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Abstract 

Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular 
functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activi-
ties and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression 
and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous 
tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors 
alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several 
agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the struc-
ture and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss 
the challenges and future directions regarding anti-FAK combination therapies.
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Background
Focal adhesion kinase is a tyrosine kinase composed 
of 1052 amino acids with a molecular weight of 125kD 
[1]. FAK is a crucial regulator of vital cellular processes, 
including cell adhesion [2], migration [3], proliferation 
[4], and survival [5]. Such processes have significant 
implications for the development and progression of 
cancer. Moreover, multiple studies have confirmed FAK 
upregulation in a diverse range of human malignancies, 
including colorectal, lung, ovarian, neck, bladder, breast, 
and esophageal cancers [6]. In addition, by promoting 

tumor angiogenesis, epithelial-mesenchymal transforma-
tion, cancer stemness, and immunomodulatory capacity 
[7–9], FAK significantly contributes to malignant pro-
gression. The available evidence suggests that FAK rep-
resents a promising target for cancer therapy. This article 
aims to provide an overview of the significant impact 
of FAK on both cancer cells and cancer-associated cells 
within tumors while also offering a comprehensive dis-
cussion of the recent advances made in developing thera-
peutic agents that target FAK and the combination of 
these agents with other approaches.

FAK structure and activation
Molecular structure of FAK
FAK is composed of three distinct domains: a four-point-
one-ezrin-radixin-moesin (FERM) domain, a kinase 
domain, and a C-terminal focal adhesion-targeting (FAT) 
domain [10]. To target different sites on FAK, inhibitors 
specific to each domain have been developed (Fig.  1). 
The FERM domain is further divided into F1, F2, and 
F3 subdomains. F1 contains a nuclear export sequence, 
and F2 contains a nuclear localization sequence [11]. As 
the names indicate, these sequences are important for 
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the nuclear transport of FAK. Over the past few years, 
research has emphasized the significance of nuclear FAK 
in the regulation of gene expression; it interacts with 
distinct E3 ligases to induce the degradation of tran-
scription factors [12]. For example, the F1 and F2 lobes 
interact with p53, followed by the combination of the 
F3 lobe with murine double minute2 (Mdm2) and sub-
sequent p53 ubiquitination and degradation, thus facili-
tating cancer cell proliferation and inhibiting apoptosis 
[13]. Nuclear FAK also alters expression of GATA4 and 
IL-33, suppressing the inflammatory response and induc-
ing immune escape [14–17]. Aside from controlling 
FAK transportation from the cytoplasm to the nucleus, 
the FERM domain also has a crucial function in trigger-
ing the activation of FAK. For example, the link between 
the FERM domain and the kinase domain prevents FAK 
activation by blocking the autophosphorylation of Y397, 
which is the sole autophosphorylation site of FAK [18]. 
The FERM domain contains binding sites for numer-
ous proteins, such as integrin [19], growth factor recep-
tors [20, 21], and G-protein coupled estrogen receptors 
[22], and such interactions trigger downstream signaling 
cascades and induces FAK activation. The KAKTLRK 
sequence, which is in the F2 lobe, also participates in 
FAK activation [23].

The bilobal central kinase domain, which contains 
catalytic sites and ATP-binding sites, is highly homologi-
cal with other tyrosine kinases, particularly proline-rich 
tyrosine kinase 2 (Pyk2), and serves as the major com-
ponent for FAK enzymatic activity [24]. Nuclear export 
signal 2 (NES2), which is regarded as the only biologi-
cally active nuclear export signal (NES) exerting nuclear 
export activities, is located in the central kinase domain 
[25].

The C-terminal region, which resembles a bundle 
composed of four helices, is primarily comprised of the 

FAT domain and has a significant role in controlling the 
activation of FAK. Through its interaction with proteins 
associated with focal adhesions such as paxillin and talin, 
the FAT domain prompts the recruitment and activation 
of FAK at the site of focal adhesions [26, 27]. This inter-
action is pivotal for FA assembly and turnover, which 
influences cell motility. In contrast, other studies have 
indicated that the FAT domain functions as an inhibitor 
of FAK activation by competing with the FERM domain 
for the binding of specific intracellular receptors and 
inducing dephosphorylation [28].

In addition to the three major domains, there are some 
special residues regulating FAK activation and function. 
FAK contains three proline-rich regions (PRRs), PRR1 
localizes in the N-terminal domain, and PRR2/3 local-
izes in the C-terminal domain next to the FAT region. 
PRRs attach to proteins that contain Src homology 3 
(SH3) domains, including small GTPases and p130Cas, 
to regulate kinase activity and support the cytoskeleton 
[29]. Additionally, there are at minimum six tyrosine 
residues that undergo phosphorylation throughout the 
entire region: Y397, Y407, Y576, Y577, Y861, and Y925. 
The autophosphorylation of Y397, which is situated at 
the N-terminus of the FERM structural domain, is vital 
for the activation of FAK [30]. Phosphorylated Y397 pro-
vides a binding site for Src-family kinases and other pro-
teins containing the SH2 domain [31], which also interact 
with other tyrosine residues and are pivotal for FAK 
catalytic activity. Located in the activation loop of the 
kinase domain [32, 33], Y576 and Y577 positively regu-
late FAK kinase function, while another kinase domain-
located tyrosine phosphorylation site, Y407, inhibits FAK 
activity. Additionally, Y861 and Y925 are in the C-ter-
minal domains. Phosphorylated Y925 interacts with 
the SH2 domain of the adaptor protein GRB2 to trigger 
downstream Ras/MAPK signaling and induce integrin 

Fig. 1 Schematic diagram of the structural domain of FAK. FAK comprises three primary components, including a central kinase domain, a FERM 
domain on the N-terminal side, and a FAT domain on the C-terminal side. The kinase domain, which is crucial for catalytic activity, is flanked 
by three proline-rich regions that are responsible for protein‒protein interactions. The FAK phosphorylation sites and important binding proteins 
that regulate FAK activity and downstream signaling are highlighted in the diagram
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internalization and focal adhesion disassembly [34]. This 
FAK-GRB2-MAPK linkage was also demonstrated to be 
essential for tumor angiogenesis [35].

