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Abstract
Soft-tissue sarcoma (STS) are a heterogeneous group of rare tumors with different biological behavior that are fatal 
in more than 40% of cases, due to their metastatic evolution and inadequate treatment options. ATR inhibition 
already showed an activity, even if modest, in broad pre-clinical models of STS. By using genome-wide CRISPR/Cas9 
library screening, we identified ATM signaling network genes as critical drivers for resistance to the specific ATR 
inhibitor AZD6738. The role of such genes in resistance to AZD6738 was confirmed by using CRISPR/Cas9 knockout 
models. More strikingly, the ATM inhibitor AZD0156 works synergistically with AZD6738 in vitro and abolishes STS 
growth in vivo in our models of most frequent histotypes (such as dedifferentiated liposarcoma, leiomyosarcoma, 
and undifferentiated pleomorphic sarcoma among others). Moreover, the combination of AZD6738 and AZD0156 
induced significantly higher levels of DNA damage than either drug used as single agent alone. In summary, 
our results demonstrate that targeting ATM is an effective approach to overcome resistance to ATR inhibition in 
different STS subtypes, including the most frequent histologies.
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To the editor
Soft tissue sarcoma (STS) are a heterogeneous group of 
rare tumors including more than 70 subtypes with dis-
tinct clinical and biological features [1]. Surgical resection 
represents the cornerstone of treatment of all patients 
with localized STS. However, up to 40% of patients who 
underwent optimal surgery will develop metastatic dis-
ease [2]. Only few drugs including doxorubicin, or gem-
citabine have shown activity in the advanced setting and 
the median overall survival has only slightly improved in 
the last 20 years from 12 months to 18 months [3]. There 
is a crucial need for new and effective drugs for patients 
with advanced STS.

Gene expression profiling of a large cohort of STS 
allowed the identification and validation of a 67-gene 
signature of chromosome instability named CINSARC 
(for genome Complexity INdex in SARComas), which is 
the most significant predictor of metastasis-free survival 
in these tumors [4]. Interestingly, many of the identi-
fied genes encode for proteins involved in DNA damage 
repair.

Moreover, a recent international study has shown that 
germline variants in several genes encoding proteins 
involved in DNA repair, such as BRCA2, ATM, ATR, and 
ERCC2, contributed significantly to sarcoma risk [5].

ATR plays a crucial role in maintaining genomic integ-
rity by responding to a large spectrum of DNA damages, 
including double strand breaks (DSBs) that interfere with 
replication. We have previously shown that ATR inhibi-
tion has an activity, even if modest, in a large number of 
pre-clinical models of STS [6]. To maximize the effective-
ness of ATR inhibitors (ATRi), combinations with agents 
targeting mechanisms of resistance to ATR inhibition 
should be identified.

Here, we propose to investigate the mechanisms of 
resistance to ATR inhibition in STS by using a genome-
wide negative CRISPR screening of a resistant STS cell 
line, and to validate treatment strategies to restore sensi-
tivity (see Additional file 1: Methods).

To examine the antitumor effect of ATR inhibition on 
STS, a panel of 7 STS cell lines (well differentiated and 
dedifferentiated liposarcoma, leiomyosarcoma, myxofi-
brosarcoma, and extraskeletal osteosarcoma) were plated 
and treated with increasing concentrations of the spe-
cific ATRi AZD7638 for 72 h. We showed that AZD7638 
suppressed the viability of 5 of them, encompassing sev-
eral histological subtypes, with IC50 values ranging from 
1.03 to 4.6µM (Supplementary Fig. 1). However, the two 
leiomyosarcoma cell lines displayed primary resistance 
to AZD7638: IB112: IC50 12.5µM; IB136: IC50 not deter-
mined (Supplementary Fig. 1).

Therefore, we decided to perform a CRISPR/Cas9-neg-
ative selection screening on one of the two resistant cell 
lines to identify genes involved in ATRi resistance. For 

this purpose, we performed the CRISPR/Cas9 screen-
ing on the IB112, one of the most resistant cell lines to 
AZD6738. We applied a negative selection screening, 
treating cells with suboptimal dose of AZD6738, to select 
the knockout cells most sensitive to the treatment, (see 
Suppl. Materials and Methods). Thus, among the sig-
nificant genes identified, we found genes involved in 
DNA Damage Response (DDR) pathway and specifically 
Ataxia Teleangectasia Mutated (ATM) pathway (such as 
THRAP3 and HUS1), mitosis, apoptosis, and cell cycle 
(such as AURKB, MERTK and MITF) (Fig. 1).

Among these candidates, we selected THRAP3 for 
further validation given its statistically significant rep-
resentation, and the fact that its suppression has been 
associated with defective DNA repair through the 
impairment of the mRNA splicing and export of tran-
scripts of several key DDR proteins, including the ATM 
kinase [7] (Supplementary Fig. 2). MTT assay confirmed 
that sgRNA targeting THRAP3 strongly sensitized IB112 
cells to AZD6738. Cell cycle experiments revealed that 
silencing of THRAP3 suppressed the S phase accumula-
tion induced by AZD6738 in IB112 cells (Supplementary 
Fig. 3).

