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Abstract 

Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, 
family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African 
population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk 
and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery 
for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past 
few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be 
significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. 
New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, 
such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary 
and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. 
However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation 
and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-
resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC 
diagnosis and treatment regimens.
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Introduction
Cancer is characterized by uncontrolled proliferation, 
in which the cell loses its regulated division, differentia-
tion, and apoptosis. Cancer is a global burden and a lead-
ing cause of mortality and decreasing life expectancy 
worldwide [1]. According to the International Agency 
for Research on Cancer, nearly 19.3 million new cancer 
cases and approximately 10 million cancer-related deaths 
are expected by 2020. The five most commonly diagnosed 
cancers are female breast cancer (11.7%), lung cancer 
(11.4%), colorectal cancer (10%), prostate cancer (PC; 
7.3%), and stomach cancer (5.6%) [2].

PC is a non-cutaneous cancer most commonly seen 
in males after 50  years of age, affecting nearly 1.6 mil-
lion individuals with more than 3,00,000 deaths world-
wide [3]. Reports showed that it is the second most 
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commonly identified cancer in males and the fifth major 
cause of cancer-related death [4]. In India, PC was one 
of the most frequently detected cancers in 2020, with 
41,532 new cases, accounting for 5.7% of the total can-
cer cases in men, with one in 125 men at risk of being 
diagnosed with PC [5]. The higher incidence rate of PC 
in the last few decades has been mainly due to increased 
prostate-specific antigen (PSA) screening, leading to a 
decrease in mortality among diagnosed cases [6–10]. 
Early diagnosis and improvements in treatment strat-
egies are major factors in the decline in mortality rates 
[11]. The prostate is a walnut-sized gland present in the 
male pelvis, which secretes seminal fluid and releases an 
alkaline solution that helps sperm to survive in the acidic 
environment of the vagina and helps in nourishing and 
transporting sperm [12]. Some of the different types of 
PC found in men include adenocarcinomas, squamous 
cell carcinomas, transitional cell carcinomas, neuroendo-
crine tumors, and prostate sarcomas. The most frequent 
type of PC is adenocarcinoma (90–95%). Age is the most 
common risk factor for the development of PC, as the 
incidence rate increases in those over 50 years old. Other 
associated risk factors includes race and ethnicity, diet, 
obesity, family history, and smoking [14].

The clinical symptoms of PC depend on the cancer 
stage, that is, whether the PC is early or advanced. The 
most commonly observed symptoms include urinary 
tract signs and symptoms such as painful and poor uri-
nary stream, frequent urination, erectile dysfunction, 
painful ejaculation, and hematuria [15]. Metastasis of PC 
to the vertebrae can lead to Pott’s disease, with chronic 
back and hip pain reported in patients. Furthermore, uri-
nary incontinence has been observed after radical pros-
tatectomy in the early stages of PC [16–18]. For the early 
detection of PC, PSA biomarker screening has been rec-
ommended for the men aged 55–69 years, with a digital 
rectal examination (DRE) performed in patients with a 
high PSA level [19]. A systemic prostate biopsy can then 
be conducted for the final analysis of adenocarcinoma 
using transrectal ultrasound (TRUS) or transperineal 
biopsy or multiparametric magnetic resonance imag-
ing (mpMRI) or targeted MRI-ultrasound fusion biopsy 
[20–22]. The Gleason grading system is used to grade 
the tumor, which helps the patient choose the correct 
therapeutic options [23]. A new diagnostic approach 
uses mp-MRI before the biopsy, which helps detect PC in 
biopsy-naive patients [24]. Non-invasive diagnostic tools, 
such as liquid biopsy, can also be used for detection of PC 
[25]. These diagnostic techniques are mainly adopted by 
physicians for tumor detection.

The primary methods for curing PC are pharmaceuti-
cal and surgical treatment. In recent years, inhibition of 
the androgen signaling pathway has emerged as a major 

therapeutic approach against tumors, where androgen 
levels are reduced by using hormones. Androgen depri-
vation therapy (ADT) is the name given to this treatment 
[26]. Hormone therapy such as ADT is highly effective 
in the treatment of metastatic hormone-sensitive PC 
(mHSPC), which leads to form metastatic castration-
resistant PC (mCRPC) [27]. The approved drugs used 
for ADT are abiraterone acetate and enzalutamide. The 
drugs used in chemotherapy include docetaxel, cabazi-
taxel, mitoxantrone, and radium-223, which are radio-
isotopes used for cancer treatment [28]. The drugs got 
approval from United States Food and Drug Administra-
tion (US FDA) for the medication of PC has been listed in 
Table 1. The timeline for the development of these drugs 
and their respective approval year has been presented in 
Fig. 1. Surgical treatments are very successful in treating 
localized PC [29]. However, survivor of PC can have an 
adverse impact on the quality of life (QoL) of the survivor 
[30]. The most likely observed problem is depression [31] 
and many experiences of physical and sexual dysfunction 
[32].

This review intends to provide an overview of PC, con-
sidering aspects such as the risk factors, clinical repre-
sentations, different methods of diagnosis, treatment, 
and management, and the QoL of patients with PC. As 
PC has recently emerged as a global burden, extensive 
research and studies are required to better understand 
this disease so that novel diagnostic and therapeutic 
approaches can be identified to reduce mortality and 
improve patient QoL.

Epidemiology
PC has always been the most common malignancy in 
men in the past few decades. In 2020, there were 1.41 
million new PC cases globally, accounting for 7.3% of all 
cancer cases [2]. In 2021, there are 248,530 new PC cases 
reported and a sum of 34,130 deaths [45]. Furthermore, 
by 2040, these trends are estimated to increase to 2.43 
million new cases and 740,000 deaths worldwide [46]. 
The Caribbean, Western and Northern Europe, North 
America, Australia, New Zealand, and Southern Africa 
had the highest incidence rates. At the same time, North-
ern Africa and Asia had the lowest incidence rates [2]. A 
major contributor to these varying PC incidence rates is 
variations in diagnostic practice. With the introduction 
of PSA screening in 1990s, a remarkable rise in PC inci-
dence rates was noted in the United States, Australia, and 
Canada [3]. According to an investigation, one in every 
eight men has a risk of developing PC [45], with increas-
ing age. For men below 50 years of age, the probability of 
developing PC has been reported to be low in compari-
son to those aged 50–59 and 60–69 years [47].
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Approximately one in every 41 men dies because of PC 
[45]. The mortality trends did not show as much varia-
tion as the incidence rates. The highest rate of mortality 
are observed in regions such as sub-Saharan Africa, the 
Caribbean, and Micronesia/Polynesia [2]. In contrast, 
low mortality has been observed in South Central and 
Eastern Asia [3]. Currently, there are more than 3.2 mil-
lion survivors of PC in the United States [48]. There has 
been a remarkable decline in PC incidence rates in the 
last decade. Due to concerns regarding the over diagnosis 
and over treatment of PC.

Major risk factors
Major risk factors associated with the incidence of PC 
includes the aging, race, family history, and genetic fac-
tors. Besides these the lifestyle factors such as diet, obe-
sity, and smoking has also been reported to be associated 
with the prevalence of PC [49].

Age
PC is commonly diagnosed in men above 60  years of 
age. The United States Preventative Services Task Force 
(USPSTF) issued Grade ‘D’ recommendations for dis-
couraging PSA use for men above 75 years of age in 2008 
and all men in 2012. Subsequently, PSA screening was 
reduced by 25–30%, resulting in a significant decline in 
incidence rate of PC in the United States. In 2018, the 
USPSTF issued a new recommendation, stating periodic 
PSA screening for men aged 55–69  years. In contrast, 
PSA screening is discouraged in aged men above 70 years 
[50]. The median age of diagnosis has been reported to be 
67 years, with more than 30% of deaths reported in those 
aged 75–84 years [48].

