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Abstract
Being stimulated by the chemokine CXCL12, the CXCR4 / CXCR7 cascade is involved in tumor proliferation, 
migration, and metastasis. The interaction between CXCL12, secreted by cells from the microenvironment, and 
its receptors is complex and has been ascribed to promote chemotherapy resistance. However, the role of this 
signaling axis and its targetability in germ cell tumors (GCT) is not fully understood. Thus, this study investigated 
the therapeutic efficacy of a nanobody-drug-conjugate targeting CXCR4 (CXCR4-NDC) and functionally 
characterized this signaling pathway in GCT using small molecule inhibitors and nanobodies. As shown by 
diminished cell viability, enhanced apoptosis induction, and detection of mitotic catastrophes, we confirmed the 
cytotoxic efficacy of the CXCR4-NDC in CXCR4+-GCT cells (i.e. seminoma and yolk-sac tumor), while non-malignant 
CXCR4−-fibroblasts, remained largely unaffected. Stimulation of CXCR4+ / CXCR7+-GCT cells with CXCL12 resulted 
in an enhanced proliferative and migratory capacity, while this effect could be reverted using CXCR4 inhibitors or 
a CXCR7-nanobody. Molecularly, the CXCR4 / CXCR7-signaling cascade could be activated independently of MAPK 
(ERK1 / 2)-phosphorylation. Although, in CXCR4− / CXCR7−-embryonal carcinoma cells, CXCR7-expression was re-
induced upon inhibition of ERK1 / 2-signaling. This study identified a nanobody-drug-conjugate targeting CXCR4 as 
a putative therapeutic option for GCT, i.e. seminoma and yolk-sac tumors. Furthermore, this study shed light on the 
functional role of the CXCR4 / CXCR7 / CXCL12-signaling cascade in GCT, demonstrating an important influence on 
proliferation and migration.
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To the editor
GCT account for 1–2% of all neoplasms occurring in the 
male population, but represent the most common cancer 
type in young men [1]. The CXCR4 / CXCR7 / CXCL12-
cascade has been postulated to play a major role dur-
ing metastasis in GCT. In this study, we therapeutically 
targeted this axis in GCT. Further, we characterized the 
molecular role of this cascade.

According to ‘The Cancer Genome Atlas’ (TCGA), 
mutations in CXCR4 / CXCR7 were not found in GCT 
(Fig. S1A). On protein level, seminoma (SEM) tis-
sues presented as CXCR4+/  CXCR7−, embryonal car-
cinoma (EC) as CXCR4− / CXCR7−, choriocarcinoma 
(CC) as CXCR4−  /  CXCR7+, and yolk-sac tumors 
(YST) as CXCR4+ / CXCR7+ (Fig.  1A). In mixed GCT 
(YST + EC), only YST cells were CXCR4+ / CXCR7+. 
In GCT cell lines including cisplatin-resistant sub-
clones (-R), similar observations were found on mRNA 
level (SEM: TCam-2CXCR4+/CXCR7+; EC: 2102EP / 
NT2/D1 / NCCITCXCR4−/CXCR7−; CC: JAR / JEG-3 / 
BeWoCXCR4−/CXCR7+; YST: GCT72CXCR4+/CXCR7+; inter-
mediate EC  /  YST: 1411HCXCR4+/CXCR7+) (Fig.  1B; Fig. 
S1B). CXCR7 expression profiles could be confirmed on 
protein level (Fig.  1C). Previously, on protein level we 
already demonstrated that SEM and YST cells present as 
CXCR4+, while EC and CC cells were CXCR4− [2]. Fibro-
blasts (MPAF) showed negligible CXCR4 / CXCR7 lev-
els, while expressing and secreting CXCL12 (Fig. 1B; Fig. 
S1C).

We therapeutically targeted CXCR4 by a nanobody 
coupled to the spindle-toxin monomethyl-auristatin-
E (nanobody-drug-conjugate; NDC) [3]. Treatment of 
SEM and YST cells with the CXCR4-NDC decreased cell 
viability compared to the uncoupled CXCR4-nanobody 
(CXCR4-NB) (Fig.  1D, E). The LD50 concentrations for 
the CXCR4-NDC were between 56.4 and 310.6 nM for 
GCT cells (including cisplatin-resistant sub clones (-R)) 
and > 500 nM for fibroblasts, thereby opening a therapeu-
tic window (Fig.  1E). A CXCR4-NDC treatment mainly 
resulted in mitotic catastrophes (TCam-2 / -R, 1411H, 
BeWo) and induction of apoptosis in CXCR4+-cells 
(Fig.  1E, F; Fig. S1D). In fibroblasts, the cell cycle and 
apoptosis remained unaffected (Fig. 1E, F; Fig. S1D).

