significantly overexpressed in 69% of 
acute myeloid leukemia patients, and increased expres-
sion of growth and survival genes in monocytes. NFIC 
knockdown in an ex vivo mouse a pre-leukemic stem 
cell model decreased their growth and colony forma-
tion and increased expression of myeloid differentiation 
markers Gr1 and Mac1.

Noted that NFIC is an important tran-
scription factor in myeloid differentia-
tion as well as AML cell survival, and 
is a potential marker for therapeutic 
targeting in AML.

[63]

CLL scRNA-seq; Whole-
genome bisulfite 
sequencing

High level of methylation heterogeneity in CLL arose 
from stochastic methylation dysregulation.

Identified that dysregulation of methyl-
ation is associated with poor prognostic 
outcome in CLL patients.

[67]

CLL Multiplexed 
single-cell reduced 
representation bi-
sulfite sequencing 
(MscRRBS); scRNA-
seq; ChIP-seq

Coordination between different layers of CLL 
epigenome layers and epigenomic expression was 
disrupted, attributing to cell-cell heterogeneity.

Noted that corrupted epigenetic 
layers residing in CLL may stochasti-
cally activate heterogenous expression 
programs, associating poor prognosis.

[68]

Compu-
tational 
framwork

Developed sc-
compReg for com-
parative analysis 
between disease 
and healthy 
samples based on 
scRNA-seq data 
and scATAC-seq 
data

Sc-compReg in CLL samples identifies TOX2 as a key 
regulator of tumor-specific subtypes.

Enabled the integrative comparison 
between healthy and disease states 
based on transcriptomic and chromatin 
accessibility. Further application in 
other leukemia subtypes could review 
more distinct subtypes.

[69]

MPAL, AML CITE-seq; scRNA-
seq; scATAC-seq

Single-cell epigenetics baseline for healthy blood sam-
ples was established, which was used to deconvolve 
aberrant molecular features of MPAL. 91,601 putative 
peak-to-gene linkages and transcription factors regulat-
ing leukemia-specific genes were identified.

Demonstrated that single-cell mul-
tiomics study may provide novel shared 
molecular mechanisms among differ-
ent leukemia types for clinical targeting.

[35]

Table 2 Summary of key findings related to heterogeneity indicators or classifying frameworks in leukemia by single-cell sequencing
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Bayesian model for clone inferring focusing on nuclear 
and mitochondria mutational info) for better character-
ization of LSC and HSC [76] (Fig.  4e). Applying these 
methods to AML patients confidently distinguished 
healthy and leukemic cells in 14/19 patients, where mito-
chondria mutation information is highly informative. By 
combining data across patients, the authors differentiated 
healthy and preleukemic cells in a dormant HSC subpop-
ulation [76].

It should be noted that using mitochondrial mutation 
calling to profile the mutation landscape is less biased 
since mitochondrial genes are usually consistently highly 
expressed [75]. The approaches above combining mito-
chondria variants circumvent the issue of false negatives 
observed in sole nuclear gene profiling, where cells with 
low gene expression often exhibit high dropout rates, 
rendering mutation detection more challenging [75]. 
The development of these innovative genomic and mito-
chondrial mutation tracking frameworks not only pro-
vides a new dimension for subtyping leukemia but also 
offers insights into the significance of mitochondrial and 
genetic mutations in LSC identification.

Single-cell analysis helps further define the 
primary tumor microenvironment in natural 
leukemia development
Despite the intracellular genetic alteration and dysfunc-
tion in leukemia accounting for the clonal evolution and 
expansion is well-established and provided us substantial 
insights into the development of the disease, emerging 
studies have noted that the interaction and coevolution 
of leukemia cells and the cells from the tumor micro-
environment (TME), contributes largely to the disease 
progression [7, 77]. In AML, attempts to link relapse 
with genetic mutations have shown limited effective-
ness, resulting only in extended survival rather than 
tumor eradication. This underscores the need for deeper 

insights into non-genetic drivers, which may be situated 
within the TME [58].

The TME of leukemia is complicated, including mes-
enchymal stem cells, osteoblasts, endothelial cells as 
well as immune cells [7, 13, 77]. Multiple recent studies 
used single-cell studies have delved into investigating the 
non-immune compartment of the bone marrow niche 
[78–80]. For example, Baryawno et al. defined the com-
prehensive single-cell landscape of mice bone marrow 
in healthy and AML state and found the leukemia cells 
hindered the process of mesenchymal osteogenic dif-
ferentiation and decreased the levels of essential regula-
tory molecules required for normal hematopoiesis [78]. 
Owing to the limited space capacity, the following section 
mainly focuses on how the immune compartment of the 
primary TME (without drug intervention) of leukemia is 
deciphered by single-cell sequencing (Fig. 5; Table 3).

Revealing the profile of myeloid cells residing leukemic 
TME
The malignant leukemia cells in the bone marrow (BM) 
profoundly remodel the microenvironment and inter-
act profoundly with immune cells. The frequent appear-
ance of myeloid immune cells in leukemia TME, such 
as dendritic cells, macrophages, and monocytes, have 
implicated their vital importance [7]. One study compre-
hensively investigated AML BM using scRNA-seq and 
highlighted the heterogeneity in myeloid immune cells 
[81]. This study found the CD206+ and CX3CR1+ den-
dritic cell subsets showed an increase in AML patients 
and may be involved in expanding the Treg population 
and suppressing the T cell cytotoxic function by produc-
ing multiple immunosuppressive cytokines [82]. (Fig. 5). 
M2-type macrophage subsets marked by MS4A6Ahigh 
and CD163high were also enriched. MS4A6Ahigh macro-
phage is a common subset expressing Treg-attracting 
chemokine CCL22 whereas CD163high was identified as 

Leukemia 
Type

Major Methods Key Findings Clinical Relevance References

Experi-
mental and 
Compu-
tational 
framework

Developed Muta-
Seq and mitoClone 
for single-cell 
targeted mutation 
analysis of nuclear 
and mitochondrial 
genes on scRNA-
seq data.

Application of Mutaseq and MitoClone in AML implied 
that LSC, HSC and pre-LSC can be more confidently dis-
tinguished based on the combination of transcriptome, 
genetic and mitochondrial variants. Genetic mutations 
can distinguish between healthy and diseased states, 
and expression profiles can identify stem or progenitor 
cell states.

Demonstrated that mitochondrial 
mutations may also indicate leukemia 
heterogeneity and underlie therapeutic 
targets.

[75]

Experi-
mental and 
Compu-
tational 
framework

Developed Opti-
mized 10X and Clo-
neTracer for clone 
tracing specifying 
nuclear and mito-
chondrial mutation 
on scRNA-seq data.

Application of CloneTracer to 19 AML patient samples 
revealed healthy or preleukemic state in a dormant HSC 
subset. Discovered that LSCs resemble HSCs expres-
sion but formed differential-blocked aberrant myeloid 
progenitors in downstream.

Demonstrated that mitochondrial 
mutations may also indicate leukemia 
heterogeneity and underly therapeutic 
targets. LSCs may be distinguished 
from HSCs by forming aberrant myeloid 
progenitors in downstream.