Race and ethnicity
Racial disparity has been observed in PC. African black 
men have a higher incidence rate than white men [51]. 
A report from the United States of America showed that 
African Americans have 58% more incidence and 144% 
more mortality than white men of European ancestry. 
In contrast, Hispanics have been reported to 14% lower 
incidence and 17% lower mortality than white men [52]. 
The reason for this disparity in PC is socioeconomic con-
ditions and biological factors [53]. African American 
men have chromosome 8q24, which has been reported to 
be associated with an increased risk of PC. They also have 
tumor suppressor genes, such as EphB2, which increase 
cancer risk [54, 55].

Family history and genetic factors
Family history plays a role in the development of PC. The 
risk of developing PC is higher in men who have a first-
degree relative with PC. Furthermore, the risk is higher 
if the relative is a brother [56]. Genetic factors contribute 
to nearly 40% of the risk of developing PC. Mutations in 
BRCA1 and BRCA2 increase the risk of PC. A mutation 
in the BRCA2 gene confers 8.6 times increased risk of PC 
in men aged < 65 years [57, 58]. Other rare mutations in 
PC include HOXB13, NBS1, and CHEK2 [59].

Lifestyle factors
Major lifestyle factors that influence the development of 
PC include diet, obesity, and smoking.

Diet and obesity
Diet plays a vital role in the incidence of PC, and there 
are certain food products that have a higher risk for 
PC, such as saturated animal fat, red meat, and dairy 

Fig. 1 Timeline demonstrating evolution in the treatment regimen for PC
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proteins. However, some dietary products decrease the 
development of cancer, such as soya, green tea, tomatoes, 
and lycopene [4, 60]. According to a survey, a sedentary 
lifestyle is related to increased PSA levels [61]. Some 
meta-analyses have reported a clear association between 
obesity and an enhanced incidence of PC independ-
ent of body mass index increases [62]. Obesity has been 
reported to be associated with a high risk of aggressive 
PC. The involvement of certain biological mechanisms, 
such as the development of insulin resistance due to 
physical inactivity, sex steroid hormones, and changes in 
metabolism, supports an association between obesity and 
PC [63].

Smoking
Smoking has been associated with the incidence of all 
types of cancers. Several reports suggested that smoking 
is associated with a greater number of mortalities due to 
PC. It also depends on the number of cigarettes smoked 
per day [64]. A California report stated that the rate of 
smoking is declining by 3.5% per year, resulting in a 2.5% 
decrease in PC death, suggesting that smoking reduction 
is beneficial for the decline in cancer mortality [65].

Novel diagnostic approaches
The traditionally used PSA test for the screening and 
diagnosis of PC has various limitations, including its low 
specificity. These challenges have led to over diagnosis 
and over treatment of low-risk PC patients. Thus, new 
diagnostic methods that are cost-efficient and non-inva-
sive are needed to differentiate between aggressive and 
slow PC and to decrease the performance of excessive 
biopsies [66].

In the last decade, an increasing knowledge of the 
genetics and molecular biology of PC has led to the iden-
tification of several biomarkers that overcome the exist-
ing limitations of PSA. These newer biomarker-based 
methods with more specificity have been shown to be 
significantly better. Thus, these biomarker-based meth-
ods can help reduce the overtreatment and overdiagnosis 
of PC [66]. These biomarkers are used at various stages 
of decision making, including screening, after a posi-
tive biopsy for risk stratification, after a negative biopsy 
to determine whether to consider a repeat biopsy, and to 
monitor prognosis after treatment or in those suspected 
of recurrence to determine whether additional treat-
ment is required. Despite these potential benefits of bio-
markers, most are not currently used in clinical practice 
because there is a lack of clinically significant support 
validating their utility and benefits [67]. Nevertheless, we 
will now discuss some biomarker-based diagnostic tests 
that have demonstrated clinical significance.

Novel biomarker‑based diagnostic approaches
Biomarkers are used for various reasons, such as screen-
ing, diagnosis, risk stratification, and prognosis. A con-
cise overview of various biomarker-based tests used in 
the diagnosis of PC can be seen in Table 2.

Serum‑based biomarkers
Prostate health index (PHI)
The PHI test is a serum-based analysis, developed by 
Beckman Coulter Inc. and the National Cancer Insti-
tute-Early Detection Research Network. The biomarkers 
included in the PHI are [-2] proPSA, free PSA (fPSA), and 
total PSA (tPSA). These individual values are then sub-
jected to the formula [-2] proPSA/fPSA × √tPSA to gen-
erate a score that can differentiate between benign and 
malignant PCs, decreasing the performance of unnec-
essary biopsies [68]. Following this equation, high-risk 
patients are those with increased tPSA and [-2] proPSA 
levels and decreased fPSA levels. Thus, owing to the high 
risk of aggressive PC, patients with high PHI scores are 
suggested to undergo less invasive biopsies [76]. In 2012, 
the US FDA authorized the commercial use of PHI for 
patients > 50 years of age with PSA levels of 4–10 ng/mL 
and negative DRE reports [68].

Catalona et  al. conducted a multicenter trial in the 
United States on the clinical significance of PHI in 892 
men considered for biopsy with total PSA between 2 and 
10 ng/mL and normal DRE. Their results indicated that 
PHI had significantly higher specificity with 80–95% sen-
sitivity than PSA and %fPSA alone. The AUC values of 
PHI were 0.70, whereas PSA and % fPSA have AUCs of 
0.53 and 0.65, respectively [77].

Another study of two cohort groups, including 561 and 
395 men with no prior biopsy, demonstrated that PHI 
could predict the possibility of high-grade PC (AUC -0.81 
and 0.78). PHI had a specificity of 36% when the sensitiv-
ity settings were at 95%, which is comparatively high with 
the specificity of fPSA and tPSA, i.e., 19.4% and 17.2%, 
respectively. A PHI threshold value of ≥ 24 was optimum 
at 95% sensitivity, with a 36% reduction in unnecessary 
biopsies and a few missed biopsies [78]. White et  al. 
performed a study including two groups, with 506 men 
undergoing the PHI test and 683 men as controls. In this 
study, 73% of patient management was influenced by the 
PHI score, where ≥ 36 was considered the threshold. A 
notable reduction in unnecessary biopsies was observed 
among men that underwent PHI tests compared to con-
trols (36.4% vs. 60.3%) [79].

4K score
The 4K score is a blood-based test, developed by OPKO 
Health Miami, FL, USA. Patients with abnormal PSA or 
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DRE levels undergo a 4K score test to decide whether 
an initial biopsy is needed and patients for whom 
repeat biopsy is being considered. The possible candi-
dates for this test are men with a family history of PC, 
but any man above 35  years of age, curious about his 
risk, can have this test [76].

The 4K score utilizes four levels of kallikreins- fPSA, 
iPSA, tPSA, and human kallikrein 2 (hK2) along with 
the patient data, such as DRE, age, and initial biopsy 
outcomes in a specific algorithm, providing results 
in the form of percentages from 0 to 100%. This per-
centage forecasts the probability of significant high-
grade PC before biopsy. The 4K score can differentiate 
between patients with aggressive and slow PC. The 
patients with a Gleason score > 7 from those with a 
Gleason score < 7 have been considered as an aggressive 

in nature. The test can evaluate the threat of distant 
metastasis within 20 years of performing the test [69].