Next, we deciphered the molecular role of this sig-
naling axis on mRNA and phospho-proteome level. 
Treatment with recombinant CXCL12 (100 ng  /  ml, 
8  h) resulted in enhanced levels of FOS and MMP3 in 
GCT72CXCR4+/CXCR7+ and BeWoCXCR7+ cells, while BeWo 
cells further showed increased expression of CD44, IL6, 
ITGA4A, and MMP1 (Fig. S1E). Further, phospho-kinase-
arrays were performed in CXCR4+ / CXCR7+ cells 24 h 
after treatment with recombinant CXCL12 (250 ng / ml) 
(Fig. 2A; Fig. S1F). In TCam-2CXCR4+ we found increased 
phosphorylation (p-) of β-Catenin and STAT5a  /  b 

Fig. 1   (A) Immunohistochemical evaluation of CXCR4 / CXCR7 in SEM, 
CC, YST and YST + EC mixed GCT. (B) Relative expression of CXCR4, CXCR7, 
and CXCL12 in GCT cell lines and fibroblasts (MPAF). ACTB and GAPDH were 
used as housekeeping genes. (C) Flow cytometry data of CXCR7-APC 
stained GCT cell lines (blue) compared with unstained controls (grey). (D) 
XTT cell viability assays of GCT cell lines and fibroblasts (MPAF) treated with 
CXCR4-NDC or CXCR4-NB alone for 24–96 h. (E) LD50 values measured by 
XTT cell viability assays 72 h after treatment with cisplatin (CisPt, µM) or 
CXCR4-NDC (nM) and color-coded changes in cell cycle distribution (mi-
totic catastrophe = red; changes < 5% = grey) upon treatment with CXCR4-
NDC (LD50 concentrations) for 72 h as compared to the CXCR4-NB alone. 
(F) Lollipop graph summarizing the relative number of apoptotic cells in 
CXCR4+ GCT cells and CXCR4− MPAF upon treatment with either CXCR4-
NDC or CXCR4-NB alone (LD50 concentrations) for 72 h
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Fig. 2 (See legend on next page.)
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(Y699), in 1411HCXCR4+/CXCR7+ elevated p-GSK-3α  /  β 
(S21 / S9), p-p53 (S392) and p-WNK1 (T60), and in 
BeWoCXCR7+ enhanced levels of p-GSK-3α / β (S21 / S9), 
p-p53 (S392 / S46), p-SRC (Y419) and p-WNK1 (T60). 
In GCT72CXCR4+/CXCR7+ cells, phosphorylation of thir-
teen signaling-molecules, including ERK1  /  2 (T202 / 
Y204, T185 / Y187), GSK-3α  /  β (S21 / S9), β-Catenin, 
and p53 (S15 / S46) was reduced, while p-p53 (S392) was 
strongly enhanced. Phosphorylation of p53 at S15 has 
been described to increase stability of p53 by blocking 
MDM2 binding [4, 5]. Similarly, phosphorylation of S392 
is also known to stabilize p53, influence its mitochondrial 
translocation and a transcription-independent apop-
totic function. At a later time-point of DNA damage, 
S46 phosphorylation initiates the p53-mediated apopto-
sis through the induction of pro-apoptotic genes, such 
as p53AIP1 [4, 5]. Hence, in CXCL12-stimulated BeWo 
cells, p53 phosphorylation at S15 and S46 might indicate 
an enhanced and stabilized pro-apoptotic p53 signaling 
cascade. Vice versa, CXCL12-stimulated GCT72 cells 
revealed a contrary phosphorylation pattern with dimin-
ished S15 and S46 phosphorylation of p53. Generally, the 
basal phosphorylation of all three evaluated p-p53 sites, 
particularly S46 and S392, is significantly higher in BeWo 
cells as compared to GCT72 (Fig. S1F), thereby indicat-
ing a more profound apoptosis signaling in BeWo cells 
upon treatment with the CXCR4-NDC (Fig. 1E, F). Thus, 
reduced p-p53-S15  /  S46 after CXCL12-stimulation 
might diminish the activity of the apoptotic cascade in 
YST cells, thereby contributing to the high resistance of 
YST cells to cisplatin.

Furthermore, the migratory and proliferative capac-
ity of GCT72CXCR4+/CXCR7+ and 1411HCXCR4+/CXCR7+ 
cells was enhanced upon CXCL12-stimulation; this 
effect could be blocked upon application of a CXCR7-
blocking nanobody (CXCR7-NB) or CXCR4-inhibitors 
(AMD3100, WZ811, LY2510924) (Fig.  2B-D, G). The 
CXCR4 / CXCR7-function after CXCL12 stimulation 
might also be mediated by receptor-heterodimerization 
[6, 7]. In YST CXCR4+/CXCR7+ cells, we observed that block-
ing CXCR4 / CXCR7, abolished the effects on prolifera-
tion and migration, suggesting that both receptors act in 
concert to mediate their molecular functions.