[76]

Table 2 (continued) 
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a novel subset [81]. The role of M2 macrophage was also 
noted in one recent study in AML [83]. By the integra-
tion of scRNA-seq, flow cytometry, and immunohisto-
chemistry, the tumor-supportive M2 macrophages with 
enhanced fatty acid oxidation and NAD+ generation were 
observed, accompanied by impaired phagocytosis abil-
ity (Fig.  5). Also, a mechanism of direct mitochondrial 
transfer between the M2 macrophage and AML blast was 
observed, which enhanced the mitochondrial metabo-
lism of leukemic blasts and promoted their proliferation 
[83]. The study revealed the potential targeting strat-
egy in metabolism by targeting fatty acid oxidation or 

mitochondrial electron transport chain (ETC) in tumor-
associated macrophages.

Monocytes, being an integral part of the innate 
immune system, exhibit noteworthy regulatory effects 
pertinent to the development of cancer [84]. Recent sin-
gle-cell studies highlighted the monocyte-related role in 
promoting tumor survival [36, 85, 86]. One study inves-
tigated the immune cells from healthy donors and B-ALL 
patients with scRNA-seq and CITE-seq and unveiled 
that B-ALL orchestrated the preferential differentia-
tion of non-classical monocytes (identified as CD14dim, 
CD16+) through interactions with vascular endothelial 

Fig. 5 Summary of single-cell studies in leukemic TME. (1) Immunosuppressive CD206+ and CX3CR1+ DC were found in AML TME. CD206+ DC recruits 
Treg by TNFSF8 upregulation and CX3CR1+ DC suppresses T-cells by increasing ligands of PDCD1 mediating T-cell suppression (CD274, PDLD2GH2) 
[81]. (2) Suppressive MS4A6Ahigh M2 macrophages were enriched in AML TME and showed Treg recruiting and suppressive signaling function [81]. (3) 
M2 macrophages increased fatty acid oxidation and NAD+ generation (NAMPT, EXOC5) and decreased phagocytosis ability in AML TME [83]. Exposure 
of AML blasts to M2 macrophage resulted in increased mitochondrial metabolism and survival, which is in part due to mitochondrial exchange [83]. (4) 
Non-classical (CD16+) monocytes were recruited for repairing the vascular remodeling effect of B-ALL. High-level of CD16+ monocytes are poor prognosis 
predictive [36]. (5) IL-10 mediated the PD-1int and PD-1high subtypes of T-cell, preventing the excessive activation and exhaustion of T-cells in CLL TME 
[91]. (6) Senescence-like T-cells (marked by CD57 and γ-H2AX) were found in AML TME, correlating with impaired T-cell cytotoxic effect and poor clinical 
outcomes [87]
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cells, thereby reversing the alterations in vessel diameter 
induced by B-ALL cells [36] (Fig.  5). The non-classical 
monocytes were observed to promote B-ALL survival 
without suppressing T cells and were predictive of unfa-
vorable prognosis in B-ALL patients [36]. The distinc-
tively evident communications of monocytes with tumor 

cells were also found in B-ALL and CLL [85, 86]. How-
ever, it is also worth noting that the specific study on 
B-ALL highlighted the interaction between monocytes 
and monocyte precursors [85]. These findings underscore 
the importance of targeting monocyte-related regulatory 

Table 3 Summary of key findings related to single-cell works revealing primary tumor microenvironment in leukemia
Leu-
kemia 
Type

Major 
Methods

Key Findings Clinical Relevance Ref-
er-
enc-
es

AML scRNA-seq The diversity of immunosuppressive CD206 + and CX3CR1 + dendritic 
cells and different M2 macrophages was defined. Several unique sub-
types of TH17-like intermediate population, cytotoxic CD4 + T subset and 
CD8 + memory-like subset were also identified in AML TME.

Offered a comprehensive AML TME 
profiling, revealing potential immuno-
therapy targets.

[81]

AML scRNA-seq M2-type macrophage with enhanced oxidative activity and impaired 
phagocytosis ability in the AML microenvironment. Also, in vitro expo-
sure of leukemic blast to M2 macrophage resulted in the accumulation 
of CALR-low blast enrichment and the exchange of mitochondria with 
M2 macrophage. The mechanisms enhanced the survival of AML cells.

Proposed the importance of the interac-
tion of M2 macrophages with AML cells. 
Revealed potential therapeutic target 
in terms of metabolism (e.g. FAO/mito-
chondrial ETC).

[83]

B-ALL CITE-seq; 
scRNA-seq

Monocyte abundance is poor prognostic predictive in B-ALL. Non-clas-
sical (CD16+) monocyte was attracted by B-ALL and Anti-CSF1R therapy 
targeting CD16 + monocytes improved the therapeutic outcomes.

Noted that the non-classical monocyte 
predicts patient survival. Targeting CSF1R 
of these monocytes together with TKI 
improved therapeutic outcomes in ani-
mal models, revealing a potential therapy 
combination.

[36]

B-ALL scRNA-seq Changes in AP-1-regulated genes were observed in normal pro- and 
pre-B cells at an early stage of B-ALL. GMP showed tumor suppressor 
Neat1 downregulation. Monocyte-dendritic precursors (MDP) were 
continuously active during disease progression. Monocytes increased 
the interaction with GMP and MDP during progression.

Noted that targeting the MDP, GMP, and 
monocytes may improve therapeutic 
outcomes in B-ALL.

[85]

CLL scRNA-seq The difference in the number of exhausted CD8 + T cells was significantly 
larger between the healthy donors (HD) and MBL than between MBL 
and CLL. Early intervention of ibrutinib can largely reverse the immune 
dysfunction.

Demonstrated the need for early inter-
vention of CLL by immunotherapy.

[86]

AML scRNA-seq Senescent-like CD8 + T-cells were impaired in dealing with AML blasts. 
Defined a new set of immune effectors
dysfunction (IED) signatures that are associated with the adverse out-
come and immunocheckpoint unresponsive TME.

Revealed that senescent-like T cells may 
also be an underlying treatment target. 
IED scores helped the AML-risk stratifica-
tion and facilitated the identification of 
personal treatment targets.

[87]

B-ALL, 
AML

scDNA-seq T-cells acquired the exhaustion/dysfunction signature by chronic im-
mune activation in pediatric leukemia TME, manifesting as the attrition 
of naïve T cells and TCF1 + stem-like memory T cells, and the terminal 
differentiation of effector T cells. NK cells also expressed a signature of 
exhaustion, especially in AML.

Noted that although pediatric leukemia 
has a shorter natural history of tumor 
exposure, immune cell exhaustion/
dysfunction is still a common event and 
is negatively correlated to the clinical 
outcomes.

[90]

CLL scRNA-seq; 
scATAC-seq

PD-1int subset that was still functional and PD-1hi subset that was 
exhausted was identified in CLL TME. IL-10 signaling moderates the PD-1 
expression through IL-10R-STAT3 pathway and sustains anti-tumor im-
munity by preventing excessive exhaustion.

Proposed that combining IL-10 with 
checkpoint blockade therapy may 
improve the clinical outcome in CLL 
patients.

[91]

CLL scRNA-seq BCL-2 expression was significantly increased in the T cells of CLL patients 
and associated with increased regulatory T-cells, exhausted cytotoxic T 
lymphocytes (CTL) signature, and increased T-cell adhesion.