To validate the clinical utility and significance of 4K 
scores, Parekh et al. performed a trial in the United States 
that included 1021 men considered for biopsy, where 23% 
of men were found to have a Gleason score ≥ 7 PC. The 
4K score demonstrated better accuracy than the Prostate 
Cancer Prevention Trial Risk Calculator 2.0 (PCPT-RC). 
The overall reduction in biopsies was reported to range 
between 30 and 58% depending on different thresholds, 
with only 1.3–4.7% cases of late diagnosis. When using 
a ≥ 6% probability of having a Gleason score ≥ 7 as the 
threshold for performing a biopsy, there would be a 30% 
reduction in biopsies with only 1.3% delayed cases. Simi-
larly, when ≥ 9% and ≥ 15% is the threshold, the reduction 
in biopsies is 43% and 58%, with 2.4% and 4.7% delayed 
cases, respectively [80].

Table 2 Clinically significant different biomarkers for the diagnosis of PC

CLIA: Clinical Laboratory Improvement Amendments under Center of Medicare and Medicaid Services

Test Company Biomaterial Biomarker details Clinical utility Test outcome Certification References

PHI Beckman Coulter 
Inc

Blood serum Free PSA (fPSA), 
total PSA (tPSA), 
and [-2] proPSA

Initial biopsy 
and rebiopsy

Differentiates 
benign conditions 
and malignant 
prostate cancers
Decreases unnec-
essary biopsies

US FDA [68]

4K score OPKO Health Inc Blood plasma Free PSA (fPSA), 
total PSA (tPSA), 
intact PSA (iPSA), 
and human kal-
likrein 2 (hK2)

Initial biopsy 
and rebiopsy

Differentiates high-
grade and indolent 
prostate cancer
Decreases unnec-
essary biopsies

CLIA [69]

PCA3 Hologic Inc Post DRE urine PSA mRNA, lncRNA 
PCA3

Rebiopsy Decreases unnec-
essary biopsies

US FDA [70]

Exo-Dx Exosome
Diagnostics

Urine Exosomal mRNA 
(PCA3, ERG, 
and SPDEF)

Initial biopsy 
and rebiopsy

Differentiates high-
grade and indolent 
prostate cancer
Decreases unnec-
essary biopsies

CLIA [71]

SelectMDx MDxHealth Post DRE first void 
urine

DLX1, KLK3, HOXC6, 
mRNA and PSA

Initial biopsy 
and rebiopsy

Differentiates high-
grade and indolent 
prostate cancer. 
Decreases unnec-
essary
biopsies

CLIA [72]

TMPRSS2-ERG Blood tissue 
and urine

Post DRE urine Fusion gene 
TMPRSS2-ERG

Initial biopsy Differentiates high-
grade and indolent 
prostate cancer
Decreases unnec-
essary biopsies

No [73]

Mi-Prostate
Score

Michigan
Labs

Post DRE first void 
urine

PCA3 
and TMPRSS2-ERG 
mRNA, tPSA

Initial biopsy Differentiates high-
grade and indolent 
prostate cancer
Decreases unnec-
essary biopsies

CLIA [74]

ConfirmMDx MDx Health Tissue Hypermethylation 
of genes- GSTP1, 
APC and RASSF1, 
PSA

Rebiopsy Decreases unnec-
essary biopsies

CLIA [75]
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A case–control study of multi-ethnic groups involv-
ing 1,667 PC incidents and 691 controls with PSA levels 
of ≥ 2  ng/mL was conducted. The multi-ethnic groups 
included were native Hawaiians, White men, Latinos, 
African Americans, and Japanese. The outcomes dem-
onstrated that among all ethnic groups, the 4K score has 
a higher ability to differentiate overall and aggressive PC 
compared to tPSA and tPSA + fPSA. Thus, the 4K score 
appears to be a better alternative in a multi-ethnic pop-
ulation, providing evidence of its more comprehensive 
utility [81]. Various studies have found that the 4K score 
test decreases the cost while simultaneously improving 
the quality of patient care [82, 83]. A comparative study 
of the PHI and 4K score showed that both increased dis-
crimination while predicting high-grade PC and PC [84].

Urine‑based biomarkers
Prostate cancer antigen 3 (PCA3)
The PCA3 gene codes for long non-coding ribonucleic 
acid (RNA), previously known as DD3. In more than 
90% of PC cases, the PCA3 gene is 60–100 folds overex-
pressed compared to the normal tissues [85]. The PCA3 
test was made commercially available by Hologic Inc. 
It is a non-invasive method and utilizes the amount of 
PCA3 and mRNA of PSA found in urine collected after 
DRE [70]. The levels of PCA3 and mRNA of PSA were 
quantified using quantitative real-time polymerase chain 
reaction (qPCR). This information was substituted in the 
formula PCA3 mRNA/ mRNA of PSA × 1000, generating 
a PCA3 score that predicts the probability of PC, decreas-
ing the performance of unnecessary biopsies. A score of 
PCA3 (≥ 25) suggests a high probability of PC, whereas 
a score of < 25 is considered a low probability of PC [70]. 
Various studies have suggested a different threshold for 
PCA3 scores. Thus, the threshold ranges between 25 and 
35 accordingly, and the reduction in unnecessary biop-
sies also changes from 37% to 77.1% [72]. The optimum 
threshold value for PCA3 remains contentious.

Merola et  al. have performed a clinical study involv-
ing 407 men to assess the accuracy of PCA3 compared 
to total PSA and f/t PSA. They demonstrated that PCA3 
surpassed the f/t PSA performance. When the cutoff 
score was 35, PCA3 was found to have better sensitivity 
(94.9%) and specificity (60.1%) compared to a cutoff score 
of 20 [85]. According to a meta-analysis of nine studies, 
PCA3 has an AUC of 0.734, with a significant sensitivity 
and specificity by 69% and 65%, respectively. This study 
showed that a cutoff score of 35 had better clinical accu-
racy and applicability than other values [86].

Exo‑Dx (Prostate IntelliScore) (EPI)
Exo-Dx (Prostate IntelliScore) is a urine-based test. 
Exosomes are double-layered small vesicles that contain 

various cellular proteins produced by cells. This test 
measures exosome expression in urine by quantify-
ing ERG and mRNA of PCA3 normalized to the SAM 
pointed domain containing ETS transcription factor 
(SPDEF) [87]. The results from this test are expressed as 
an EPI score ranging from 0 to 100 [71]. This test meas-
ures exosome gene expression in urine and does not 
require prostatic massage or pre-DRE for sample col-
lection [87]. Based on the guidelines of National Com-
prehensive Cancer Network, this test can be useful in 
distinguishing the low-grade PC from high-grade PC in 
patients of more than 50 years of age with PSA levels of 
2–10  ng/mL [87]. In a clinical trial study conducted on 
503 men with an average age of 64 years and PSA level 
of 5.4  ng/mL has reported a reduction in total number 
of biopsies by 20%, unnecessary biopsy by 26%, and the 
number of missed biopsies by 7% with a negative predic-
tive value (NPV) of 89% [88].

SelectMDx
SelectMDx is a urine-based test developed by MDx 
Health, Inc. Usually, a urine sample is taken after DRE. 
This quantifies the mRNA levels of HOXC6 and DLX1, 
which are considered as a biomarker gene [89]. Various 
clinical data, the PSA levels, DRE results, PSA density, 
and history of PC were also considered while calculat-
ing the score [72]. In a study with two cohorts of 519 
and 386 patients, respectively, SelectMDx demonstrated 
its accuracy in predicting PC with the Gleason score of 
7, an AUC of 0.86, and a negative predictive threshold 
of 98%. They also suggested that this test could reduce 
unnecessary biopsies by 53% and overall biopsies by 42% 
[90]. A study done by Haese et al. in European countries 
included 1955 men with PSA levels less than 10  ng/mg 
and tested their urine samples. At a sensitivity of 47%, 
SelectMDx had a specificity of 47% and an AUC score 
of 0.85. The NPV was 95%. The AUC values of this study 
were compared with those of PCPT-RC, which had an 
AUC of 0.76. Thus, the test outperformed the PCPT-RC 
results [91]. A study found that the clinical use of Select-
MDx is cost-efficient in European countries [92].