The mechanism and regulation of FAK activation
FAK is a vital mediator in the transmission of signals 
from the extracellular matrix (ECM) to the cell cyto-
plasm. It regulates pivotal cellular functions, includ-
ing cell survival, proliferation, migration, and invasion 
(Fig.  2). In response to upstream stimuli, FAK initiates 
downstream signaling cascades, thereby prompting a 
series of events. Additionally, FAK is versatile as a signal-
ing molecule because it can demonstrate kinase-depend-
ent or kinase-independent activity [36]. Stimuli, integrin 
signaling activation, in particular, disrupts the inhibitory 
interaction between FERM and kinase domains, which 
leads to FAK dimerization and causes subsequent Y397 
autophosphorylation [28]. The extensively phosphoryl-
ated Y397 has high affinity for the SH2 domain of kinases 
belonging to the Src family. When this interaction occurs, 
these kinases bind to and phosphorylate Y576 and Y577, 
which are positioned in the activation loop, to achieve 
complete activation of FAK and endow it with its enzy-
matic function [24].

The activation of FAK is regulated by various inter-
nal and external factors, which mainly target the FERM 
domain to induce conformational changes, thus relieving 
the autoinhibitory structure between the FERM and the 
kinase domain and stimulating FAK activation. In addi-
tion to integrin, the uncovered binding partners of the 
FERM domain include extracellular matrix, phospho-
inositide lipids, diacylglycerol kinase α, serine/threonine 
kinase PKCθ, and membrane-associated proteins such 
as tetraspanin transmembrane 4 L6 family member 5 
(TM4LFM5) and EMP2 [24, 28, 37–39]. Intriguingly, 
glutathione peroxidase-1 can bind to FAK and prevent 
 H2O2-induced oxidative inactivation of FAK [40]. Fur-
thermore, growth factor receptors, including the Met 
receptor for hepatocyte growth factor, epidermal growth 
factor receptor, and platelet-derived growth factor recep-
tor, enable conformational changes in the FERM domain 
by phosphorylating either the Y397 or Y197 sites [41, 
42]. Other stimuli, such as elevated intracellular pH and 
increased matrix stiffness or forces, which occur during 
cancer progression, also trigger Y397 phosphorylation 
and FAK activation [43, 44]. Recently, it was revealed that 
FAK expression and activation are epigenetically regu-
lated [45]. For example, microRNA miR-15b-5p inhibits 
FAK expression by binding to the 3′UTR of FAK mRNA. 
Moreover, intercellular adhesion molecule-1 suppresses 
miR-15b-5p activity and stimulates endothelial cell pro-
liferation and migration [46]. The interaction between 
long noncoding RNA (lncRNA) MIR4435-2HG and 

ganglioside synthesis enzyme ST8SIA1 induces the acti-
vation of FAK and downstream AKT/β-catenin signaling, 
thus promoting prostate cancer cell viability [45]. Epider-
mal growth factor and IL-6, which are highly activated in 
glioblastoma, also initiate FAK activation [47].

The functions of FAK on tumor cells
Tumor cell proliferation, apoptosis and survival
The involvement of FAK in tumor growth has been 
extensively investigated in human breast cancer. The 
PI3K/AKT/mTOR signaling pathway has been widely 
recognized as one of the most commonly disrupted path-
ways in cancer [48, 49], and is correlated with FAK-medi-
ated tumor cell growth. The ablation of FAK reduced 
Wnt1-driven basal-like breast cancer growth and pro-
motes apoptosis by downregulating AKT-mTOR sign-
aling [50]. In addition, activation of FAK by insulin-like 
growth factor-1 (IGF-1) and its receptor system (IGF-1R) 
initiates the PI3K-AKT-YAP (yes-associated protein/yes-
related protein) signaling cascade, which modulates the 
expression of genes targeted by YAP. This mechanism is 
implicated in the expansion of aggressive triple-negative 
breast cancer cells [51]. A similar result was observed in 
intrahepatic cholangiocarcinoma (iCCA) [52]. FAK acti-
vation, which is required for Y357 phosphorylation of 
YAP, strongly promotes AKT/YAP-driven mouse iCCA 
initiation [52].

FAK was also confirmed to stimulate cell cycle pro-
gression and promote cancer proliferation by target-
ing various cyclins and cyclin-dependent kinase (CDK) 
inhibitors [53]. Among them, cyclin D1, together with 
key CDK inhibitors p21 and p27, are the most extensively 
studied downstream targets of FAK, regulating the cell 
cycle transition from G1 to S phase. It was reported that 
knockdown of Mucin-like 1 (MUCL1) in HER2-amplified 
breast cancer resulted in FAK/Jun NH2-terminal kinase 
(JNK) signaling blockade and subsequent G1/S phase 
arrest, which was mediated by decreased cyclin D levels 
as well as increased p21 and p27 levels [54]. A mecha-
nistic study revealed that integrin signaling through 
FAK activated the ERK pathway, which stimulated the 
transcriptional activation of cyclin D [55]. In addition 
to p21 and p27, it was also demonstrated that FAK abla-
tion in glioblastoma repressed the expression of the 
autophagy cargo receptor p62/SQSTM-1, the inhibition 
of which post transcriptionally upregulated p27 expres-
sion to mediate G1 phase arrest and induced a cell senes-
cence-like state [56]. Moreover, p62 synergized with its 
downstream target SKP2 to inhibit p21 and p27 activ-
ity. Nevertheless, contradictory results were observed 
in vascular smooth muscle cells: SKP2 was degraded by 
nuclear FAK to inhibit cell proliferation by promoting 
p21 and p27 expression [57]. It has been acknowledged 
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that nuclear FAK acts as a scaffold for protein interac-
tions and regulates specific gene transcription. In skin 
squamous cell carcinoma, nuclear FAK was reported to 
interact with runt-related transcription factor 1 (Runx1) 

and recruit Runx1 regulatory proteins such as sin3a to 
inhibit the transcription of insulin-like growth factor 
binding protein 3, which induces cell cycle arrest at the 
G1 phase by suppressing the expression of cyclins and 

Fig. 2 FAK-mediated signaling cascades involved in tumor progression. FAK activation is multifaceted and can be mediated by various factors, 
such as integrins, receptor tyrosine kinases (RTKs), mechanical stimuli, cytokines, G-protein-coupled receptors (GPCRs), and a change in intracellular 
pH (H+). Upon phosphorylation, FAK may induce the activation of different transduction pathways, including RAS/RAF/ERK, JNK, YAP, and PI3K/
AKT/mTOR signaling. This process can lead to the regulation of relevant oncogenes, which in turn supports cancer cell survival. FAK also exerts 
nuclear functions, acting as a scaffold for p53 and Mdm2 while also promoting the polyubiquitination and degradation of p53. In doing so, FAK 
again promotes resistance to apoptosis. As shown in the diagram, the highlighted red boxes indicate targets of interest for the development 
of combination therapy using FAK inhibitors
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CDKs and increasing p21 expression [58]. Likewise, the 
nuclear activation of FAK in colon cancer cells by fibrin 
resulted in a decline in p53, along with its subsequent 
targets, such as 14-3-3σ and p21, ultimately stimulating 
cell proliferation while repressing senescence [59].