These data confirms that THRAP3 is involved in resis-
tance to ATR inhibition in leiomyosarcoma cells. Given 
that THRAP3 is not targetable pharmacologically and 
given its role in ATM regulation, we decided to evaluate 
if the combination of a clinical compound targeting ATM 
could be synergistic with AZD6738 in our panel of STS. 
We used the selective and potent ATM kinase inhibitor 
(ATMi) AZD0156 in combination with AZD6738. The 
Chou-Talalay score showed that the ATRi/ATMi combi-
nation is synergistic or additive in all seven STS cell lines 
(Supplementary Fig.  4). Increased apoptosis was also 
observed with the combination treatment in compari-
son with each drug used as single agent (Supplementary 
Fig. 5). Having found that targeting ATM with AZD0156 
can sensitize STS cells to AZD6738, we next investigated 
the DDR signaling pathways activated by AZD6738 in 
the presence or absence of ATM function. We found that 
AZD6738 reduces the level of phosphorylated CHK1 
(pCHK1) and upregulates pATM. On the opposite, 
AZD0156 upregulated pCHK1 and reduced the level of 
pATM (Supplementary Fig. 6). These results are sugges-
tive of a compensatory effect and cross-talk between the 
ATM and ATR-dependent checkpoint response path-
ways. The combination of AZD6738 and AZD0156 syn-
ergistically reduced the levels of pCHK1 and of pATM in 
all the cell lines analyzed including the cell lines resistant 
to AZD6738 (IB112 and IB136) (Supplementary Fig. 6).

Finally, we assessed the impact of combined AZD6738/
AZD0156 treatment in two in vivo models representing 
the two most frequent histological sarcoma subtypes: 
dedifferentiated liposarcoma (IB115) and undifferentiated 
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pleomorphic sarcoma (JR588). Combined treatment 
reduced tumour growth, whereas single-agent treatments 
provided little benefit over the control (Fig. 2). Moreover, 
assessing pharmacodynamics biomarkers for DNA dam-
age, revealed a significant increase for γH2AX staining 
with the combination treatment in comparison with each 
drug used as a single agent (Fig. 2).

Exploiting synthetic lethality is a recurring theme 
in the field of anti-cancer drug development efforts. 
CRISPR-Cas9 knockout screens represent invaluable 
tools to identify genes whose loss sensitize tumor cells 
to a specific inhibitor. To identify biomarkers associated 
with sensitivity to AZD6738, Wang et al. used a CRISPR 
screen approach in the 293  A, HCT116, MCF10A cell 
lines [8]. As observed in our study, the authors identified 
an enrichment in DDR repair pathways. They also found 
that RNASEH2 loss sensitized tumors cells AZD6739, 
implying there is synthetic lethality between RNASEH2 
activity and ATR inhibition. Hustedt et al. also performed 
a genome-wide CRISPR-Cas9 screening to identify genes 
whose loss was associated with sensitivity to two ATR 
inhibitors; VE-821 or AZD6738 [9]. They found that 
POLE3/POLE4 genes loss was associated with increased 
sensitivity to ATR inhibitors in HCT116 and HeLa cells, 
as well as in a p53-mutated clone of RPE1 hTERT, which 
are telomerase-immortalized retinal pigment epithelial 

cells. To the best of our knowledge, we report here the 
first study using a genome-wide CRISPR screening tech-
niques to identify genes associated with sensitivity to 
ATR inhibition in sarcoma models and particularly in 
most frequent histotypes, and we confirmed their thera-
peutically interest in in vitro and in vivo models.

As observed in our previous study, the effects of ATR 
inhibition were modest both in vitro and in vivo [6]. 
However, by undertaking CRISPR screens, we identi-
fied THRAP3 loss as a key determinant of sensitivity to 
ATR inhibition. THRAP3 is a key mediator of resistance 
to DNA damage and is crucial for efficient DNA repair 
and cellular survival. Pre-clinical studies have shown 
that a transient depletion of THRAP3 induces sensitiv-
ity to DNA damaging agents due to deficient processing 
of transcripts encoding the ATM kinase [7, 10]. ATR and 
ATM have been reported to share a synthetic lethal rela-
tionship in several tumor types [9, 11]. Our study con-
firms that pharmacological inhibition of ATM sensitizes 
several subytpes of STS cells (including most frequent 
histologies), to ATR inhibition whatever their initial level 
of sensitivity to ATR targeting. Even if the anti-tumor 
activity of combined ATR and ATM inhibition may dif-
fer according to histological subtype, our findings have 
important clinical implications and suggest this approach 
deserve further investigation in patients with STS.

Fig. 1  (A) genome-wide CRISPR/Cas9 negative selection, identification of lost guides corresponding to genes implicated in the resistance to AZD6738 
compound. Briefly, for the CRISPR screen with the library GeCKO, 240 millions of IB112 were infected at a MOI = 0.3 and cells were selected during 3 days 
with puromycin, after selection we let cells grow during approximately one week. For the resistance screen, 30 × 106 cells were treated by DMSO and 
30 × 106 cells were treated by 8µM of ATRi. DNA was extracted for each condition, sequenced and compared. (B) Sequences were analyzed with 3 differ-
ent bioinformatics tools: RIGER, CRISPRcloud2 and Mageck. (C) Genes of interest identified with at least two bioinformatics analysis
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List of abbreviations
ATM  ataxia-telangiectasia mutated
ATR  ataxia telangiectasia and Rad3-related
DDR  DNA Damage Response
STS  soft-tissue sarcomas
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