Mi‑Prostate Score (MiPS)
The MiPS was discovered by the University of Michigan, 
Michigan Labs. Urine samples were collected after a DRE 
or prostatic massage. MiPS measures the mRNA expres-
sion levels of the TMPRSS-ERG fusion gene, PCA3, and 
tPSA [93, 94]. This test is considered for patients under-
going initial biopsy, and the results predict the possibil-
ity of high-grade PC [74]. Some studies have found that 
the combination of PCA3 and TMPRSS2-ERG enhances 
diagnostic capabilities [95].
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Sanda et  al. conducted a multicenter study to analyze 
the clinical applicability of the MiPS. In a validation 
group of 561 men with an average age of 62 years, they 
found that MiPS enhanced the specificity from 17 to 33%, 
distinguishing high-grade PC with a sensitivity of 93%. 
They also observed a 42% reduction in unnecessary biop-
sies using the MiPS test before biopsy [96]. A validation 
study by Tomlins et al. demonstrated that MiPS outper-
forms PSA alone in diagnosis. When detecting PC, the 
AUC value of MiPS was 0.751, whereas the PSA AUC 
value was 0.585. Similarly, while detecting clinically sig-
nificant high-grade PC, MiPS and PSA have AUC values 
of 0.772 and 0.651, respectively [97].

TMPRSS2‑ERG fusion gene test
TMPRSS2-ERG (androgen-related transmembrane pro-
tease serine 2) and ERG (ETS-related gene) are present 
on chromosome 21. In 2005, TMPRSS2-ERG was found 
to be fused in 40–80% of PC cases. The TMPRSS2-ERG 
test gives a score that can predict the possibility of high-
grade PC. This score is calculated using the formula: 
(TMPRSS2-ERG mRNA/PSA mRNA) × 100,000 [73]. 
TMPRSS2-ERG often combines with PCA3 to improve 
its predictability. The predictive value of this test is still 
under investigation [98].

Tissue‑based biomarkers
ConfirmMDx
Initially, there were 20–30% chances of false-negative 
reports in the histological test of prostate biopsies. 
Thus, patients at potential risk of PC needed to undergo 
repeat biopsies, affecting low-risk patients. Thus, to avoid 
unnecessary biopsies in these patients, ConfirmMDx 
was designed. ConfirmMDx is a biopsy-based test that 
requires tissue samples to provide results. MDx Health 
Inc. developed this test. This epigenetic test utilizes 
methylation-specific PCR to evaluate the DNA hyper-
methylation of APC, GSTP1, and RASSF1. This test can 
histologically distinguish between normal and cancer-
ous cells. Patients with negative ConfirmMDx results 
were found to have a < 5% lower probability of a rebiopsy, 
which is ten times decrease in the initial rates [75].

A multicentre study in the United States which 
involved 350 men who underwent for the repeated 
biopsy after a previous negative biopsy underwent the 
ConfirmMDx test within 24  months of the biopsy. The 
results showed an NPV of 88% and confirmed its predic-
tive value in multivariate analysis. Therefore, unnecessary 
repeat biopsies can be avoided [99]. The MALTOC trial 
included 498 men with negative biopsies who underwent 
the ConfirmMDx test within 30 months of the previous 
biopsy. This trial showed an NPV of 90%, and the mul-
tivariate analysis showed its significance in predicting 

outcomes [100]. In a study done by Yonover et al. in the 
United States, 605 men with an average age of 64 years, 
average PSA of 6.8 ng/mL, and a negative biopsy report 
underwent the ConfirmMDx test within ten months of 
the previous biopsy. They found that the test significantly 
impacted clinical decision making in rebiopsy settings 
[101].

Emerging biomarkers for the diagnosis 
and prognosis of PC
Various potential molecular biomarkers for PC diag-
nosis and prognosis are still developing. Some of them 
are under investigation such as circulating tumor cells 
(CTCs), PTEN, androgen receptor variants, long non-
coding RNAs such as HOX transcript antisense inter-
genic RNA [102, 103], SChLAP1 and MaLAT-1, and 
several miRNAs such as miRNA-141 and miRNA-
301a. However, most of these biomarkers are yet to be 
approved for clinical use [104]. Feng et al. observed that 
spindle and kinetochore-associated complex subunit 
3 (SKA3) is highly upregulated in PC cells compared to 
normal cells. Further, PC patients with higher expression 
of SKA3 are associated with an increased risk of rapid 
progression to metastasis [105].

Biomarkers of liquid biopsy: new edge technology 
for PC patients
Liquid biopsy is a non-invasive tool used for the diagno-
sis and management of PC patients. It is a more advanced 
approach for early detection and monitoring of PC. It uti-
lizes blood, urine, and other body fluids as samples and 
facilitates different targeted therapies, and probability of 
resistance to therapies [106]. It analyses samples in real-
time identifying and enumerating circulation tumor cells, 
cell-free DNA (cfDNA), circulating tumor DNA/RNA 
(ctDNA/RNA), and extracellular vesicles [107].

CTCs are cells shredded from primary or a meta-
static tumor mass, circulating in the blood. CTCs are 
epithelial cell adhesion/activating molecule (EpCAM)-
positive cells, which are used as a biomarker for the 
identification and enumeration of PC [108]. EpCAM is 
a transmembrane glycoprotein, its expression is upreg-
ulated in cancer cells. In cancer cells, it is responsible 
for cell adhesion, proliferation, angiogenesis, stemness, 
chemotherapy resistance, and epithelial to mesenchy-
mal transition. Thus, EpCAM is a diagnostic and prog-
nostic biomarker as well as a potential target for more 
precision therapy [108, 109]. The EpCAM-dependent 
CTC test has been the only US FDA approved technol-
ogy to be used for clinical application [110]. CTCs of 
more than 5/7.5 ml of blood are considered unfavour-
able with shorter PFI and overall survival (OS) [107]. 
EpCAM independent CTC capture methods are also 
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being developed such as epithelial immunospot (EPIS-
POT). It is an antibody-based method for quantification 
of live CTCs by detection of CTCs which are capable 
of secreting proteins such as cathepsin D, MUC1 and 
CK19 [111, 112]. For PC cells, PSA and FGF2 are tar-
get proteins for identification [113]. Another CTC bio-
marker under clinical investigation is AR-V7 [114].

Multiparametric magnetic resonance imaging 
(mpMRI)
mpMRI has enhanced the diagnosis, reducing unneces-
sary biopsies and improvised risk stratification system 
for prostate cancer patients [115]. mpMRI is performed 
when a person shows abnormal screening. If lesions 
(PI-RADS ≥ 3) appeared in MRI, then patient is recom-
mended for targeted biopsy or systematic biopsy [115]. 
In 2019, the lesions of a clinically significant PC ranges 
from PI-RADS 1 to PI-RADS 5. Various lesions are 
graded as PI-RADS 3 or 4 characterised by mild to high 
chances of converting then into tumour in future [116].

Therapeutic strategies
PC is one of the leading cancers reported worldwide, 
and despite various advances in medical science. The 
treatment of PC still needs further improvement. Major 
therapeutic approaches for PC include surgical treat-
ment, radiotherapy, chemotherapy, and hormone ther-
apies [117]. The correct approach for the treatment of 
PC depends on whether we are trying to cure the dis-
ease or control certain symptoms. It also depends on an 
individual’s risk of death from other causes and the life 
expectancy. In nearly 80–90% of PC cases, increased 
androgen activity is detected in the initial stage of the 
disease. Hence, inhibition of the AR and reduction in 
androgen levels are the cornerstones of ADT. There-
fore, ADT remained the first line of treatment for men 
with PC. ADT is variable as 20–30% of patients show 
tumor recurrence and become castration resistance, so 
a metastatic hormone naive tumor becomes mCRPC 
[118]. Men with localized PC have three treatment 
options: close monitoring, surgical treatment, and radi-
otherapy. Patients of metastatic PC has been reported 
to be treated with chemo-hormonal therapy such as 
docetaxel novel hormone therapy and cell-based cancer 
immunotherapy [119]. There is no specific sequential 
order of therapy for patients with PC because of rapid 
changes in treatment options and the approval of new 
drugs. We will now discuss some of the therapeutic 
options widely used by physicians to treat patients with 
PC.