FAK plays a vital role in sustaining cancer cell survival 
and regulating cell apoptosis [60–63], anoikis [64–68], 
autophagy [68], and senescence [69]. The disruption of 
FAK-mediated signaling in breast cancer cells stimulated 
the Fas-associated death domain (FADD) and caspase-8 
apoptotic pathways, which induced cell apoptosis and 
inhibited anchorage-independent survival [70]. Addition-
ally, components of death receptor pathways, including 
the FAK-binding partner death domain kinase receptor-
interacting protein (RIP), are involved in this process 
[61]. The antiapoptotic effect of FAK was further con-
firmed to be associated with FAK-dependent activation 
of the phosphatidylinositide 3′-OH-kinase-AKT survival 
pathway, concomitant with the subsequent stimulation of 
NF-kB and inhibitor-of-apoptosis proteins [71]. Moreo-
ver, nuclear FAK also plays an important role in regulat-
ing cancer cell apoptosis. Nuclear FAK interacts with the 
N-terminal transactivation domain of p53 through its 
N-terminal fragment; this attenuates p53 transcriptional 
activity and inhibits p53-mediated apoptosis to promote 
cell survival [72]. Anoikis, a distinct type of apoptosis that 
occurs in normal epithelial and endothelial cells, is also 
negatively regulated by FAK signaling  In human breast 
cancer, the mechanism of FAK-induced cell resistance to 
anoikis was reported to be correlated with the increased 
activity of NF-kB, which is induced by the functional 
interaction between the N-terminal domain of FAK and 
TRAF2, a RING finger adaptor protein [65]. Notably, 
integrin endocytosis has gradually been uncovered to 
be critical for FAK activation depending on endosome 
antigen-1 and small GTPase Rab21, and FAK activation 
ultimately promotes anoikis resistance and anchorage-
independent cell growth [66, 67].

Cell migration and invasion
Integrin aggregation in the ECM plays a crucial role in 
inducing FAK signaling, which is fundamental for cell 
motility and cytoskeletal reorganization. Chemotactic 
signals activate integrins, leading to FAK activation and 
the formation of focal adhesion complexes, which sub-
sequently trigger the polymerization of actin filaments 
toward the cytoplasmic membrane [73, 74]. The FAK/
Src complex and kinase activity lead to p130Cas phos-
phorylation, promoting the formation of Cas/Crk com-
plexes, which significantly influence cell migration [75]. 
Additionally, MLCK-mediated focal adhesion disassem-
bly and JNK-mediated paxillin phosphorylation promote 
cytoskeleton reorganization [76, 77]. FAK’s associations 

with PI3-kinase and/or Grb7 govern intracellular signal-
ing pathways correlated with cellular mobility [78, 79]. 
Furthermore, integrin-mediated FAK signaling critically 
controls adhesion dynamics during cell migration. The 
formation of FAK/Src complexes at focal adhesion sites 
enhances ERK2 activity, resulting in the activation of Cal-
pain 2 [80–82]. FAK’s effects on small GTPases impact 
cytoskeletal reorganization and adhesion stabilization 
[83]. RhoA, Rac1, and Cdc42, among small GTPases, play 
a crucial role in cytoskeletal reorganization and tumori-
genesis [84, 85]. In this regard, RhoA influences cell‒cell 
or cell–ECM associations by inducing shifts within the 
cytoskeleton, while Rac1 initiates actin polymerization, 
enabling membrane folding, whereas Cdc42 initiates 
actin filament production in the generation of filopodia 
[86–88]. These investigations present compelling proof 
that the expression of FAK and the activation of FAK 
signaling pathways are mainly mediated by Rho GTPases, 
indicating the indispensable role of FAK in cytoskeletal 
reorganization.

Epithelial–mesenchymal transformation
Epithelial–mesenchymal transition (EMT) is a physi-
ological process in normal embryonic development and 
tissue regeneration. However, aberrant reactivation of 
EMT is associated with malignant properties of tumor 
cells, including migration, invasiveness, increased tumor 
stemness, and resistance to chemotherapy and immu-
notherapy [88, 89]. Multiple studies have established 
the role of FAK in promoting EMT and increasing cell 
invasion and metastasis [90, 91]. EMT is regulated by 
FAK-mediated alterations in E-cadherin expression, a 
key molecule in the process [92–94]. Evidence provided 
by Gayrard et  al. illustrates that SRC-FAK-mediated 
reconstruction of actomyosin results in the loosening of 
E-cadherin junctions without disrupting those involving 
β-associated proteins [94]. Avizienyte’s team confirmed 
the importance of FAK phosphorylation in the decrease 
in E-cadherin induced by Src in colon cancer cells [91]. 
The investigation carried out by Hauck’s team suggests 
that restraining FAK function restricts cell invasion stim-
ulated by Src and obstructs the metastasis and invasion 
aimed by FAK-targeted drugs [95]. The downregulation 
of KIF26A clearly enhances EMT and decreases E-cad-
herin expression by augmenting the binding of c-MYC 
to the promoter section of FAK [96]. Slug expression, 
which balances EMT and cellular migration, is triggered 
by TGF-β1 in squamous cell carcinoma cells. However, 
when FAK inhibitors are administered, such an effect is 
alleviated [97]. These findings underline the crucial role 
of FAK in EMT, invasion, and metastasis. Nonetheless, 
additional research is required to clarify the downstream 
molecular mechanisms by which FAK regulates EMT. 
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These mechanisms include E-cadherin-mediated cell‒cell 
adhesion, integrin-ECM-based adhesion, and the collab-
oration of both these mechanisms.