Showed that BCL2 expression in T-cells 
is associated with immunosuppressive 
TME. BCL2 may be an underlying thera-
peutic target.

[92]

CLL scRNA-seq CLL progression mainly occurs in the lymphatic nodes (LN) and is as-
sociated with suppressive T-cell states. A small population of activated 
CLL cells progressed in the lymph nodes. Poor outcome was associated 
with activated CD4 + memory T cells and M2 macrophages in LN. T-cell 
inflamed microenvironment was progression inhibitive for the tumor.

Attributed the shorter time-to-first-
treatment in CLL patients to increased 
proportion of activated CLL cells. These 
cells are potentially more effective in re-
cruiting a tumor-supportive TME, thereby 
accelerating disease progression.

[95]
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pathways, such as CSF1R blockade, as potential thera-
peutic interventions.

Revealing the heterogeneity within the T-cell exhaustion 
state
T cell exhaustion poses a significant challenge to effec-
tively clearing tumors [87]. The upregulation of exhaus-
tion markers such as PD-1, LAG3, CD200, and TIM3 on 
CD8+ T cells signifies the loss of cytokine signaling and 
cytotoxic dysfunction, indicating an exhausted state [88]. 
However, checkpoint blockade therapy has not shown 
desired efficacy in AML and CLL [89]. Understanding 
the underlying mechanisms behind this requires further 
molecular insights, which can be provided by recent sin-
gle-cell studies.

Recently, studies have revealed widespread evidence 
of dysfunctional T cell states in leukemia, including the 
accumulation of attrition of naive T cells, activation of 
Tregs (regulatory T cells), terminally differentiated cyto-
toxic T cells and exhausted T cells [81, 90–92]. The BCL2 
family consists of apoptosis regulators that promote 
cell survival and have been linked to various forms of 
malignancy [93]. However, Liu et al. found that height-
ened BCL2 expression in the T cells of CLL patients 
was also associated with increased occurrence of CD8+ 
cytotoxic T cells exhibiting exhaustion (PD-1+, TIM-3+) 
and a higher proportion of Tregs [92]. Heterogeneity 
within the exhausted CD8+ T cell population of CLL was 
further revealed by Hanna et al., identifying the PD-1 
intermediate expression (PD-1int) subset that was still 
functional and PD-1 high expression (PD-1hi) subset that 
was exhausted [91]. Further investigation revealed that 
the IL-10R-STAT3 signaling pathway moderates the bal-
ance between PD-1int and PD-1hi subsets by maintaining 
normal chromosomal accessibility landscape and NFAT: 
AP-1 cooperativity, thereby preventing the excessive 
activation of CD8+ T cells and transformation to a ter-
minal PD-1hi exhaustion state [91] (Fig. 5). These findings 
suggest that enhancing IL-10 signaling could potentially 
enhance the efficacy of checkpoint blockade therapy in 
CLL by preventing the transformation of CD8+ T cells 
into a terminal exhaustion state.

In general, exhaustion of T cells is typically a conse-
quence of prolonged or chronic exposure to persistent 
antigens [88]. However, scRNA-seq analysis has sug-
gested that the dysfunctional state of T cells may already 
be present at the precursor phase of CLL, known as 
monoclonal B-cell lymphocytosis [86], indicating the 
need for early induction of immunotherapy during CLL 
progression. Also, pediatric leukemias (AML and B-ALL), 
which naturally have lower neoantigen load and immu-
nogenicity compared to adult tumors, were observed 
to have a high degree of T cell and NK cell exhaustion 
[90]. By interrogating the single-cell mass cytometry and 

scRNA-seq, the study discovered the depletion of stem-
cell-like TCF1+ T cells both in pediatric B-ALL and AML 
[90]. Furthermore, a more pronounced dysfunction of 
NK cells was observed in AML compared to B-ALL, indi-
cating the necessity for treatment heterogeneity when 
dealing with these two types of leukemia [90].

Proposing the roles of senescent-like T-cells in TME
It has been suggested that not only exhausted T-cells 
but also senescent-like T-cells are associated with poor 
outcomes in cancer [87]. Exhaustion and senescence 
share some properties but are functionally independent, 
marked by differential activated signaling pathways [94]. 
To address the knowledge gap regarding the contribu-
tion of T cell senescence to the anti-immunotherapy 
effect, Rutella et al. conducted a study combining bulk 
and single-cell RNA sequencing to characterize how 
AML cells promote the senescence-like CD8+ T cells 
[87]. They found that AML blast can lead to the expres-
sion of typical senescence markers CD57 and γ-H2AX on 
CD8+ T cells, primarily through bystander modulation 
(Fig.  5). They also defined a new immune effector dys-
function (IED) score, which proved to be powerful in risk 
stratification and determining prognosis [87]. This study 
provides insights into strategies for overcoming block-
ade-unresponsive therapy and improving the prognosis 
of AML patients.

Relating immune-associated TME with leukemia 
progression
Tumor progression is not only influenced by intrinsic 
alterations but also by extensive interactions between 
TME and the tumor cells [85]. Integrating bulk and sin-
gle-cell transcriptome profiling in the paired peripheral 
blood and lymphatic node, a study identified unidirec-
tional CLL clonal progression from activation to quies-
cence, which majorly occurs in the lymphatic node and 
is correlated to immunosuppressive T cell state [95]. 
The active-state tumor cells represented were positively 
related to activated CD4+ memory T cells and M2 mac-
rophages in LN, which predicts a poor prognosis. Also, 
the T cells-inflamed immune microenvironment was 
progression-inhibitive, by suppressing the clonal out-
growth of CLL [95]. Apart from T cells, another study 
in B-ALL revealed the consistently reduced expression 
of tumor-suppressing non-coding RNA Neat1 in GMP 
cells [85], which was shown to induce cancer initiation 
and drug resistance [96, 97]. These findings suggest that 
leukemia tumor progression is a dynamic and interactive 
process involving coevolution with the TME.
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Single-cell studies provide further insights into 
drug effects and help uncover drug-resistant 
mechanisms
Leukemia is characterized by dysregulation of cellular 
pathways and significant intrinsic heterogeneity, pos-
ing challenges to effective treatment strategies. Despite 
the development of drugs like tyrosine-kinase inhibitors 
(TKIs) have dramatically improved the clinical outcomes 
of patients, resistance and relapse independent of the 
BCR-ABL fusion protein are still common issues [98, 99]. 
Also, the standard treatment regimen for AML (anthra-
cycline + cytarabine, DA) has been applied for more than 
four decades without a new consensus on how to tackle 
the disease [100]. Thus, it is urgent to understand leu-
kemia’s molecular features to unravel the mechanisms 
of drug resistance at a higher resolution by single-cell 
studies. Here, we emphasized the usage of single-cell 
sequencing in dissecting three major aspects that were 
substantially associated with relapse: leukemia stem 
cells (Table 4), the therapeutic tumor microenvironment 
(Table 5), and therapy-induced clonal evolution (Table 6).

Uncovering drug effects and resistance by decoding LSCs
LSC was conventionally identified by CD34+/CD38− sur-
face marker. Multiple heterogeneities have been found 
within LSCs that account for the disease progression, 
alterations in the microenvironment, and induction of 
therapeutic relapse [72, 101]. To understand the mecha-
nisms behind drug resistance caused by LSCs, a series of 
studies utilizing single-cell sequencing have been con-
ducted, which are summarized in Fig. 6; Table 4.