Chemotherapy
Drugs approved for therapy include docetaxel, cabazi-
taxel, mitoxantrone, and bicalutamide (first-generation 
antiandrogens).

Docetaxel
Docetaxel is a taxane-based chemotherapeutic drug 
used to treat PC. It shows anticancer activity by inhib-
iting microtubule assembly during mitosis and inter-
phase, leading to cell death (Fig.  2), and is thought to 
have some anti-androgenic properties [120]. Follow-
ing several phase trials, this chemotherapeutic drug 
was the first found to increase OS of patients with PC. 
A multi-arm cohort study conducted on 593 patients, 
with the administration of ADT and docetaxel (75 mg/
m2) after every three weeks and prednisone (10  mg/
day) has showed a significant improvement in the OS 
compared with 1184 patients administered ADT alone. 
Therefore, this drug has an OS benefit when combined 
with another hormonal drug and steroids [121]. Doc-
etaxel is usually administered intravenously once every 
three weeks for ten cycles. However, reducing the drug 
dose depends on the patient’s tolerability. Furthermore, 
like other chemotherapy drugs, it is also associated 
with certain side-effects, such as cytopenia, nausea, 
vomiting, and neutropenic sepsis [122].

Cabazitaxel
Cabazitaxel is a US FDA approved semisynthetic com-
pound. This compound is being used as a second line 
of therapeutic after docetaxel in patients with PC. This 
chemotherapeutic drug also has the same mode of action 
as docetaxel as it inhibits microtubule assembly (Fig.  2) 
[123]. It can overcome taxane resistance and shows anti-
cancer activity in patients with post-docetaxel treat-
ment and docetaxel-resistant cancers [124]. Cabazitaxel 
is administered via an intravenous infusion once every 
three weeks, and the standard dose is 25  mg/m2 fixed 
after studying various trials [125]. Detailed mechanism of 
action of taxanes like Docetaxel and Cabazitaxel is dem-
onstrated in Fig. 2.

Mitoxantrone
Mitoxantrone is a synthetic compound, used as a sec-
ond-line chemotherapeutic drug for the treatment of 
PC. Mitoxantrone causes immunogenic cell death in PC 
cells by activating eukaryotic initiation factor 2 [126]. 
Retrospective analysis of data from various phase 3 tri-
als of mitoxantrone revealed symptomatic improvement 
without any survival benefits in some patients, as well as 
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adverse impacts, such as fatigue, shortness of breath, and 
pancytopenia [127].

Novel hormone therapies
Novel hormone therapy, also known as androgen sup-
pression therapy, is used to suppress the levels of andro-
gen by targeting the androgen signaling pathway [128]. 
Overexpression of androgen is responsible for the pro-
gress of both mHSPC and mCRPC [129]. Some drugs 
that have regulatory approval include abiraterone and 
enzalutamide [130–132].

Abiraterone
Abiraterone acetate is an irreversible, selective inhibi-
tor of cytochrome p450 17A1 (CYP17), which blocks the 
production of androgen in men with mCRPC [133–135]. 
Abiraterone, has been shown to provide a survival ben-
efit and therefore approved for the treatment of mCRPC 
[136–138] by targeting androgen pathway (Fig. 3) [139]. 
Figure  3 shows precise mode of action of Abiraterone 
acetate and Enzalutamide as androgen suppression 
therapy. A random study conducted on 1,917 patients 
showed that abiraterone, ADT, and prednisone showed 
higher OS [140]. Abiraterone is orally administered at a 
dosage of 1000 mg/day and a low dose of prednisone has 
been reported to show fluid retention, hypertension, and 
hypokalemia with specific side effects such as increased 

levels of mineralocorticoids induced by the block of 
CYP17 [141].

Enzalutamide
Enzalutamide is a second-generation antiandrogen 
therapeutic approved for the medication of CRPC. It is 
highly effective in men with non-metastatic CRPC and 
reduces the probability of metastasis and death by 71% 
[142]. Various phase 3 trials have shown that enzaluta-
mide has anticancer activity and improves OS before and 
after chemotherapy. Enzalutamide is prescribed to be 
administered orally once at a dose of 160  mg/day. The 
most commonly observed side effects are gastrointestinal 
problems, fatigue, and hot flushes [143].

Radiotherapy
Radiation therapy is generally used to cure the early 
stages of PC by treating locally advanced tumors and 
reducing the risk of metastasis. This therapy has been 
slowly evolving. Indeed, various radiotherapy techniques 
have been developed, such as image-guided radiother-
apy, stereotactic ablative body radiotherapy, intensity-
modulated radiotherapy, and volumetric modulated arc 
therapy brachytherapy. Despite significant improve-
ments in radiotherapy, many PC patients still suffer from 
the recurrence of the disease, due to the low specific-
ity of therapy. Increasing the radiation dose to achieve 

Fig. 2 Mechanism of action of Taxanes: a Taxane derivatives bind to β tubulin which leads to microtubule stabilization, this inhibits the proper 
assembly of microtubules and inhibits G2-M transition and apoptosis. b Taxanes are able to inhibit AR activity by FOXO1 mediated inhibition 
of AR transcriptional activity. c Taxanes inhibit antiapoptotic proteins (BCL2, and BCL-XL) and promotes activation of proapoptotic proteins (BAX, 
and BAK) leads to the release of cytochrome c that activates intrinsic apoptotic pathway, which leads to cell death (AR: Androgen Receptor and ARE: 
Androgen Receptor Element)
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adequate anti-cancer effects can cause damage to the 
healthy tissues and result in adverse impacts. New tech-
niques, such as proton and carbon ion therapy, maxi-
mize their effect on tumor cells while minimizing their 
effect on surrounding healthy cells [144]. Nearly 10–40% 
of patients show tumor recurrence after having radi-
cal prostatectomy; for them, salvage radiation therapy is 
very effective and allows control of diseases in 60–70% 
of cases [145]. Radiation therapy can have certain radio-
induced side effects in patients, such as radiation proc-
titis. The correct positioning of patients and set up 
verifications can help to prevent and/or reduce the risk of 
radiation proctitis [146]. Radical prostatectomy remains 
the first treatment option for localized PC and reduces 
the risk of mortality. It provides better survival chances 
than radiotherapy in patients with a primary tumor [147]. 
Major prostatectomies include open prostatectomy, lapa-
roscopic prostatectomy, and TURP.

Radium-223 dichloride, also called alpha radio, is a 
radiopharmaceutical that emits alpha particles that selec-
tively target bone metastases [148]. Radium-223 is spe-
cifically used to treat patients with mCRPC with bone 
metastases to induce irreversible double-strand breaks 
in DNA, leading to tumor cell death [149]. It is usu-
ally administered through intravenous infusion for four 
weeks with six cycles. The most commonly reported side 

effects include bone pain, fatigue, gastrointestinal distur-
bances, hematological toxicity, thrombocytopenia, and 
leukopenia, which affect the adjacent bone marrow [150].