FAK in cancer stem cells
In various tumor types, FAK has been found to contrib-
ute to the activities of cancer stem cells (CSCs), par-
ticularly in breast cancer [98, 99]. Loss of FAK leads to 
a decrease in mammary cancer stem cells (MaCSCs) and 
suppresses their protumorigenic functions [100]. FAK 
facilitates the formation of a ternary complex with con-
nexin and NANOG, which sustains CSC self-renewal 
and maintenance in triple-negative breast cancer [101]. 
By interrupting the interaction between FAK and endo-
philin A2, the stem-like population, gene signature, 
self-renewal, and tumorigenicity of mammary CSCs 
can be suppressed [102]. In triple-negative breast can-
cer (TNBC), inhibiting FAK genetically or with drugs 
decreases anchorage-independent spheroid cell growth, 
reduces chemotherapy-dependent CSC enrichment, and 
delays metastatic outgrowth [99, 103]. A recent study 
reported that inhibiting FAK, a protein found in head and 
neck squamous cell carcinoma (HNSCC), could signifi-
cantly reduce the expression of stem cell markers, includ-
ing Oct4, Sox2, and Nanog, leading to a decrease in cell 
self-renewal [104]. Additionally, FAK-mediated signaling 
pathways have been discovered to play a crucial role in 
regulating CSC properties in esophageal squamous cell 
carcinoma [105].

The effects of FAK on tumor‑associated cells
Immune cells
Tumor-associated macrophage and regulatory T cells 
(Treg) are major inhibitory cells for anti-cancer immune 
response [106–108]. The importance of FAK expression 
in the regulation of the tumor environment has been 
emphasized in current research (Fig.  3). Enhancement 
of the expression of several chemokines occurs due to 
the elevation of FAK levels in tumors, which promotes 
TME remodeling by recruiting immunosuppressive cells 
and secreting cytokines [109]. FAK inhibitors have been 
shown to suppress leucocyte and macrophage infiltration 
and the growth of breast cancer [110, 111] and pancreatic 
ductal adenocarcinoma (PDAC) tumors in mouse models 
[112]. FAK signaling enhances the expression of homing 
signals such as CCL5, CCL7, CXCL10, and TGFβ2 [113], 
which play a crucial role in recruiting Tregs [114]. FAK 
contributes to the increased expression of IL-33 [115], 
an alarmin cytokine, produced by stromal and epithelial 
cells, which binds to ST2L on immune cells and enhances 
the transcription of chemokine genes such as CCL5 
[116]. The increased production of CCL5 leads to the 
recruitment of Tregs and other immune cells, promoting 

immunosuppression. However, recruited Tregs pro-
mote tumor survival by depleting CD8+ cytotoxic cells 
[117]. CD28 is a costimulatory molecule on T cells that 
enhances T-cell activation and proliferation. Amplifica-
tion of CD28+ T cells within the TME can enhance their 
antitumor effects and facilitate tumor cell elimination. 
FAK depletion can lead to tumor regression by increas-
ing the number of CD28+ T cells in the TME [118]. FAK 
overexpression slows tumor growth and promotes natu-
ral killer cell infiltrations while FAK knockdown pro-
motes tumor growth and suppresses natural killer cell 
infiltrations [119].

Cancer‑associated fibroblasts (CAFs)
In the TME, CAFs are key stromal cells that play a critical 
role in tumor cell initiation, survival, proliferation, and 
metastasis through the secretion of various cytokines, 
growth factors, hormones, and ECM proteins [120]. For 
example, increased lumican expression in gastric CAFs 
promotes FAK activation via β1 integrin, promoting the 
invasion of gastric cancer cells [121]. PDAC cells activate 
CAFs and promote cancer stemness through increased 
expression of type I collagen via β1 integrin-FAK sign-
aling [122]. Inhibition of FAK reduces CAF recruitment 
and TME fibrosis [123]. This reduces the stemness of 
PDAC cells [124] and suppresses breast cancer metasta-
sis while increasing the levels of tumor suppressor micro-
RNAs in exosomes [125]. Emerging evidence highlights 
the pivotal role of CAFs in governing tumor metabolic 
processes via FAK-regulated pathways. Notably, breast 
and pancreatic cancer patients exhibiting diminished 
FAK expression experience a significant decline in overall 
survival. Furthermore, experimental studies using mouse 
models have demonstrated that the depletion of FAK in 
CAFs actively promotes tumor growth. Mechanistically, 
this phenomenon can be attributed to the activation of 
protein kinase A within CAFs, resulting from the defi-
ciency of FAK. Consequently, this activation leads to a 
pronounced enhancement of glycolysis in tumor cells 
[126]. The remodeling of the TME is facilitated by FAK, 
which functions as a crucial regulator in the TME. There-
fore, a comprehensive understanding of the impact of 
FAK on tumor progression and TME remodeling could 
reveal new opportunities for cancer therapy.