Early in 2017, Giustacchini et al. utilized scRNA-seq 
and single-cell-based mutation detection targeting the 
BCR-ABL gene to disclose the heterogeneity of LSCs in 
CML [102]. Through single-cell analysis of serial samples 
from BCR-ABL+ LSCs taken from patients undergoing 
long-term (> 1 year) TKI treatment, a quiescent subpop-
ulation was identified. This subpopulation was already 
present at diagnosis, persisted and enriched during the 
treatment, and showed gene enrichment related to TGF-
β, TNF-α, IL-6, and JAK-STAT signaling pathways (Fig. 6) 
[102]. Also, the scRNA-seq data of those patients enter-
ing blast crisis (BC) revealed the presence of RUNX1 
mutations in distinct BCR-ABL+ LSCs subclones. This 
discovery implied that RUNX1 mutation could serve as a 
poor prognostic marker [102].

In 2020, Zhang et al. performed scRNA-seq on cells 
derived from four CML patients treated with TKIs and 
found poor responders were enriched with pre-treat-
ment stem/progenitor cells compared with respond-
ers [103]. Trajectory analysis validated the presence of 
tumor cells with primitive characteristics prior to treat-
ment, indicating that the resistance to TKIs may be 
intrinsic rather than acquired through treatment [103]. 

The work conducted by Kinstrie et al. also supported the 
notion of intrinsic resistance in LSCs. Their study iden-
tified the persistent and selective expression of CD93 
within a lin−CD34+CD38− CD90+ CML LSC subpopu-
lation, which showed higher proliferative potential and 
could persist TKI treament [99] (Fig.  6). These findings 
underscore the significance of CD93 as a potential prog-
nostic marker for TKI treatment [99]. Most recently, the 
importance of quiescence in LSCs was marked again in 
one recent study by Li et al. [104]. Researchers found that 
reprogramming of proliferating stem/progenitor-like 
cells into quiescent stem-like cells (QSCs) may confer 
AML resistance during chemotherapy [104]. By longitu-
dinal scRNA-seq of 6 AML patients during cytarabine 
(Ara-c)-based treatment, upregulation of CD52 and 
LGALS1 (the marker for QSC phenotype) was observed, 
where CD52-SIGLEC10 interaction between QSCs and 
monocytes may underly the mechanism for immune eva-
sion and resistance [104].

Except for quiescent LSCs, Sachs et al. found the two 
subsets of AML LSCs in mouse models with respectively 
high expression of Cd69 and Cd36 (Fig.  6) [105]. The 
Cd36-high subpopulation showed stronger self-renewal 
but proliferative disabled whereas the Cd69-high sub-
population had a stronger proliferative capacity but could 
not initiate leukemia development [105]. This highlighted 
the clinical relevance of targeting both self-renewal and 
proliferation as essential therapeutic strategies for AML 
[105]. Applying scRNA-seq, another study identified two 
subsets of LSCs featured by c-Kit+ B220+ Mac-1− and 
c-Kit+ B220+ Mac-1+, respectively (Fig.  6) [106]. The 
c-Kit+ B220+ Mac-1+ cells displayed intrinsic resistance 
when subjected to the DA treatment in vivo, with the 
higher activation of the RAS pathway. Thus, the combi-
nation therapy involving DA and RAS inhibitors effec-
tively impeded disease progression in the murine model 
[106].

Another innovative discovery by Duy et al. indicates 
that the relapse of AML is mediated by a resilient sub-
population exhibiting a senescence-like phenotype, 
regardless of LSC status [107]. The authors found that 
AML cells were induced to a senescence-associated 
secretory phenotype (SASP) by ATR signaling in vitro 
and in vivo after treatment of Ara-c (Fig.  6). Impor-
tantly, these senescence-like cells exhibited remarkable 
engraftment ability and could repopulate AML. (Fig. 6). 
Surprisingly, there is no enrichment of LSC genes at the 
nadir but at relapse in senescence-like cells, suggesting 
that LSC programming may be enhanced in following 
treatment induction. This implies that the enrichment 
of stem-cell features at relapse may be a consequence of 
chemotherapy rather than a cause of chemotherapy tol-
erance, highlighting ATR inhibition as a potential thera-
peutic approach [107].
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Most recently, with CITE-seq, a study noted the exis-
tence of a novel type of monocytic LSC (m-LSC) in AML, 
driving the refractory/relapse response when treated 
with venetoclax + azacidine [37]. This kind of m-LSC 
exhibited a unique immunophenotype (CD34+, CD4+, 
CD11b−, CD14−, CD36−) which is fundamentally dif-
ferent from the previously well-described primitive LSC 
(p-LSC) type [108, 59] while these two types of LSCs can 
co-reside in the same AML patient (Fig. 6). Gene expres-
sion signature implied that the pyrimidine and purine 

metabolism pathway was enriched in m-LSCs compared 
to p-LSCs. Importantly, inhibiting purine-based DNA/
RNA synthesis by cladribine showed a selectively strong 
effect in eradicating the m-LSCs, demonstrating a new 
therapeutic target.

The exact elucidation of how LSCs function in the 
resistance to therapeutic approach has yet to be deter-
mined; nevertheless, the potency of single-cell sequenc-
ing in ascertaining the heterogeneity and corroborating 

Table 4 Summary of key findings related to drug resistance mechanisms induced by leukemia stem cells using single-cell sequencing
Leu-
ke-
mia 
Type

Major 
Methods

Key Findings Clinical Relevance References

CML scRNA-seq Consistent and distinct expression of CD93 was observed on a 
lin − CD34 + CD38 − CD90 + CML LSC population and showed stem cell 
characteristics and quiescent characters. CD93 + LSCs subpopulation 
persisted in relapsed CML patients after the withdrawal of TKI treatment.

Showed that the CD93 is selectively 
and consistently expressed at the 
CML LSCs subpopulation, which 
indicates poor TKI responders.

[99]

CML scRNA-seq; 
single-cell 
targeted 
mutation 
analysis in 
DNA

TGF-β and TNF-α were dysfunctional in both BCR-ABL- LSCs and BCR-
ABL + LSCs. Long-term TKI treatment selected a quiescent LSC subpopu-
lation, showing TGF-β, TNF-α, and IL-6–JAK-STAT gene enrichment. RUNX1 
mutation in LSC was observed for patients entering blast crisis.

Revealed a series of prognostic 
markers including RUNX1 and pro-
vided indicators for TKI response.

[102]

CML scRNA-seq Poor imatinib responders enriched patient-specific pre-treatment stem/
progenitor cells compared with responders. The stem cell feature of LSCs 
was present at diagnosis rather than acquired by the treatment.

Indicated that the stem cell of LSCs 
feature was intrinsic rather than 
acquired during TKI therapy in 
CML, revealing the need for early 
intervention for LSCs.
.

[103]

AML scRNA-seq Reprogramming of stem/progenitor-like cells into quiescent stem-like 
cells may provide AML with resistance during chemotherapy. Upregula-
tion of CD52 and LGALS1 marking quiescence was observed, where 
CD52-SIGLEC10 interaction between QSCs and monocytes underlie the 
mechanism for immune evasion and resistance. Also, the LGALS1 inhibi-
tor could help eliminate QSCs and enhance the chemotherapy in patient-
derived primary AML cells.