Phototherapy
Phototherapy (PT) uses the materials which can absorb 
the electromagnetic energy and transform it into ther-
mal energy to induce apoptosis in cancer cells [151]. 
This approach eliminates the risk of infection at the 
time of surgery and get rid of the side effects of chemo-
therapy. Near-infrared (800–1350  nm) light is primarily 
employed for the PT. The materials which have the abil-
ity to transform near-infrared radiation into tempera-
ture has been used for the PT and are recognized as the 
photothermal agents [151–153]. PT has been blended 
with other therapeutic regimens such as immunotherapy 
or chemotherapy for enhancing the therapeutic impact 
against tumors [154]. Photodynamic therapy (PDT) is 
also an approach for the treatment of cancer which pro-
motes the generation of reactive oxygen species in can-
cer cells leading to the induction of apoptosis in cancer 
cells [155, 156]. Polymer-coated metal nanostructures 
have been used for the PDT. It has also been employed 
for improving the efficacy of radiotherapy in suppressing 
the liver cancer [157]. Silver-gold hollow nano shells with 
mesoporous silica nanoparticle have been utilized for the 

Fig. 3 Mechanism of action of Abiraterone acetate and Enzalutamide. Abiraterone acetate inhibits the synthesis of androgen by blocking 
the action of 17α-hydroxylase and C 17, 20-lyase on CYP-17, leading to the inhibition in binding of testosterone to AR. Enzalutamide binds with AR 
and inhibits the binding of testosterone to AR. It also inhibits nuclear translocation of AR (AA: Abiraterone acetate, E: Enzalutamide, ARE: Androgen 
Receptor Element, AR: Androgen Receptor, T: testosterone, DHEA: Dehydroepiandrosterone)
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PDT in the experimental PC cells [158]. In another study, 
a hybrid nanoparticles of Au-alendronate were made for 
combined PDT-chemotherapy of PC [159]. The PDT not 
only enhanced the impact of chemotherapy in suppress-
ing PC, but also decreased the dose of the chemotherapy 
needed for the treatment of PC [160–162].

Immunotherapy
Immunotherapy (IT) has moved the therapy concept 
of different tumors/cancers in clinical scenarios [163, 
164]. However, the clear impact in the suppression of 
PC has not been reported yet [165]. PC remained as a 
tumor with predominantly immunosuppressive com-
ponents, like regulatory T cells (Tregs) and transform-
ing growth factor-β (TGF-β). Although tumor cells has 
been reported to express certain marker antigens, such 
as PSMA and PSA [166]. There are several immuno-
therapies reported to optimize the available treatment 
strategies.

Anticancer agents are designed to join with high selec-
tivity of monoclonal antibodies to form antibody–drug 
conjugates such as Sacituzumab govitecan, trastuzumab 
deruxtecan targeting Trop2, and HER2. It has the capa-
bility to directly carry cytotoxic drugs to tumor [167]. The 
treatment of PC with immunomodulatory drugs includes 
both active as well as passive approaches. The active 
approach includes vaccines which are designed with 
the intent to stimulate an adaptative immune response 
through presentation of an antigen [165]. The passive 
approach includes the administration of highly specific 
monoclonal antibodies for tumor-associated antigens 
(TAAs) and tumor-specific antigens (TSAs). The efficacy 
of anticancer vaccines of PC can be analyzed using its 
specific biological markers or features, which include an 
early diagnosis of disease recurrences, slow growth, and 
a series of TAAs (PSA, and PSMA), TSAs [168], pros-
tate stem cell antigen (PSCA), prostate acid phosphatase 
(PAP), PCA-3 antigen, six-transmembrane epithelial 
antigens of prostate (STEAP), and mucin-1 [169]. It has 
reported that vaccines can be used along with the other 
therapeutics such as second-generation hormonal treat-
ments (docetaxel, and radiotherapy) [170]. Vaccine-based 
treatments can be categorized into two groups such as 
cell-based and viral vector-based vaccines [168, 171, 172].

Chimeric antigen receptor (CAR) T-cells is a recently 
advancing approach of immunotherapy for the treatment 
of solid tumors where antibody fragments are used along 
with T cells specific against TSAs [173, 174]. CAR T-cell 
therapy have been reported to show a remarkable suc-
cess in B cell hematological malignancy [175–178]. There 
are several newly emerging TAAs under investigation 
such as immune checkpoint B7-H3 (CD276), Mucin-1, 
IL-6 receptor (CD126), Lewis-y antigen, STEAP-1 [179]. 

Major challenges faced by this therapy are manufacturing 
of CAR T-cells, direct attack on normal tissues that share 
expression of the TAAs called On-Target Off-Tumor tox-
icity, and cytokine toxicity [180–182]. IT has emerged 
as a potential treatment regimen for mCRPC. It can sig-
nificantly improve progression-free survival and overall 
response rate especially in immune checkpoint inhibitors 
treatment. However, they cannot improve the OS [183].

Cell‑based vaccines
Sipuleucel‑T
Sipuleucel-T is a vaccine of autologous dendritic cells 
that unleashes an immune response against PAP anti-
gen. This is an autologous active immunotherapeutic 
agent which has been reported to improve the survival 
of patients with mildly symptomatic PC [184]. It was the 
first US FDA approved therapeutic vaccine for cancer. It 
evokes patients’ immune systems to identify and combat 
cancer [185]. Detailed workflow of Sipuleucel-T immu-
notherapy is demonstrated in Fig.  4. The recommended 
dose for treatment is an intravenous infusion of three 
complete doses at an interval of two weeks. The most 
common after-effects include bleeding, bruising, pyrexia, 
fatigue, nausea, and headache [186]. This drug is not 
widely used because of its high production cost.

G‑VAX
G-VAX is a granulocyte–macrophage colony-stimulating 
factor (GM-CSF) gene-transfected tumor cell vaccine. It 
has been genetically modified for the expression of GM-
CSF with the intention of increasing the differentiation 
and growth of dendritic cells [187]. This approach has the 
advantage of stimulate various TAAs without any pairing 
of HLA [188]. Though initial outcomes were promising, 
the successive results were negative against docetaxel 
from the phase III trials.

Viral vector‑based vaccines
Viral vector-based vaccines include the vectors obtained 
from oncolytic viruses. Such vectors can infect tumor 
cells and stimulate their death by antigen-presenting 
cells (APCs). Therefore, the APCs can produce TAAs 
which are responsible for the response of T cell [171]. A 
recombinant vaccine of Poxvirus which contains a PSA 
transgene with an HLA-A2 epitope, has been altered to 
enhance the immunogenicity of co-stimulatory mol-
ecules. The costimulatory molecules have been reported 
to be a B7-1 (CD80), an intercellular adhesion molecule 1 
(ICAM-1 or CD54) and lymphocyte function-associated 
antigen-3 (LFA-3 or CD58) [189, 190]. The results pub-
lished related to the PROSTVAC-VF have not shown a 
clear clinical benefit in treatment of PC patients [191].
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Immune checkpoint inhibitors
Tumor microenvironment (TME) is composed of various 
components which includes tumor cells, immune cells 
like myeloid-derived suppressor cells (MDSCs), tumor-
associated macrophages (TAMs), tumor-associated 
neutrophils (TANs), tumor-associated dendritic cells 
(tDCs), and adoptive immune cells like the regulatory T 
cells (Tregs), extracellular matrix, stromal cells, vessels, 
soluble factors and physical properties [192]. However, 
the immunosuppressive microenvironment is com-
posed of cellular and soluble components that promotes 
tumor progression and favors immune escape [192, 193]. 
Immune checkpoint inhibitors (ICIs) are referred as the 
monoclonal antibodies which are designed to target dif-
ferent receptors found in immune response [194, 195]. 
The most clinically proven ICIs are directed against 
PD-L1, PD-1, and CTLA4 [195]. PD-1 is a T cell trans-
membrane protein which has been reported to inter-
act with its ligand (PD-L1) in the tumor cells [196]. 
PD-1 and PD-L1 are located on chromosome 9p24.1, 
and plays vital role in maintaining immune homeosta-
sis [197], inside TME the activity of PD-1and PD L1 is 
seized by cancerous cells to escape immune surveillance 
[198]. Activation of T-cells are damaged due to interac-
tion of overexpressed PD-L1 in cancer cell with PD-1 
on tumor-infiltrating lymphocytes (TILs) which effects 
the TCR-signalling cascade by phosphorylating SHP-2 
[199]. Transcriptional activation of PD-L1 is regulated by 