Endothelial cells (ECs)
Integrins and growth factor receptors mediate the signals 
involved in angiogenesis. FAK is activated by integrin-
mediated cell adhesion and associates with several pro-
teins that contain the SH2 structural domain, including 
Src, Grb7, the p85 subunit of PI3K, and phospholipase 
C-g [127]. FAK interacts with epidermal growth fac-
tor receptor (EGFR), vascular endothelial growth factor 
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Fig. 3 The role of FAK in the tumor microenvironment. FAK not only maintains cancer malignancy but also influences remodeling of the immune 
microenvironment. For example, FAK can recruit immune cells, cancer-associated fibroblasts, and endothelial cells and even remodel 
the extracellular matrix. Preclinical studies support the importance of FAK inhibitors in combination with other immunotherapies, and relevant 
clinical trials are in progress, demonstrating the importance of FAK in oncology treatment
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receptor (VEGFR), and platelet-derived growth factor 
receptor (PDGFR) via its N-terminus, and VEGF induces 
FAK phosphorylation through VEGFR activation, pro-
moting angiogenesis [128]. When platelet-derived growth 
factor (PDGF) binds to PDGFR, it phosphorylates FAK, 
which activates endothelial cells, stromal cells, and CEPs, 
leading to matrix metalloproteinase-mediated break-
down of the ECM and angiogenesis [129]. FAK inhibition 
is a promising anticancer treatment strategy to hinder 
cell migration, invasion, proliferation, and angiogenesis. 
Inhibition of the phosphorylation of vascular endothe-
lial growth factor receptor 2 (VEGFR2), Src, and FAK 
through Sema3A led to substantial reductions in tumor 
growth and angiogenesis in tongue SSC-9 cells, illustrat-
ing the potential of this approach for cancer therapy [63]. 
TAE226, a potent FAK inhibitor, effectively suppressed 
the growth of OSCC xenografts and angiogenesis in mice 
[130]. Moreover, FRNK, a negative inhibitor of FAK, was 
revealed to impede FAK phosphorylation, thereby reduc-
ing EGF-induced MMP-9 expression and ultimately hin-
dering the invasion of follicular thyroid cancer cells [131]. 
These collective findings affirm the pivotal role of FAK in 
inducing cell invasion and angiogenesis and its potential 
as an attractive target for antiangiogenic therapy in can-
cer treatment.

Targeting FAK in combination therapies
FAK is considered a potential target for effective can-
cer therapy, and its key role in various types of cancer 
has been well established. Recently, FAK inhibitors have 
gained attention as novel and promising combination 
therapy partners (Fig. 3). Presented here is a summary of 
preclinical (Table 1) and clinical trials (Table 2) concern-
ing FAK inhibitors. The primary focus is on combination 
trials incorporating FAK as a therapeutic target (Table 3) 
to assess its efficacy and its contribution to combination 
therapy.

Combination with immunotherapies
Antibodies to immune check point inhibitor that 
enhance the host immunologic activity against tumors 
have become standard of care in the treatment of many 
malignancies [132]. However, only a small percentage of 
patients have meaningful responses to these treatments. 
Searching for new pathways and molecules to improve 
responses and application of immune checkpoint inhibi-
tion therapy attracts great attention [133–136]. In TNBC, 
PD-L1 expression is elevated and significantly correlated 
with FAK mRNA expression, highlighting the functional 
relationship between immune checkpoints and FAK [137, 
138]. Anti-PD-L1 antibody atezolizumab augments the 
suppressive impact of FAK inhibitors on cell invasion and 
migration through the restraint of FAK phosphorylation 

[138]. Cytokine-induced killer (CIK) cells are used as a 
treatment approach in adoptive cellular immunotherapy 
and are highly regarded as a promising candidate for can-
cer immunotherapy [139]. FAK knockdown/inhibition 
increased the sensitivity of TNBC cells to CIK cells in 
coculture system by enhancing CIK-mediated cell death. 
FAK knockdown also decreased PD-L1 mRNA and pro-
tein expression in TNBC cells [140].

Combining the FAK inhibitor VS4718 with anti-
PD1 therapy in hepatocellular carcinoma resulted in 
decreased macrophage numbers and increased CD8+ 
T-cell numbers [141]. Additionally, when FAK inhibitors 
were combined with agents that induce T-cell costimu-
latory pathways in skin squamous cell carcinoma, the 
tumors became more sensitive to FAK inhibitors, and 
this effect was mediated by CD80. This suppressed tumor 
formation and even drove complete regression [118].

Lu et al. constituted a nanodrug PLGA-FAKi by encap-
sulated FAK inhibitor using poly(lactic-co-glycolic) acid 
(PLGA). PLGA-FAKi treatment increased ovalbumin-
specific CTLs (OVA-CTLs) infiltration into B16-OVA 
tumors, leading to reduced immunosuppression and 
increased tumor microvessel permeability, and further 
inhibited tumor growth when combined with OVA-
CTLs [70]. In mice with HGSOC, the combination of 
FAK inhibitor and anti-TIGIT therapy was able to pro-
long survival rates, increase the level of CXCL13, which 
is associated with tumor infiltrating lymphocytes (TLS) 
formation, and promote B and T-cell enrichment [142]. 
Mechanical stretching has also been shown to have a 
positive effect on melanoma cells: it enhances M1 polari-
zation and antitumor effects. This effect is associated 
with the FAK/NF-kB signaling pathway [143]. It was 
found that ABCB1, CXCR4, and FAK were overexpressed 
in non-small cell lung cancer (NSCLC) patients and cell 
lines [144]. Therefore, targeting CXCR4 and FAK could 
be a way to overcome DOX resistance and enhance the 
anti-invasive effects of CXCR4 and FAK inhibitors in 
NSCLC cells.

Combination with targeted therapies
Research suggests that co-treatment using KRAS 
G12C inhibitors and IN10018 is likely to benefit cancer 
patients with mutated KRAS G12C and may also pre-
vent resistance to KRAS G12C inhibition by targeting 
dysregulated FAK-YAP signaling and fibrogenesis [145]. 
Uveal melanoma (UM) patients with unresponsive liver 
metastases have a druggable downstream signaling hub 
from GNAQ mutations that activates YAP1 via FAK 
[146]. Co-targeting FAK and MEK using this approach 
could lead to novel precision therapy and inhibit tumor 
growth in UM cells and UM xenograft models. It is 
important to note that FAK is overexpressed in tumors 
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and activated in iCCA lesions, which in turn contribute 
to cancer initiation and progression through the YAP 
proto-oncogene [52]. iCCA growth was dramatically 
inhibited by combination of FAK and CDK4/6 inhibi-
tor. Overall, the study proved the role of FAK-YAP 
signaling and suggests its potential as a target for preci-
sion therapy in inhibiting cancer growth using various 
approaches.