Identified the quiescence marker, 
LGALS1, as a promising target for 
chemoresistant AML.

[104]

AML scRNA-seq The proliferation and self-renewal LSCs subpopulation was separated in 
AML, where Cd69 High LSCs were capable of self-renewal and Cd36 High 
LSCs were highly proliferative.

Noted that simultaneously target-
ing the self-renewal and prolifera-
tion in LSCs is essential for treating 
AML.

[105]

AML scRNA-seq C-Kit + B220 + Mac-1- and c-Kit + B220 + Mac-1 + LSC subpopulations were 
found in Setd2-/- AML, where the Mac + subpopulation was resistant to 
doxorubicin plus cytarabine (DA) treatment with the activation of RAS 
pathway.

Showed that treatments combin-
ing DA and RAS pathway targeting 
may improve the clinical outcome 
of AML.

[106]

AML scRNA-seq Induced by chemotherapy, AML cells depleted LSCs and entered a 
senescent-like phenotype. This kind of senescence was transient with 
increased engraftment ability. Entering the senescence-like phenotype 
was dependent on ATR. Post-senescence AML cells increased stem cell 
potential and conferred relapse.

Proposed that the stem cell feature 
of AML presented at relapse may 
be the consequence rather than 
the reason for relapse. Target-
ing the senescent-like feature by 
ATR may underlie therapeutic 
effectiveness.

[107]

AML CITE-seq A novel phenotype of monocytic LSC (m-LSC) was discovered, dis-
tinguished by CD34-, CD4+, CD11b-, CD14-, CD36-, driving relapse/
refractory response in venetoclax-based treatment. This m-LSC is devel-
opmentally and clinically distinct from the more well-described primitive 
LSC (p-LSC) but can co-exist in the same AML patient. The authors found 
unique enrichment purine/pyrimidine metabolism selective sensitivity to 
cladribine in m-LSCs.

Offered insight into venetoclax-
based treatment relapse and indi-
cated that co-targeting p-LSCs and 
m-LSCs may be clinically important 
in treating AML.

[37]
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specific markers in LSCs has been delineated in these 
investigations.

Revealing drug effect and resistance by decoding resistant 
tumor microenvironment
The TME plays a pivotal role in the initiation, progres-
sion, and metastasis of tumors, and has been increasingly 
identified to be an important therapeutic target in cancer, 
raising wide clinical interests [109, 110]. Evidence high-
lighting the importance of TME in leukemia progression 
has continuously emerged [111], and presented potential 
therapeutic targets [112]. Recently, serial studies applying 
single-cell sequencing have helped reveal the drug effects 
and resistant mechanisms by interrogating TME, espe-
cially immune cells (Table 5).

Checkpoint blockade therapy has shown improved 
outcomes in solid tumors, whose effect, however, was 
moderate and limited in treating AML [113]. To explore 
the resistance mechanisms of checkpoint blockade ther-
apy, two studies combined single-cell TCR sequencing, 
immune profiling, scRNA-seq, and CITE-seq on AML 
patients treated with the combination of hypomethyl-
ating agents and PD-1 inhibitor [38, 114]. One study 
observed that the CD8+ T cell repertoires expanded in 
patients who responded positively to the drugs or exhib-
ited stable disease whereas the repertoires contracted 

in resistant patients [38]. Notably, single-cell-based 
CNV analysis identified Chr7/7q loss as a marker indi-
cating poor response to checkpoint blockade therapy 
[38]. However, another study found that T cells experi-
enced clonal expansion in patients with immune-related 
adverse effects (irAEs), but not in those who exhibited 
antileukemic responses [114]. The expanded clones were 
mainly composed of CD8+ effector memory T cells with 
highly expressing both PD-1 and cytotoxic-related genes.

Cytokines play an important role in leukemia TME 
and may underlie therapeutic importance. One study in 
CML also implied TCR-seq and scRNA-seq to decipher 
the TME of CML patients undergoing Dasatinib plus 
IFN-α treatment [115]. This study showed that Dasatinib 
induced terminal differentiated NK and CD8+ T cells. 
However, the addition of IFN-α reversed this maturation 
process and restored the immunological function of NK 
and CD8+ T cells. Also, the inclusion of IFN-α broadened 
the T cell repertoires and enhanced costimulatory inter-
actions with B cells and monocytes [115]. Epigenetic reg-
ulation of immune cells in TME may also confer potential 
therapeutic implications for hematologic malignancies. 
Applying CITE-seq, M. Salmon et al. disclosed a new 
immunoregulatory mechanism in AML models treated 
with histone deacetylase inhibitor (HDACi) Panobino-
stat [116]. It was shown that plasmacytoid dendritic cells 

Table 5 Summary of key findings related to drug resistance mechanisms induced by tumor microenvironments using single-cell 
sequencing
Leu-
kemia 
Type

Major Methods Key 
Findings

Clinical Relevance Ref-
er-
enc-
es

AML Paired 
scRNA-seq 
and TCR 
repertoire 
profiling

TCR repertoires of CD8 + T cells expanded in responders or patients 
with stable disease after PD-1 blockade treatment and contracted in 
therapy-resistant patients. GZMK expression and stem-cell feature were 
observed in the T-cells of responders. Chr7/7q loss was a marker for 
resistance to PD-1 blockade therapy.

Noted the importance of TCR repertoires. 
TCR repertories were changed during 
therapy and indicated treatment response. 
Chr7/7q was identified as a prognostic indi-
cator for PD-1 blockade therapy in AML.

[38]

AML scRNA-seq, 
scDNA-seq, 
bulk TCRβ 
sequencing

Combined therapy of anti-PD-1 (pembrolizumab) and hypomethylat-
ing agent (decitabine) was feasible and had the best response of stable 
diseases or better in 6 of 10 patients. Clonal expansion of CD8 + effec-
tor memory T cells with PD-1 expression was associated with immune-
related adverse events.

Proposed that adding pembrolizumab to 
current decitabine therapy was clinically 
feasible in patients with relapsed AML.

[114]

CML scRNA-seq; Dasatinib induced the terminal differentiation and exhaustion of 
CD8 + T cells and NK cells, where the addition of IFN-α reversed this 
process and increased the number of unique putative epitope-specific 
TCR clusters.

Supported that the combination of IFN-α 
with TKI therapy will improve the therapeutic 
outcome.

[115]

AML scRNA-seq; 
CITE-seq; 
ChIP-seq; 
ATAC-seq

A novel immunoregulatory effect by histone deacetylase inhibition 
(HDACi) was associated with the IFN-α pathway. Plasmacytoid dendritic 
cells (pDC) produce IFN-α after HDACi treatment with increased H3K27 
acetylation at the IFN gene. Depletion of pDCs impaired the therapeu-
tic efficiency of HDACi.

Noted that the epigenetic activation of pDCs 
by HDACi enhances antitumor immunity, 
suggesting further invention of immuno-
therapies for epigenetic modulation in pDCs.

[116]

T-ALL scRNA-seq T-ALL patient–derived tumor xenografts (PDXs) models were devel-
oped. Screened out 39 drugs from 433 clinical-stage molecules using 
the PDXs model. Discovered that endothelial cells (ECs) and T-ALL cells 
interact reciprocally, mitigating drug responses in T-ALL PDXs.