various transcription factors like MYC, STAT3, NF-κB, 
AP1, and HIF-1. Modification processes like ubiquit-
ination, glycosylation, phosphorylation can affect the 
stability of PD-L1 protein in cancer cells so regulating 
the expression of PD-L1 protein [200]. High expression 
level of PD-1/PD-L1 has been reported in the PC cases, 
however, its role in response to ICIs remained debatable 
[201]. Inactivating the mutations in cyclin-dependent 
kinase-12 (CDK-12) have been reported to be directly 
related with an increased sensitivity towards immuno-
therapy. However, there are very few clinical data availa-
ble to support the use of ICIs [202]. Only the presence of 
insufficient mismatch repair has been recognized by the 
clinical guidelines as a transversal agnostic for anti-PD1 
therapy [203]. The synergistic effect of anti-D-1/PD-L1 
and anti-CTLA-4 has been reported in renal cancer and 
melanoma [204, 205]. It has been shown that the expres-
sion of androgen receptor splice variant 7 (AR-V7) cause 
alterations in genes involved in DNA repair that made 
them more susceptible to ICIs [206]. In another study, 
the ipilimumab and nivolumab had synergistically effec-
tive in the cancer patients with the expression of AR-V7 
[207]. CTLA-4 receptor has been reported to be present 
in the membrane of T lymphocytes. The stimulation of 
CTLA-4 receptor accelerates the inhibition of the func-
tion of T lymphocyte [208]. Ipilimumab has been shown 
to function as an anti-CTLA-4 agent and demonstrated a 
positive result for the treatment of PC in several studies 

Fig. 4 Mechanism of action of Sipuleucel-T. Sipuleucel-T is an autologous cellular immunological agent, here blood cells from prostate cancer 
patients are taken and processed through leukapheresis then density gradient centrifugation of leukocytes is done to get monocytes, monocytes 
are fused with fusion protein (PAP and GM-CSF) then it is culture for 36–44 h, infused monocyte is intravenously administered back to the patient. 
Infused monocyte having GM-CSF activates the APC that led to prostate tumor cell lysis by CD8 T cell. (GM-CSF-Granulocyte macrophage 
colony-stimulating factor, PAP-Prostatic acid phosphatase, APC- Antigen presenting cells)
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[209]. The increase of myeloid-derived suppressor cells 
has been reported to be associated with the resistance 
to treatment [210]. The application of anti-PD-1/PD-L1 
is limited to clinical trials in mCRPC [211]. Preclinical 
studies have shown that the over expression of PD-L1 
were produced by the medication with Poly (ADP-
ribose) polymerase (PARP) inhibitors [212]. Moreover, 
it has been reported that the sensitivity of NK cells can 
be enhanced by the treatment of Olaparib in PC [213]. In 
tumor microenvironment, the interaction between the 
immune response and angiogenesis pathway has been 
shown to favor the generation of an immunosuppressive 
state. The therapy with antiangiogenic agents has immu-
nomodulatory effects which enable the response to ICIs 
[214].

Gene therapy
Various strategies for gene therapy (GT) have been estab-
lished through novel and advanced drug delivery sys-
tems. GT has shown significant potential for the cure of 
tumors in PC patients. Several types of GT are used to 
treat PC including suicide GT (SGT), tumor-suppressor 
GT (TSGT), anti-oncogene therapy (AOT), and immu-
nomodulatory GT (IGT).

The concept of SGT is based on the killing of cancer 
cells by introducing a therapeutic gene in the cancer cell. 
After entry into the cancer cells, these SGTs have been 
reported to express and kill the cells without correcting 
the malignant mutations. It has also been shown that 
these SGTs have not affected the normal cells. SGT has 
been mainly divided into two major categories such as 
enzyme-based GT in cells. The enzyme-based SGT has 
been shown to suppress the proliferation of tumor [215]. 
In another study, Lee et al. (2020) have used the double 
SGT for the efficient treatment of PC using gemcitabine 
conjugated adenovirus [216].

TSGT has been achieved by introducing a wild-type 
gene into PC cells to suppress the proliferation of tumor 
[217]. The genes which have been usually studied for 
TSGT include p53, p21, and retinoblastoma [218, 219]. 
Successful GT has been achieved when all tumor cells 
remain transduced by the tumor-suppressor genes [220, 
221]. The protein responsible for the tumor-suppression 
(p14ARF) has been used to regulate the activity of AR 
and modulate the level of p14ARF in prostate [218]. In 
another report, an Arv7-mediated CRPC has been cre-
ated utilizing an active AR splice variant to inhibit the 
tumor [222]. Moreover, miR-21 has also been exploited 
to inhibit the proliferation of PC by targeting the tumor 
suppressor gene PTEN [223].

The capacity of immune system to detect and kill tumor 
cells is very low in humans. The immune system has been 
reported to be weakened due to the deficient expression 

of MHC antigens, which consequently lowers the T cells 
activation [224]. In this context, various immunomodula-
tory gene therapies have been established for the treat-
ment of PC by using the gene vaccines [225]. Another 
type of immunomodulatory GT has been recognized as 
the intratumoral injection of cytokine genes using vec-
tors [226].

Anti-oncogenes are made to target the specific tumor 
RNAs leading to the inhibition of tumor growth and pro-
liferation. This therapeutic methodology has been used 
for the safe transgene delivery devoid of damaging nor-
mal cells and preventing the lysis of viral cells [227]. The 
cycle of cell lysis progresses until all the cancer cells are 
eradicated and make sure that the tumor is completely 
cured [228]. Adenovirus early region-1 is the most com-
monly used viral vector which has been reported to act 
as a good transgene carrier [229]. Due to the outstanding 
delivery of gene product, efforts has been made to conju-
gate with other therapeutic genes which exhibited strong 
promise for the treatment of PC [230].

Nanotherapies
The use of nanotechnology has been expanded the mod-
ern scope for the treatment of diseases, and their diag-
nosis [231–233]. These nanocarriers have the potential 
to eradicate the cancer by targeted delivery of drugs and 
genes. There are several nanocarrier systems which have 
been used for enhancing drug delivery with higher bio-
compatibility of [234–236]. Major drug delivery systems 
in tumor treatment are polymeric spheres, liposomes, 
dendrimer, carbon nanotubes, mesoporous silica nano-
particles, virosomes, extracellular vesicles [237]. Apart 
from these therapeutic agents, the nanocarriers are being 
rapidly developed for the detection of tumor markers 
[238]. The aptamers have been reported to lack immu-
nogenic toxicity and are easily synthesized [239, 240]. 
Self-assembled polymeric nanoparticles have been syn-
thesized using the PLGA, and PEG and functionalized 
with Wy5a aptamer for the suppression of PC aggres-
sion [241]. Furthermore, these nanostructures loaded 
with doxorubicin has substantially eradicated the PC and 
delayed the growth of tumor in xenograft model [242]. 
The modification of nanoparticles with aptamers have 
been shown to increase the internalization into the PC 
cells [243]. In addition, hyaluronic acid-modified nano-
particles carrying epigallocatechin-3-gallate have been 
reported to significantly decrease the rate of proliferation 
of PC [244].