Co-targeting this pathway using the FAK inhibitor 
PF562271 and the BRAF inhibitor vemurafenib could 
represent a promising therapeutic approach for BRAF-
mutant colorectal cancer (CRC) patients, as they exhibit 
synergistic antitumor effects in  vitro and in  vivo [147]. 
Notably, the combination of small-molecule inhibitors of 
β-catenin or FAK along with vemurafenib not only inhib-
its the proliferation of BRAF V600E colon cancer cells 

Table 1 Summary of FAK inhibitors in preclinical trials

Name Alternative names Target(s) Cancer types In vitro In vivo References

VS-6062 PF-562, 271 FAK, Pyk2 Glioma + + [175]

Colon cancer + + [175]

Breast cancer + + [175]

Pancreatic cancer + + [112, 175]

Prostate cancer + + [175–177]

Lung cancer + + [175, 178]

Hepatocellular cancer + + [179]

Thyroid tumor + + [180]

B16 − + [181]

Ovarian cancer + + [182]

Ewing sarcoma + + [183]

VS-6063 Defactinib, PF-04554878 FAK, Pyk2 Pancreatic cancer + + [156, 184]

Lung cancer + + [5, 164, 165]

Prostate cancer + + [188]

Ovarian cancer + + [189, 190]

Esophageal cancer + + [191]

Endometrial cancer + + [192]

BI-853520 IN10018, ifebemtinib FAK Breast cancer + + [193]

KRAS G12C mutant cancer + + [145]

Pancreatic cancer + + [162]

Ovarian cancer + + [145, 194]

Prostate cancer + + [195]

PF-573228 PF-228 FAK Pancreatic cancer + + [196]

Glioma + − [56]

Lung cancer + − [197]

TAE226 NVP-226 FAK, IGF-IR Breast cancer + + [198, 199]

Glioma + + [200, 201]

Esophageal cancer + + [202, 203]

GSK2256098 – FAK Pancreatic cancer + − [204]

Ovarian cancer + − [205]

PF-431396 – FAK, Pyk2 Pancreatic cancer  +  + [196]

Malignant pleural mesothelioma + + [196]

VS-4718 PND-1186 FAK, Pyk2 Breast cancer/ovarian cancer + + [206]

Pancreatic cancer − + [123]

Y15 – FAK Breast cancer + + [207]

Lung cancer + + [208]

Y11 – FAK Colon cancer/breast cancer + + [176, 204]

C4 – FAK-VEGFR3 interaction Breast cancer + + [209]

R2 – FAK-p53 interaction CRC + + [210]
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Table 2 Summary of FAK inhibitors in clinical trials

Name Alternative names Target(s) Cancer types Status Phase NCT number

VS-6063 Defactinib, PF-04554878 FAK, Pyk2 Advanced non-hematologic Malignancies Completed 1 NCT00787033

Non-hematologic cancer Completed 1 NCT01943292

NSCLC Completed 2 NCT01951690

Recurrent skin cancer, squamous cell carci-
noma of the skin, stage 0 chronic lympho-
cytic leukemia, stage I chronic lymphocytic 
Leukemia

Completed 2 NCT00563290

Ovarian cancer Completed 1 NCT01778803

Solid tumor, pancreatic cancer Completed 1 NCT02546531

NSCLC, low grade serous ovarian cancer, 
endometrioid carcinoma, pancreatic cancer

Recruiting 1 NCT03875820

Metastatic uveal melanoma Recruiting 2 NCT04720417

Pancreas cancer Recruiting 2 NCT04331041

Ovarian cancer Recruiting 1
2

NCT03287271

PDAC Recruiting 2 NCT03727880

Advanced lymphoma, advanced malignant 
solid neoplasm, hematopoietic and lymphoid 
cell neoplasm, refractory lymphoma, refrac-
tory malignant solid neoplasm, refractory 
plasma cell myeloma

Active, not recruiting 2 NCT04439331

Glioma Not yet recruiting Early 1 NCT05798507

Malignant pleural mesothelioma Terminated 2 NCT02004028

CRC Terminated Early 1 NCT00835679

Relapsed malignant mesothelioma Terminated 1 NCT02372227

NSCLC, mesothelioma, pancreatic neoplasms Unknown status 1
2

NCT02758587

BI 853520 IN10018, ifebemtinib FAK Neoplasms Completed 1 NCT01335269

Gastric cancer Completed 1 NCT05327231

Metastatic melanoma Recruiting 1 NCT04109456

Pancreatic cancer Recruiting 1
2

NCT05827796

Platinum-resistant ovarian cancer Recruiting 1
2

NCT05551507

Locally advanced or metastatic solid tumor Active, not recruiting 1
2

NCT05830539

Solid tumor Not yet recruiting 1
2

NCT05379946

GSK2256098 – FAK Solid tumor Completed 1 NCT01138033

Cancer Completed 1 NCT00996671

Pancreatic cancer, adenocarcinoma Completed 2 NCT02428270

Advanced solid tumor Completed 1 NCT01938443

Intracranial meningioma, recurrent meningi-
oma, Nf2 gene mutation

Recruiting 2 NCT02523014

VS-4718 PND-1186 FAK, Pyk2 Pancreatic cancer Terminated 1 NCT02651727

Non-hematologic cancer, metastatic cancer Terminated 1 NCT01849744

Relapsed or refractory acute myeloid 
leukemia, relapsed or refractory B-cell acute 
lymphoblastic leukemia

Withdrawn 1 NCT02215629

CT-707 Conteltinib FAK, ALK, Pyk2 Advanced pancreatic cancer Recruiting 1
2

NCT05580445

NSCLC Unknown status 1 NCT02695550

VS-6062 PF-00562271 FAK, Pyk2 Head and neck neoplasm, prostatic neo-
plasm, pancreatic neoplasm

Completed 1 NCT00666926
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in  vitro but also prevents tumor formation in xenograft 
mice [148]. Overall, these findings emphasize the poten-
tial of combination therapy using several inhibitors in 
treating cancers with mutations in BRAF and highlights 
the potential of FAK inhibitors in several therapeutic 
approaches.

One study found that using TAE226 and sorafenib 
together effectively reduces hepatocellular carcinoma 
growth by changing gene expression and epigenetics 
through FAK nuclear interactome dysregulation [149]. 
Another study showed that combining VS-6063 and 
JQ1 to target integrins inhibits FAK signaling and PI3K/
AKT, reducing survival in primary HGSOC tumors with 
co-amplification of FAK and c-Myc [150]. In squamous 
cell carcinoma cells with mutated FAK, HDAC and FAK 
inhibitors work synergistically to arrest cellular prolif-
eration and tumor growth, emphasizing the importance 
of collaborations of multiple targets [151]. In addition, 
combining SFK/FAK inhibitors with osimertinib shows 
promise as a therapeutic approach to inhibit growth and 
resistance in EGFR-mutant lung cancer treatment [152]. 
Simultaneous targeting of the FAK and Janus kinase/
STAT3 pathways produces a synergistic effect. This sug-
gests that repressing STAT3 signals may overcome FAK 
inhibitor resistance in PDAC, as demonstrated in another 
study [153]. The studies described above provide evi-
dence that FAK inhibitors, when combined with targeted 
therapy, present a new and promising avenue of tumor 
treatment.