Ultimately discovered 5 effective drugs from 
the drug screening and tested in vivo with 
therapeutic effects. First developed a T-ALL/
EC platform that can help elucidate the 
leukemia-microenvironment interactions 
with endothelial cells.

[117]
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Table 6 Summary of key findings related to drug resistance mechanisms induced by clonal expansion of leukemia using single-cell 
sequencing
Leu-
kemia 
Type

Major Methods Key Findings Clinical Relevance Ref-
er-
enc-
es

AML scRNA-seq RNA-based clonal evolution tracking was conducted on AML LSCs from 
matched pre- and post-treatment samples. Commonly evolved signaling 
networks mediating metabolism, apoptosis and chemokine signaling 
evolved and became the signature of relapsed samples.

Identified that co-targeting BCL2 and 
CXCR4 signaling may help improve 
therapeutic response.

[118]

CLL Targeted 
scDNA-seq

After BTK and BCL2 targeting agent (TA) treatments, mutual exclusivity of 
clonal architecture was observed among multiple resistance mutations 
to the same targeting therapies. Also, the co-occurrence of multiple 
novel mutations conferred resistance to dual TA treatment.

Proposed that CLL progression after 
dual TA treatment is complex but 
consistently oligoclonal. Different 
clones have distinct identifiable 
resistance mechanisms.

[119]

CLL scRNA-seq; 
scATAC-seq; 
mtscATAC-seq

MtDNA mutation was stable over the years and largely changed under 
strong selective pressure such as allo-HSCT or chemotherapy. The Chro-
matin state of CLL was also changed (SPIB, SPI1 depletion) and higher 
expression of CXCR4 was observed at relapse.

Marked that mtDNA mutations and 
chromosomal state as a clonal track-
ing method for leukemia progression.

[120]

CLL scRNA-seq; 
ATAC-seq

Consistent regulatory program in BTKi treatment was observed starting 
with a sharp decrease of NF-κB binding, continued with decreased acti-
vation of lineage-defining transcription factors and the final acquisition 
of a quiescent signature.

Established the time-dependent 
expression and gene regulatory 
response after BTKi treatment, of-
fering a new method for treatment 
monitoring.

[121]

CLL Computational 
system combining 
scRNA-seq and 
DNA barcoding

An integrative lineage tracing system was developed (ClonMapper), 
which combines DNA barcoding scRNA-seq. ClonMapper identified 
CLL subpopulations with distinct molecular features and survivorship 
trajectories during chemotherapy.

Associating CXCR4, Wnt and Notch 
signaling with the higher survival rate 
of CLL after chemotherapy.

[123]

CLL scRNA-seq; WES; 
Methylome 
sequencing

Pre-existing stem-cell-like subpopulations that conferred resistance after 
allo-HSCT treatment in early relapse samples. Early relapse featured a 
stable genome whereas late relapse featured strong genetic evolution, 
neoantigen depletion, and epigenomic instability.

Described clinical kinetics post-HSCT 
treatment in CLL.

[125]

ALL scRNA-seq Stem cell properties with the quiescent feature, and activation of gluco-
corticoid response were marked as relapse-initiating subpopulation in 
MLL-rearranged infant ALL (MLL-r iALL).

Provided insights for the risk stratifi-
cation of MLL-r iALL

[127]

B-ALL sc-CyTOF, RNA-seq Coordination between the glucocorticoid receptor pathway and B-cell 
developmental pathway was identified. The BCR signaling pathway was 
enriched during GC treatment, marked by activation of PI3K/mTOR and 
CREB signaling and accounted for the GC resistance. Dasatinib targets 
these active signaling and eliminates the GC resistance.

Indicated that the combination of 
GCs and TKIs may improve therapeu-
tic outcomes in B-ALL patients.

[128]

AML scDNA-seq AML Patients treated with VEN-based therapy with higher response rates 
were associated with NPM1 or IDH2 mutations, and poor responses or 
relapse were associated with TP53 loss or kinase activation, particularly 
FLT3 activation.

Provided insights for the risk strati-
fication and prognostic prediction 
with older AML patients receiving 
venetoclax-based combination 
therapies.

[133]

AML scDNA-seq VEN + AraC treatment induced adaptive resistance in AML, characterizing 
changes in oxidative phosphorylation, electron transport chain complex 
I (ETCI) and the TP53 pathway. ETC inhibition, pyruvate dehydrogenase 
inhibitors and mitochondrial ClpP protease agonists improved therapeu-
tic outcomes in VEN + AraC-resistant AML samples.

Noted that the mitochondrial and 
energy-related inhibitors may be 
clinically combined with VEN-
based therapy to improve therapy 
outcomes.

[134]

AML scDNA-seq; DNA 
methylation 
profilling

RAS/MAPK pathway, which leads to increased MCL-1 protein expres-
sion was the major mechanism for resistance to the VEN. MCL-1 protein 
maintained the respiration in VEN-resistant cells.

Identified the importance of combin-
ing VEN and the RAS/MAPK/MCL-1 
pathway inhibitor for AML treatment. 
This strategy may overcome the VEN 
resistance and improve AML patient 
survival.

[135]

CLL CITE-seq; single-
cell short and 
long read RNA 
sequencing

Multilayered resistant mechanism was observed in VEN-resistant CLL, 
including mutations in BCL2 and MCL1 amplification. Universal upregu-
lation of the MCL1 gene was observed, driven by NF-κB pathway activa-
tion, and this stopped after discontinuation of VEN therapy.

Proposed that the NF-κB pathway 
targeting may be a key for improving 
clinical outcomes in VEN-resistant 
CLL.

[136]
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(pDCs) showed increased producing type I IFN with Pan-
obinostat treatment by gaining H3K27ac near loci of the 
IFNα. Furthermore, combined treatment with the admin-
istration of Panobinostat and IFNα addressed the issue of 

pDCs depletion and led to improved clinical outcomes 
[116].

In addition to immune cells in the TME, the role of 
endothelial remodeling is also critically important for 
therapeutic targeting. For example, one recent study 

Fig. 6 Heterogeneity within LSCs mediated therapy resistance. (Upper, CML) (1) Quiescent BCR-ABL+ LSC subpopulation, with inflammatory-associated 
gene upregulated at diagnosis, persisted during TKI treatment. RUNX1 mutation gain was linked to the blast crisis in BCR-ABL+ LSC [102]. (2) CD93 was 
found to be selectively and persistently expressed in an LSC subpopulation, with quiescent gene upregulated at diagnosis. This LSC subpopulation 
persisted during TKI [99]. (Lower, AML). (3) AML LSC profile at relapse was presumed to be the consequence of recovery from senescence-associated se-
cretory phenotype (SASP), a phenotype induced by Ara-c treatment [107]. (4) Proliferative (Cd36high) and self-renewal (Cd69high) subtypes were found to 
be distinct in LSCs. Only targeting proliferation or self-renewal pathways caused resistance, and simultaneous targeting improved therapeutic outcomes 
[105]. (5) Monocytic LSC (m-LSC) was distinguished from previously well-defined primitive LSC (p-LSC) and drives resistance to venetoclax(VEN)-based 
treatment [37]. Co-targeting m-LSCs with cladribine may be clinically important. (6) Mac-1 was found to be differentially expressed in LSCs. Mac-1+ sub-
type is DA resistant with higher RAS pathway activation [106]
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found that endothelial cells (ECs) can provide protu-
morigenic signals and sustain T-ALL cells during mul-
tiple drug treatments by reciprocally modulating their 
transcriptomic profile [117]. ScRNA-seq data implied 
T-ALL cells acquire “EC-mediated educational signa-
ture” including upregulation of JAK-STAT, MAPK, EGFR 
and TGF-β pathway and downregulation of p53 pathway, 
whereas ECs acquire more tumor-associating features 
including activation of VEGF-A, TNF-α, and NF-κB 
pathways.