Ribonucleic acid interference (RNAi) has been uti-
lized for silencing of the target gene. The application of 
nanocarriers for targeted delivery of RNAi has been rec-
ommended for enhancing the internalization of RNAi 
[245–247]. In another study, the siRNA-loaded with gold 
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nanoparticles has been reported to penetrate the PSMA-
over expressed PC cells [248]. The mesoporous silica 
nanoparticles has also been used to improve the gene 
silencing potential of siRNA in the tumor cells [249]. 
PLGA based nanocarriers have been made for androgen 
receptor-shRNA delivery for the suppression of PC [250]. 
The tumor cells has been reported to show increased sen-
sitivity towards cisplatin by down-regulating the Lcn2 
gene [251]. Sorrentino et al. have reported that interleu-
kim-30 deletion using CRISPR/Cas9 reduces PC growth 
and elongates progression-free survival via upregulating 
SOCS3 and inhibiting the expression of IGF1 and CXCL5 
[252]. Various nanocarriers have also been established for 
the delivery of anthracyclines in PC cells [253]. In addi-
tion, the polypeptide based nanocarriers loaded with 
doxorubicin have been shown to raise the oxidative dam-
age, which eventually inhibited the metastasis of PC in 
mouse [254]. Several nanocarriers have been made to 
deliver the platinum-based agents to PC cells [255–257].

Clinical studies
Clinical symptoms observed in PC may differ according 
to the level of the cancer. In other words, it depends on 
whether the lobe of prostate gland is affected and metas-
tasized to other portions of body or not. In the case of 
locally advanced PC, cancer cells break out of the pros-
tate gland, affecting nearby organs. Simultaneously, 

metastatic PC occurs when cancer metastasizes to the 
bones and lymph nodes. Patients with early PC are gen-
erally asymptomatic. Localized PC shows lower urinary 
tract symptoms (LUTS) in benign prostatic hyperplasia. 
Clinical manifestations of locally advanced PC include 
erectile dysfunction, painful ejaculation, sexual dysfunc-
tion [31, 32], hematuria, haematospermia, fatigue, low 
appetite, weight loss, nausea, vomiting, chronic bone 
pain in the pelvis, vertebrae, ribs, and hips. PSA testing 
and DRE enable the diagnosis of PC at early stages [258]. 
AR signaling have been reported to play a crucial role 
in initiation and the progression of PC [259]. Generally, 
localized PC is controlled by radical prostatectomy or 
radiation therapy with or without ADT [260]. In recent 
decades, substantial development has been made in the 
treatment of CRPC, such as abiraterone, apalutamide, 
enzalutamide, and darolutamide [261–265]. The new 
clinically approved agents by US FDA for diagnosis and 
treatment of PC are summarized in Table 3.

Metastasis to bone has been successfully treated using 
the bisphosphonates, radium 223, and receptor acti-
vator of NFκ-B ligand inhibitor denosumab [121, 148, 
266–269]. Several PARPi (rucaparib, olaparib, and tala-
zoparib) has been evaluated in clinical trials for mCRPC 
[270–273]. PARP is responsible for repair of DNA dam-
age [274]. Moreover, the early clinical studies focused 
to target ICIs, such as CTLA4, PD1 or PD-L1 have 

Table 3 US FDA approved therapeutic agents for the clinical use in the treatment of PC

S. No Therapeutic agents used Type of therapeutic Date of US FDA 
approval

Date of EMA 
approval

Date of 
NMPA 
approval

1 68Ga-PSMA-11 Diagnostic radiopharmaceutical agent Mar 2022

2 177Lu-PSMA-617 Therapeutic radiopharmaceutical agent Mar 2022

3 Abiraterone Endocrine therapeutic agent Apr 2011 Sept 2011 Dec 2019

4 Cabazitaxel Antineoplastic agents Jun 2010 Mar 2011

5 Dostarlimab-gxly Immunotherapeutic agent Aug 2021

6 Degarelix Endocrine therapeutic agents Dec 2008 Feb 2009 July 2019

7 Denosumab Bone-targeting therapeutic agent Nov 2010 July 2011 May 2019

8 Darolutamide Endocrine therapeutic agent Jul 2019 Mar 2020 Feb 2021

9 Enzalutamide Endocrine therapeutic agent Aug 2012 Jun 2013 Nov 2019

10 Fluciclovine (18F) Diagnostic radiopharmaceutical agent May 2016 May 2017

11 Olaparib PARPi May 2020 Nov 2020 Jun 2021

12 Padeliporfin Antineoplastic agents Sept 2017

13 Pembrolizumab Immunotherapeutic agent May 2017

14 Piflufolastat F 18 Diagnostic radiopharmaceutical agent May 2021

15 Radium-223 dichloride Therapeutic radiopharmaceutical agent May 2013 Nov 2013 Aug 2020

16 Relugolix Endocrine therapeutic agent Dec 2020 Mar 2022

17 Rucaparib Antineoplastic agents May 2020

18 Sipuleucel-T Immunotherapeutic agent Apr 2010 Sept 2013

19 Zoledronic acid Bone-targeting therapeutic agent Feb 2002 Mar 2001 Dec 2018
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been evaluated [207, 275–278]. The PSMAs are greatly 
expressed in the cell membranes of PC [279]. Thus, 
PSMA targeting small molecules have been evaluated 
for their impact on PC cells in several clinical investiga-
tions [280–290]. Single-agent medication with the PI3K/
AKT/mTOR inhibitors or in combination with inhibitors 
of AR signaling have also been studied in several studies 
[291–297]. The therapeutic agents targeting other sign-
aling pathways, such as wingless-type protein signaling, 
CDK, p53, vascular endothelial growth factor, endothelin 
A receptor, receptor tyrosine kinases, epidermal growth 
factor receptor, fibroblast growth factor receptor, proto-
oncogene tyrosine-protein kinase Src, transforming 
growth factor beta, and mitogen-activated protein kinase, 
have also entered clinical trials [298–309]. In recent years 
the several advancements have been done for the treat-
ment of the PC. Despite these advances, current options 
for the treatment of PC have many limitations. Therefore, 
more specific treatment and targeted approaches are 
required for novel a better therapeutic possibility.

Recommendations and guidelines
According to the European Association of Urology (EUA) 
2020 guidelines, men with a PSA level of < 10 ng/mL are 
considered low-risk, PSA 10–20 ng/mL as intermediate-
risk, and PSA > 20  ng/mL as high-risk [310]. The Euro-
pean Society of Medical Oncology recommends that risk 
calculation and mp-MRI be performed before a biopsy is 
performed. They also suggested performing transperineal 
biopsies instead of transrectal biopsies [311]. According 
to the EUA, there is not currently enough data to pro-
mote the use of ConfirmMDx for rebiopsy. Thus, due to 
the lack of evidence regarding the clinical utility of Con-
firmMDx, its routine use is not recommended [312].

Conclusions and future perspectives
PC has become a global burden because of the increas-
ing number of patients and deaths. It is the second most 
commonly diagnosed cancer worldwide. Despite such a 
high prevalence of PC, its mortality rate is less because 
of PSA screening. In addition to recent screening tech-
niques like DRE, ultrasound, and mp-MRI, liquid biopsy 
is an emerging diagnostic tool. The correct combination 
of chemotherapy drugs, such as docetaxel cabazitaxel, 
with ADT drugs, such as enzalutamide abiraterone, has 
improved OS in patients with mCRPC. Advancements 
in treatment strategies by analyzing cancer progno-
sis and patient preferences have helped lower mortality 
and increase the QoL of PC survivors. There appear to 
be a number of future therapies, such as the DNA repair 
pathway, platinum-based chemotherapy, and PARP 
inhibition. Further studies and phase trials are needed 
to develop therapies with fewer side effects. The use of 

radiotherapy and prostatectomy during an early stage of 
PC affects QoL of survivors. Therefore, improved thera-
peutic technologies will help to minimize the side effects 
of treatment.
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