Combination with chemotherapies
Chemotherapy is often ineffective against ovarian can-
cer; however, the hyaluronic acid-labeled two-in-one 
drug delivery system HA-PLGA-NPs, containing pacli-
taxel and FAK siRNA, has high binding efficiency to 
CD44-positive tumor cells, resulting in increased cyto-
toxicity and apoptosis in drug-resistant tumors, as dem-
onstrated in experimental studies [154]. FAK inhibition 
has been identified to enhance chemotherapy sensitiv-
ity and promote anticancer effects, primarily through 
the activation of p53 transcriptional activity, making it a 
potential focal point for therapeutic strategies in gastric 
cancer management and a valuable prognostic indicator 
in clinical settings [155]. Inhibition of FAK, as observed 

in the study of phosphorylated kinases in PDAC, shows 
synergistic effects with nab-paclitaxel to reduce tumor 
growth and appears to be a promising potential treat-
ment option [156]. Furthermore, endothelial cell focal 
adhesion kinase (EC-FAK) plays a significant role in the 
regulation of the chemotherapy response and the lev-
els of endocrine factors, and the combination of FAK 
inhibitors with gemcitabine has the potential to serve as 
a promising strategy to control PDAC metastasis, as sup-
ported by studies that revealed reduced metastasis load 
and improved survival rates in gemcitabine-treated mice 
and patients with low levels of EC-FAK [157]. FAK regu-
lates CSC activity in breast cancer, and inhibition of FAK 
suppresses self-renewal, leading to a reduced tumor size, 
thereby providing a promising strategy to improve sur-
vival by suppressing CSC activity; the approach is espe-
cially effective when combined with paclitaxel treatment 
[98]. In addition, inhibiting endothelial FAK enhances the 
response of B16 and CMT19T mouse tumors to adriamy-
cin or radiotherapy by suppressing NF-κB activation and 
cytokine production, thereby improving the effectiveness 
of DNA damage therapy [158]. Furthermore, elevated 
EC-PY397-FAK expression levels are strongly corre-
lated with advanced clinical parameters of breast cancer 
and poor treatment response and independently predict 
unfavorable five-year recurrence-free survival, which 
highlights the need to assess the role of FAK inhibitors in 
optimizing treatments and improve the response to vari-
ous strategies [159].

Combination with radiotherapies
Combining FAK inhibitors with low-dose radiation in 
pancreatic cancer can regulate the TME through sev-
eral mechanisms, including reducing hypoxia, boosting 
immune cell infiltration, and enhancing radiosensitiv-
ity [160]. FAK overexpression is known to be associated 
with treatment resistance and metastasis in pancreatic 
cancer. A database study identified VS-4718 as a poten-
tial inhibitor of FAK that can enhance radiosensitivity 
and inhibit ECM synthesis [161]. Combining FAK inhibi-
tion with radiotherapy may prove to be effective against 
this disease. Tests in a PDAC mouse model have shown 
that inhibiting FAK with IN10018 can enhance the anti-
cancer effect of radiotherapy by decreasing suppressor 

Table 2 (continued)

Name Alternative names Target(s) Cancer types Status Phase NCT number

AMP-945 Narmafotinib FAK PDAC Recruiting 1
2

NCT05355298

APG-2449 – FAK, ALK, ROS1 Advanced solid cancer, NSCLC, esophageal 
cancer, ovarian cancer, malignant pleural 
mesothelioma

Recruiting 1 NCT03917043



Page 12 of 19Tan et al. Experimental Hematology & Oncology           (2023) 12:83 

Table 3 Combination agents of FAK inhibitors

Name Alternative names Target(s) Combination 
agents

Preclinical trials Clinical trials

Cancer types References Cancer types NCT number

VS-6063 Defactinib, 
PF-04554878

FAK, Pyk2 Pembrolizumab (a 
PD1 inhibitor)

– – NSCLC, mesothe-
lioma, pancreatic 
tumor

NCT02758587

– – PDAC NCT03727880

– – Solid tumor, PDAC NCT02546531

VS-6766 (a RAF/MEK 
inhibitor)

– – NSCLC, ovarian 
cancer, endome-
trioid carcinoma, 
pancreatic cancer

NCT03875820

– – Metastatic uveal 
melanoma

NCT04720417

Paclitaxel Ovarian cancer [189] Ovarian cancer NCT01778803

Pancreatic cancer [156] Ovarian cancer NCT03287271

Gemcitabine Lung cancer [185] Solid tumor, pancre-
atic cancer

NCT02546531

VS-5584
NCT00835679 (a PI3K 
inhibitor)

– – Relapsed malignant 
mesothelioma

NCT02372227

Radiation therapy Pancreatic cancer [184] Pancreas cancer NCT04331041

Cetuximab – – CRC NCT00835679

BRD4 inhibitor lung cancer [186] – –

EGFR-TKI Lung cancer [187] – –

Docetaxel Prostate cancer [188] – –

BI 853520 IN10018, ifebemtinib FAK Albumin-bound 
paclitaxel, gemcit-
abine, KN046

– – Pancreatic cancer NCT05827796

Cobimetinib, atezoli-
zumab

– – Metastatic mela-
noma

NCT04109456

PLD – – Platinum-resistant 
ovarian cancer

NCT05551507

PLD, toripalimab – – Locally advanced 
or metastatic solid 
tumor

NCT05830539

Docetaxel – – Gastric cancer NCT05327231

D-1553 – – Solid tumor NCT05379946

KRAS G12C inhibitors CRC, pancreatic 
cancer, NSCLC

[145] – –

Radiation therapy Pancreatic cancer [162] – –

Paclitaxel Ovarian cancer [194] – –

VS-6062 PF-562,271 FAK, Pyk2 Gemcitabine Pancreatic cancer [112] – –

Sunitinib Hepatocellular 
cancer

[179] – –

anti-VEGF Ovarian cancer [182] – –

AZD-1152 Ewing sarcoma [183] – –

VS-4718 PND-1186 FAK, Pyk2 Nab-paclitaxel, 
gemcitabine

– – Pancreatic cancer NCT02651727

Gemcitabine, adop-
tive cell transfer 
(ACT), Anti-PD1/anti-
CTLA4

Pancreatic cancer [123] – –

GSK2256098 – FAK Trametinib (a MEK 
inhibitor)

– – Advanced solid 
tumor

NCT01938443

Pazopanib Ovarian cancer [205] – –
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granulocyte infiltration and increasing CD8+ T cell and 
macrophage [162]. This indicates that FAK inhibitors 
have the potential to enhance the radiosensitivity and 
immunomodulation of PDAC.