Taken together, by providing insights at the single-cell 
level, these single-cell technologies enhance our under-
standing of drug resistance mechanisms mediated by 
TME and help identify new therapeutic targets.

Deciphering drug effect and resistance by decoding 
therapy-induced clonal expansion and evolution
Understanding the alterations that occur within the leu-
kemia composition after therapy was of vital importance, 
especially at the cellular level. The clonal expansion and 
selection, genetic mutation, and accumulation are inher-
ently linked to resistance, owing to the selective pressure 
exerted by therapy on the resilient subpopulation [39]. A 
recent series of studies have utilized single-cell sequenc-
ing technology to explore the mechanisms of drug resis-
tance caused by therapy-induced clonal expansion and 
evolution of tumor cells. These findings have been sum-
marized in Table 6.

In AML, where the hierarchical structure is well estab-
lished based on DNA sequence, Stentson et al. were 
the first to unveil the RNA-based clonal evolution of 
AML after therapeutic intervention [118]. Performing 
scRNA-seq on AML leukemia-initiating cells (LICs) from 
matched diagnosis and relapse bone marrow samples, the 
authors identified the common evolved gene expression 
and signaling networks mediating metabolism, apopto-
sis, and chemokine secretion in AML progression. Co-
targeting CXCR4 and BCL2 marked increased survival 
in murine models [118]. Another study performing tar-
geted scDNA-seq in CLL patients showed that the use of 
single-targeting agents, such as BTK inhibitors and BCL2 
inhibitors, could give rise to a state of mutual exclusivity 
among resistance-associated genes in subclones of CLL 
patients [119]. Furthermore, the co-occurrence of mul-
tiple resistant mutations to different targeting agents can 
be also detected in the same clone [119].

Interrogating mtDNA-based clonal evolution is a novel 
method for decoding non-genetic mechanisms that con-
tribute to relapse. By combining mtscATAC-seq, scRNA-
seq and scATAC-seq, one study aimed to gain insights 
into CLL relapse by marking mtDNA mutations and 
chromosomal accessibility [120]. Mutations in mtDNA 
propagated more immensely under strong therapeutic 
pressure such as chemoimmunotherapy and allogeneic 

hematopoietic stem cell transplantation (allo-HSCT) 
compared to ibrutinib treatment. Paralleled to mtDNA 
mutation, chromosomal accessibility and expression pro-
file also showed dynamics in CLL subclones. The deple-
tion of transcription factor (e.g. SPIB, BCL11B, BCL11A, 
and IRF1) and an increase of CXCR4 expression in CLL 
was observed at relapse, indicating a less differentiated 
state [120].

In another trial focusing on CLL patients undergo-
ing ibrutinib therapy with immunophenotyping, ATAC-
seq, and scRNA-seq [121], robust reduced NF-κB 
binding activity was first observed after ibrutinib induc-
tion, followed by decreased regulatory activity of tran-
scription factors involved in B cell development (e.g. 
EBF1, FOXM1, IRF4, PAX5, PU.1) and loss of B-cell sur-
face markers in CLL cells (e.g. CD5 and CD19). Finally 
the acquisition of a quiescence-like gene signature was 
marked [121]. This study described the regulatory effects 
for therapeutic inhibition of B cell receptor signaling in 
CLL.

One study developed a linear-tracking system (Clon-
Mapper), which utilized DNA barcoding in conjunction 
with CROP-seq [122], which is an expression vector for 
single-guide RNA (sgRNA) capable of expressing and 
capturing sgRNA barcodes in scRNA-seq [123]. This 
innovative approach enabled direct assessment of diver-
sification and transcriptional patterns of clones [123]. 
Applying the tool to human CLL cell line system, the 
authors identified distinct pre-existing cell populations 
in the samples prior to treatment. One population com-
prised a unique subset of clones characterized by their 
noteworthy potential for “high survivorship” (HS). Fol-
lowing treatment, this subset expanded and accounted 
for the majority of relapse clones. The other population 
consisted of a subset of clones with a propensity for “low 
survivorship” (LS), which diminished after the thera-
peutic bottleneck. During the initial stages of treatment 
with fludarabine/mafosfamide, the HS subpopulation 
relies upon oxidative stress and DNA repair pathways 
to sustain their survival, whereas the LS subpopula-
tion manifests mechanisms such as cellular senescence, 
inflammation, and translational control to alleviate cel-
lular damage. These results proposed ClonMapper as 
a potent method in murine and humans for dissecting 
clonal dynamics involved in both tumor progression and 
the response to therapeutic interventions.

Allo-HSCT has been proven to have curative effects 
in treating hematologic malignancies with donor-
derived graft-versus-leukemia (GvL) effect [124]. How-
ever, disease recurrence remains a significant challenge 
that restricts therapeutic efficiency [120, 125]. Single-
cell transcriptomic together with epigenomic analy-
sis revealed that the early relapse in CLL patients after 
allo-HSCT therapy is characterized by pre-existing 
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stem-cell-like subpopulations. These subpopulations 
confer drug resistance, a mechanism that has also been 
observed in AML and CML through single-cell sequenc-
ing [15, 102, 103, 105]. Comparably, the late relapse (> 2 
years) trajectory in CLL patients after allo-HSCT therapy 
exhibits divergent evolutionary paths and the gain of a 
broad range of methylome instability [125].

Glucocorticoids (GCs), functioning through the acti-
vation of pro-apoptotic pathways, were known as cell-
growth inhibitors and were used for treating ALL for 
decades [126]. Poor primary response to GCs was often 
related to bad outcomes and relapse. In a single-cell 
study involving ALL patients treated with prednisolone 
(a kind of GC), a high risk of relapse was associated with 
activation of glucocorticoid response, smaller cell size, 
and a quiescent gene expression program with stemness 
properties (e.g. CD44, EPC1, SET2D, and SOCS2) [127]. 
Another recent study went deep into the mechanism 
of GC resistance and identified glucocorticoid recep-
tor pathway was coordinated with the B-cell receptor 
(BCR) pathway in B-cell precursor acute lymphoblastic 
leukemia (BCP-ALL) [128]. By single-cell proteomics 
and RNA-seq, the authors identified that the BCR sig-
naling pathway was enriched during GC treatment, with 
activation of BCR downstream pathway including the 
PI3K/mTOR and CREB signaling and accounted for GC 
resistance. Dasatinib effectively targeted these pathways 
and eliminated the resistance of GCs in vivo and in vitro 
[128]. This study suggested the combination of GCs and 
TKIs may potentially improve therapeutic outcomes in 
B-ALL patients.

