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Abstract 

Background Clear‑cell renal cell carcinomas (ccRCCs) are malignant tumors with high metastatic potential and 
resistance to treatments occurs almost constantly. Compared to primary tumors, there are still limited genomic data 
that has been obtained from metastatic samples.

Methods We aimed to characterize metastatic ccRCC by way of whole‑genome analyses of metastatic formalin‑fixed 
samples, using  OncoScan® technology. We identified a frequent, unexpected pL1575P NOTCH1 mutation which we 
set out to characterize for translational purposes. We thus implemented patient‑derived xenografts from metastatic 
samples of human ccRCC to explore its clinical significance.

Results We showed that pL1575P NOTCH1 mutation was an activating mutation, leading to the expression of 
NOTCH1‑intracellular domain‑active fragments in both cancer cells and tumor endothelial cells, suggesting a trans‑
differentiation of cancer cells into tumor micro‑vessels. We demonstrated that this mutation could be used as a 
predictive biomarker of response to CB‑103, a specific NOTCH1‑intracellular domain inhibitor. One striking result was 
the considerable anti‑angiogenic effect, coherent with the presence of NOTCH1 mutation in tumor micro‑vessels.

Conclusions We identified a frequent, unexpected pL1575P_c4724T_C NOTCH1 mutation as a new biomarker for 
ccRCC metastases, predictive of response to the CB103 NOTCH1‑intracellular domain inhibitor.
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To the Editor,
The incidence and deaths of kidney cancer world-

wide, and thus mainly of clear-cell renal cell carcinoma 
(ccRCC), have doubled since three decades, particularly 
in the elderly population of countries with high social-
demographic index [1]. Recent therapeutic advances 
have considerably improved the prognosis of metastatic 
ccRCCs. However, almost all patients develop resist-
ance to these treatments [2]. Metastases may derive from 
minority clones in the heterogeneous primary tumor [3], 
and there are still limited genomic data obtained from 
metastases [4, 5].

Using  OncoScan® technology [6], we aimed to charac-
terize metastatic ccRCCs by way of whole-genome analy-
ses of metastatic formalin-fixed samples.

Four patients were included in the first analysis (Addi-
tional file 1: Table S1). We identified copy number altera-
tions and loss of heterozygosity (LOH) (Additional file 1: 
Fig. S1A). We compared this data obtained from the 
recent meta-analysis we performed on ccRCCs (Addi-
tional file  1: Fig. S1B) [4] and found some abnormali-
ties not previously described like 9q11.2 amplification 
(Additional file 1: Table S2). We also identified potential 
mutations (File ExcelS1). Using a threshold of 9 for prob-
ability score, we retrieved 48 mutations (Additional file 1: 
Table  S3), several of them not yet described in ccRCC. 
We focused on the pL1575P_c4724T_C NOTCH1 muta-
tion, located on chromosome 9q34.3, because it was pre-
sent in 3 of the 4 metastases, and because the NOTCH 
pathway is a potential therapeutic target in ccRCC [7]. In 
addition, the 9q arm is lost in 75% of RCCs (Additional 
file  1: Fig. S1B) [4], and we found an allelic imbalance 
9q34.3 cytoband for Patients 1 and 2 (Additional file  1: 
File ExcelS1).

Using digital-droplet PCR (ddPCR) and specific probes 
for the pL1575P_c4724T_C NOTCH1 mutation, we con-
firmed that it was present in the lymphoblastic acute 
leukemia T (LAL-T) positive control sample and in the 
3 metastatic samples from Patients 1, 2 and 4 with high 
allele frequencies (Fig. 1A), but not in Patient 3. When we 

tested 9 additional ccRCC metastatic samples, we identi-
fied pL1575P NOTCH1 mutations in all samples, with a 
mean mutant allele frequency of 53.5% (Fig. 1B).

Most NOTCH1 mutations occur in the HD and/or 
PEST domains (Additional file 1: Fig. S2A). The pL1575P 
NOTCH1 mutation is located in the HD-N domain and 
is responsible for NOTCH1 constitutive activation in 
LAL-T [8], through the release of the active NOTCH1 
intracellular domain (NOTCH1-ICD) into the cytoplasm 
and its nucleus translocation (Additional file 1: Fig. S2B).

To identify NOTCH1-ICD, we performed immu-
nostaining using an anti-NOTCH1 antibody (aa1755-
1767-intracellular) which specifically recognizes an ICD 
epitope. We found predominant nuclear staining in the 
3 metastatic samples from Patients 1, 2 and 4 (Fig. 1C), 
but not all cancer cells were stained. Using laser-micro-
dissection, the pL1575P NOTCH1 mutation was mainly 
present in cancer cells expressing NOTCH1-ICD (57% 
vs.17%, P < 0.01, Fig. 1D).

Surprisingly, we found that some CD31-expressing 
endothelial cells, but not all, co-expressed NOTCH1-ICD 
(Fig. 1E). Using laser-micro-dissection, we also identified 
the NOTCH1 mutation with an allelic frequency of 48% 
(Fig. 1E), suggesting vascular mimicry [9].