The presence of CSCs in high-grade DCIS is associated 
with disease recurrence and resistance to radiotherapy 
via the FAK/Wnt pathway, and the use of FAK inhibi-
tors can reduce cellular self-renewal while enhancing 
the effects of radiation in breast cancer [163]. Moreo-
ver, inhibiting FAK decreased tumor cell adhesion in 
a glioblastoma/breast cancer cell and endothelial cell 
coculture model after radiotherapy [164]. The evidence 
suggests that FAK inhibitors hold promise for enhancing 
radiosensitivity.

Similarly, a study demonstrated that the combination 
of FAK inhibition and carbon ion irradiation was effec-
tive in inhibiting metastasis in tongue squamous cell 
carcinoma. The treatment decreased colony formation, 
increased apoptosis, and reduced migration and inva-
sion in CAL27 cells [165]. Furthermore, in HPV-negative 
HNSCC cells, FAK inhibition led to enhanced radiosen-
sitivity by inducing G2/M arrest and DNA damage. The 
study also revealed that lower protein tyrosine kinase 
2 (PTK2)/FAK mRNA expression was linked to better 
disease-free survival. Therefore, PTK2/FAK could be a 
potential biomarker for HNSCC patients who are sus-
ceptible to relapse after radiotherapy [5]. According to 
the available data, FAK inhibitors have shown promising 
results in sensitizing cancer cells to the effects of ionizing 
radiation, which helps reduce tumor burden and recur-
rence rates.

Conclusion
Cancer is a complex illness that arises due to diverse 
genetic and epigenetic alterations that cause abnormali-
ties in multiple biological pathways. Although the devel-
opment of molecularly targeted therapies has aided in 
their treatment, their frequent ineffectiveness and drug 
resistance pose significant challenges owing to recur-
rence and metastasis s; therefore, new therapeutic tar-
gets are urgently needed. Crucial cellular processes such 
as cell adhesion, migration, proliferation, and survival 
are regulated by FAK. Furthermore, FAK promotes 
cancer progression, including features such as tumor 

angiogenesis, EMT, cancer stemness, and immunomodu-
latory capacity [166, 167]. FAK is widely activated in mul-
tiple cancer types, such as colorectal, lung, ovarian, neck, 
bladder, breast, and esophageal cancers, and predicts a 
poor prognosis [98, 168, 169].

The FAK pathway has also been linked to the genera-
tion of CSCs [101, 103, 105, 114], which are responsible 
for tumor propagation, metastasis, and therapy resist-
ance. FAK inhibition has been shown to decrease the 
number of CSCs, suggesting that FAK may represent 
a viable target for eliminating CSCs, thereby improving 
cancer therapy outcomes. In addition, the FAK signal-
ing pathway plays a crucial role in regulating the com-
plex TME [119, 125, 129, 170], which comprises cellular 
and noncellular components that promote tumor growth 
and metastasis. Gaining a comprehensive understanding 
of the involvement of FAK in tumor microenvironment 
(TME) remodeling is imperative in advancing cancer 
treatment outcomes to a higher level.

FAK has emerged as a promising target for cancer 
therapy owing to its key role in tumor cells and the TME. 
Various FAK inhibitors have demonstrated significant 
antitumor efficacy in diverse preclinical models and are 
currently being evaluated in clinical trials. Combining 
FAK inhibitors with standard cancer treatments has been 
shown to significantly enhance treatment efficacy and 
decrease chemotherapy resistance [12, 170], as FAK inhi-
bition sensitizes cancer cells to chemotherapy, leading to 
better therapeutic outcomes. It is interesting that D-pini-
tol, a 3-methoxy analogue of d-chiro-inositol in soy foods 
and legumes, can reduce c-Src kinase activity and NF-kB 
activation through inhibiting FAK phosphorylation, 
resulting in decrease of prostate cancer metastasis [171, 
172]. Recently, an effective FAK degradation agents have 
been developed that can selectively degrade FAK and 
showed outstanding inhibitory effects in triple-negative 
breast cancer and ovarian cancer cells [173, 174].

However, the clinical translation of FAK inhibitors 
has been hampered by several challenges. First, a uni-
form method for measuring the expression of FAK, 
whether phosphorylated FAK or total FAK, needs 
to be selected. Second, the selection of an appropri-
ate FAK assay is necessary, and immunohistochem-
istry, western blotting, and RT‒PCR are the most 

Table 3 (continued)

Name Alternative names Target(s) Combination 
agents

Preclinical trials Clinical trials

Cancer types References Cancer types NCT number

CT-707 Conteltinib FAK, ALK, Pyk2 Toripalimab, gemcit-
abine

– – Advanced pancre-
atic cancer

NCT05580445

TAE226 NVP-226 FAK, IGF-IR Radiation therapy Glioma [201] – –
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commonly employed methodologies. Each method 
has advantages and limitations, and the selection must 
account for factors such as sensitivity, specificity, and 
reliability. Finally, there are challenges regarding com-
bination therapies utilizing FAK, including reduced 
selectivity and specificity, drug resistance, and emerg-
ing molecular targets that impact efficacy. As a result, 
future research should aim to enhance the selectivity 
and specificity of FAK inhibitors and also develop novel 
combination therapies to overcome these therapeutic 
obstacles. By addressing these challenges, the clini-
cal translational impact of FAK-targeted therapies in 
patients can be optimized, ultimately resulting in more 
effective and personalized cancer treatments.
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