Venetoclax (VEN) is a selective inhibitor of the anti-
apoptotic protein BCL2, which has been associated with 
decreased sensitivity to chemotherapy [129]. Initially 
approved by the FDA in 2016 for the treatment of CLL 
with chromosomal 17p deletion, VEN has limited effi-
cacy in treating AML as a monotherapy. However, the 
combination of VEN with DNA methyltransferase inhibi-
tors or low-dose cytarabine in older patients, approved 
by the FDA, has shown promising results [131, 132]. 
Despite this, primary resistance and adaptive resistance 
through clonal selection can lead to chemotherapy-
refractory relapse [133]. Recent studies utilizing single-
cell sequencing have helped decipher the complex clonal 
evolutionary nature of leukemia with VEN-based treat-
ment [133–136].

One study identified that primary and adaptive resis-
tance to VEN-based therapy correlated with the acquisi-
tion or enrichment of different kinase-activating clones 
in AML, such as FLT3-ITD, FLT3-TKD, FLT3 N676K, 
and RAS mutations, whereas FLT3-ITD gain and TP53 
loss were considered to account for the VEN resistance 
[133]. Another study taking advantage of scDNA-seq 
revealed that the adaptive subclone to VEN + Ara-c 

treatment exhibited changes in oxidative phosphoryla-
tion, ETC complex I, and the TP53 pathway [134]. Sub-
sequent trials showed the treatment of ETC inhibitors, 
pyruvate dehydrogenase inhibitors, or mitochondrial 
ClpP protease agonists largely postponed the relapse fol-
lowing VEN + Ara-c treatment, promoting new poten-
tial therapeutic targets related to metabolism in AML 
[134]. Furthermore, a study that profiled DNA mutations, 
methylation patterns, metabolism, and expression iden-
tified and validated the RAS/MAPK pathway-induced 
MCL-1 expression as an acquired pathway of VEN resis-
tance [135]. scDNA-seq revealed the clonal selection in 
AML patients treated with VEN, showing the clear clonal 
expansion of clones harboring RAS mutation [135]. 
These findings established the potential combinatorial 
treatment strategy related to the RAS/MAPK/MCL-1 
pathway [135]. The upregulated ubiquitination of MCL-1 
has also been observed in CLL patients who relapsed 
with VEN monotherapy, which may be directly associ-
ated with NF-κB activation [136]. With the recent clini-
cal trial combining VEN + DA treatment achieving a 91% 
remission rate in AML patients [137], there is growing 
interest in expanding VEN-based regimens for effective 
treatment. These studies establish the ample scope for 
single-cell analysis on VEN-based therapy and identified 
several new potential targets for therapy and prognosis in 
leukemia.

Perspectives
Towards spatial dissection of leukemia at single-cell level
Single-cell omics methodologies, such as spatial omics 
[138], scCUT&tag [139], scHi-C [24] and multi-omics, 
are continuously expanding their repertoire, encom-
passing additional cellular dimensions. For example, the 
pathology of leukemia always occurs in a spatial context, 
disseminating from the bone marrow and establishing 
tumor niches in various environments, including the 
central nervous system [140]. State-of-art spatial tran-
scriptomes are available by laser capture microdissec-
tion (LCM)-based strategies and image-based strategies, 
enabling in situ and high-resolution spatial transcrip-
tome profiling of single cells in the TME [138]. Recently, 
barcoding-based spatial transcriptomics by DBiT-seq has 
reduced costs and allowed for the quantification of spa-
tial epigenomics [141], opening the way for spatial mul-
tiomics and may reveal the spatial regulatory networks. 
Proteins, the functional units in the cell, can now be 
quantified in spatial proteomics at near single-cell level, 
thanks to recent advances in liquid chromatography-
mass spectrometry (LC-MS) based methods and matrix-
assisted laser desorption/ionization (MALDI) [142]. 
Isolation and dissection of the spatially diversely orga-
nized spatial structure of leukemia TME may uncover the 
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spatial programming of the small niches and drug resis-
tance mechanisms [143].

Deep into single-cell data by artificial intelligence
Considering the burgeoning expansion of single-cell 
omics data, the concurrent computational data pro-
cessing and interpretation methods to comprehend this 
wealth of information hold equal significance. Biomedi-
cal research endeavors are increasingly employing artifi-
cial intelligence (AI), specifically deep learning (DL), to 
enhance the dependability of analytical workflows and 
discern latent molecular characteristics. DL frameworks 
have been devised to discriminate between molecular 
subtypes in various cancers [144]. In the context of leu-
kemia, different DL framework (AMLnet [145], CML-
cGAN [146], ALNett [147]) has been applied to the 
diagnosis and classification of leukemia from medical 
images. The rapid emergence of AI that integrate and 
analyze omics data is happening in parallel with advance-
ments in single-cell technologies. For example, one study 
implemented machine learning for AML cell-type dif-
ferentiation. By defining a hierarchy framework along 
the HSC to the myeloid axis, they successfully classified 
AML cells into six subclasses, providing huge insight into 
AML heterogeneity [58].

However, studies combining AI/DL with single-cell 
omics datasets to identify distinct subtypes and predict 
interactions in TME and drug response are still lacking 
in leukemia. With the ongoing generation of data derived 
from diverse single-cell omics of leukemia samples, the 
amalgamation of multi-omics data with AI-based analyti-
cal approaches holds great promise in making significant 
strides toward understanding the etiology, drug resis-
tance mechanisms, discovery of novel targets, and prog-
nostication on leukemia in the future.

Leveraging single-cell technologies for developing 
precision medicine against leukemia
Precision medicine in leukemia seeks to enhance patient 
outcomes by customizing treatment based on the dis-
tinctive genomic characteristics of the tumor. Previously, 
large-scale genomic projects such as The Cancer Genome 
Atlas [148] (TCGA) have built a roadmap to genetic 
changes present in various cancer subtypes before the 
commencement of treatment. However, bulk omic data 
is still limited in giving precise insights into intra-tumor 
heterogeneity as the profile was averaged. As largely 
reviewed above, single-cell sequencing has the intrinsic 
advantage of tracking personal tumor traits. For example, 
analyzing the evolutionary structure of leukemia by sin-
gle-cell sequencing could address how and at what stage 
the tumor has progressed, aiding the fine-tuning of effec-
tive personal therapeutic strategies. One study has suc-
cessfully realized the prediction of AML drug response 

based on the sequencing result in mouse patient-derived 
xenografts (PDX) model [59]. This paves the way for tai-
lored treatment strategies in patients, indicating a new 
era in personalized precision medicine of leukemia. 
Besides, examining the personalized composition and 
repertoire of tumor-infiltrating immune cells by single-
cell sequencing is also essential as it is directly linked to 
the efficiency of immune checkpoint blockade.

However, it is worth noting that we still are on the way 
to incorporating single-cell technologies into clinical 
practice. Issues such as the absence of a comprehensive 
tumor-associated single-cell sequencing database, the 
sparsity in single-cell data, data bias from different exper-
imental batches and studies, and the relatively high cost 
of sequencing are still posing challenges [149]. With the 
rapid advance of sequencing techniques and cost reduc-
tion, we firmly believe that the clinical implementation of 
single-cell technologies would be one of the most impor-
tant strides toward precision medicine of leukemia and 
other cancers in the near future.
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