We noted a discrepancy between a described 
CXCL12-dependent MAPK activation and our observed 
decreased MAPK signaling in CXCL12-stimulated 
cells [8–10]. Thus, we questioned, if ERK1  /  2 inhibi-
tion would influence CXCR4 / CXCR7 expression in 
ECCXCR4−/CXCR7− cells. Indeed, the ERK1  /  2 inhibitor 
SCH772984 decreased levels of total- and p-ERK1  /  2 
(T202  /  Y204-T185  /  Y187), while increasing CXCR7 
expression (and CXCR4 in NT2/D1) (Fig. 2E, F; Fig. S1F). 
Thus, in EC cells, CXCR7 expression seems to be sup-
pressed by MAPK-signaling, while in YST, diminished 
MAPK signaling after CXCL12 stimulation seems to 
allow for CXCR7 expression (Fig. 2G).

In summary,  we highlighted the CXCR4-NDC as a 
therapeutic option for CXCR4+ SEM and YST (Fig. 2G). 
In YST and CC, also CXCR7 is a putative target, since 
an uncoupled CXCR7-NB was able to block the CXCR7-
mediated molecular effects and proved to be functional. 
Thus, using a combination of CXCR4- and CXCR7-NDC 
could be advantageous for the treatment of mixed GCT 
consisting of SEM, YST and CC. The ability to target 
YST is of paramount interest, since YST represent the 
most aggressive GCT entity responsible for a majority 
of GCT-related death. Under chemotherapy, develop-
ment of YST represents an escape mechanism, resulting 
in therapy-resistant relapses. Additionally, about 5% of 
metastatic SEM present as aggressive relapses accompa-
nied by elevated AFP level, pointing at a YST-subpopu-
lation [11]. In this setting, using a CXCR4-NDC would 
be beneficial to target both, SEM and the occult YST 
cells, by rendering the therapy more efficient and reduc-
ing the risk of a relapse. Due to tumor heterogeneity, the 
clinical need to explore tumor subtype-specific targets 
remains. As such, we identified CD24 to be a specific 
target for the treatment of EC using NK-CD24-CAR 
cells [12]. Moreover, we identified the tight-junction 
molecule CLDN6 as a putative target for the treatment 
of SEM, EC, CC, and partly YST by using a CLDN6-
antibody-drug-conjugate [13]. As such, depending on 
the tumor subtype, a combined (immuno)therapeutic 
option should be considered for the treatment of hetero-
geneous tumors.

(See figure on previous page.)
Fig. 2 (A) Densitometric evaluation of relative pixel intensities (normalized to untreated controls) of the indicated phosphorylation sites in cell lysates 
from GCT72, 1411H, TCam-2 and BeWo cells treated with recombinant CXCL12 (250 ng / ml) for 24 h, as measured by a human phospho-kinase array. (B) 
Relative migration of GCT72 and 1411H cells treated with either 100 ng / ml recombinant CXCL12, 100 nM CXCR7-NB (VUN702), or the combination of 
both, in comparison with the untreated control. (C) Box plot summarizing the number of proliferative GCT72 cells treated with 100 ng / ml recombinant 
CXCL12, 20 µM CXCR4-inhibitor AMD3100, or the combination of both for 24 h in comparison to the untreated control. (D) Box plot summarizing the 
number of proliferative 1411H cells treated with 100 ng / ml recombinant CXCL12, CXCR4-inhibitors WZ811 (5 µM) / LY2510924 (50 nM), or the combi-
nation of both for 32 h in comparison to the untreated control. (E) Densitometric evaluation of western blot data of phospho- and total-ERK in EC cells 
(2102EP, NCCIT, NT2/D1) treated daily with 100 nM ERK inhibitor SCH772984 for 96 h. (F) Relative mRNA expression of CXCR4 and CXCR7 in EC cell lines 
(2102EP, NCCIT, NT2/D1) treated daily with 100 nM SCH772984 for 96 h as compared to untreated controls. ACTB and GAPDH were used as housekeeping 
genes. (G) Model summarizing key findings related to the CXCR4 / CXCR7 / CXCL12 axis. SEM present as CXCR4+ / CXCR7−, YST as CXCR4+ / CXCR7+, CC 
as CXCR4− / CXCR7+ and EC as CXCR4− / CXCR7−. SEM (also with occult YST subpopulations), YST and CC are targetable by CXCR4- and / or CXCR7-NDC, 
respectively. CXCL12 stimulated CXCR4 / CXCR7 enhanced proliferation and migration in YST cells. In EC cell lines, inhibition of MAPK (ERK1 / 2) signaling 
allows for re-induction of CXCR7 expression (and partly CXCR4)
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List of abbreviations
ABTS  2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid
ADC  Antibody-drug-conjugate
CC  Choriocarcinoma
EC  Embryonal carcinoma
ELISA  Enzyme-linked immunosorbent assay
FFPE  Formalin-fixed, paraffin-embedded
GCT  Germ cell tumor
h  hour
LD50  Lethal dose, 50%
min  minutes
MMAE  Monomethyl auristatin E
NB  Nanobody
NDC  Nanobody
NB  Nanobody-drug conjugate
nonSEM  Non-seminoma
p-  Phosphorylation
PCA  Principal component analysis
RPKM  Reads per kilobase million
SEM  Seminoma
TCGA  The Cancer Genome Atlas
YST  Yolk-sac tumor
XTT  2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2 H-tetrazolium-5-

carboxanilide
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