Five patient-derived xenograft models obtained from 
ccRCC metastases were developed in our research unit 
(XRCC1 to XRCC5). We identified the NOTCH1 muta-
tion in all five models at Passage 1 (P1). Except for 
the XRCC5 model, the allelic frequency significantly 
increased between P1 and P5 (Additional file 1: Fig. S3). 
We chose XRCC4 and XRCC5 because of the marked 
enrichment for NOTCH1 mutation in the XRCC4 xeno-
graft (48% allelic mutation frequency at P5) and a much 
lower allele mutation frequency for the XRCC5 xeno-
graft (19% at P5). XRCC4 and XRCC5 were obtained 
from patients responding to sunitinib (Additional file 1: 
Fig. S4), predicting response to sunitinib in the two mod-
els [10]. We treated them with two NOTCH1 inhibi-
tors: LY411575, a γ-secretase inhibitor with an IC50 of 
0.39 nM, and CB-103, a NOTCH1-ICD specific inhibitor 
(Additional file 1: Table S4 and Additional file 1: Fig. S2B). 
Using LY411575 administered daily by gavage, we did 
not observe any anti-tumor effect. In contrast, CB-103 
mono-therapy induced a significant anti-tumor effect for 

(See figure on next page.)
Fig. 1 ddPCR allelic discrimination for the pL1575P_c4724T_C NOTCH1 mutation, in 3 of the 4 metastatic samples processed via  Oncoscan® 
analysis (A), and in ten additional metastatic samples (B). NOTCH1‑ICD‑expressing cancer cells and tumor endothelial cells in human samples, 
NOTCH1‑ICD staining is mainly nuclear in the 3 metastatic samples from Patients 1, 2 and 4 (C). D Panel B illustrates the laser‑microdissection 
of a cancer cell expressing NOTCH1‑ICD (red circle and arrow) and of a cancer cell not expressing NOTCH1‑ICD (yellow circle and arrow), with a 
significant difference in terms of percentage of NOTCH1 mutant allele frequency. *** P < 0.001. E The left panel shows the NOTCH1‑ICD staining 
of a tumor endothelial cell (black arrow). Some tumor endothelial cells can be seen to co‑express NOTCH1‑ICD (red) and anti‑CD31 (green) on 
immunofluorescence staining (middle panel). The right panel shows that laser‑microdissected tumor endothelial cells expressing NOTCH1‑ICD 
harbor the pL1575P NOTCH1 mutation with an allelic frequency of 48%
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Fig. 2 In vivo anti‑tumor effect of CB‑103 in a XRCC4 xenograft model. A CB‑103 monotherapy, sunitinib monotherapy, or the combination of 
CB‑103 and sunitinib significantly inhibit tunor growth after 30 days of treatment (n = 6 per treatment group). This is associated with a significant 
gradual increase in the percentage of necrotic areas (B), a significant decrease in microvessel density (C) and in cell proliferation (D). After 30 days 
of CB‑103 monotherapy treatment, the pL1575P_c4724T_C NOTCH1 mutation and NOTCH1‑ICD protein expression disappear on Western blot (E). 
(*P < 0.05, ***P < 0.001) (F) NOTCH1 mutant allele frequency on laser‑micro dissected cancer cells after treatment with CB103 or not, using ddPCR
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both models, more marked with XRCC4 (Fig. 2A, Addi-
tional file 1: Table S5, Fig. S5A). Unexpectedly, like with 
sunitinib, there was also a strong induction of necrosis 
with CB-103 mono-therapy. The additive effect of the 
combined treatment was low in terms of tumor growth 
inhibition (Fig.  2B and Additional file  1: Fig. S5B), but 
tissue effects were much more marked than with suni-
tinib or CB-103 mono-therapy, in particular for necrotic 
area extent with very low cell viability. There was also a 
significant gradual decrease in micro-vessel density and 
proliferation (P < 0.01, Fig. 2C–D). CB-103 tumor growth 
inhibition was stronger with XRCC4 than with XRCC5 
(Additional file 1: Table S5), coherent with a higher allelic 
mutation frequency in XRCC4. Finally, when we assessed 
NOTCH1-ICD expression and NOCTH1 allelic mutation 
frequency in tumors after treatment, we found a signifi-
cant decrease for both markers. Model XRCC4 treated 
with CB-103 monotherapy, NOTCH1 allelic frequency 
decreased from 64 to 1%, and NOTCH1-ICD was no 
longer seen to be expressed on western blot (Fig. 2E, F).

Using two different methods, we showed that the 
pL1575P_c4724T_C NOTCH1 activating mutation is fre-
quent in metastatic ccRCCs, and this may be explained 
by a high sensitivity of  Oncoscan® technology using for-
malin-fixed samples [6, 11]. Like in LAL-T, we also evi-
denced the benefit of using CB-103 designed to block 
active forms of NOTCH1-ICD [12]. CB-103 is currently 
being evaluated in phase II clinical trials for various 
malignancies, with acceptable toxicity profile [13]. Since 
NOTCH signalling is closely linked to immune system 
regulation, further studies are required to determine if 
this NOTCH1 mutation is associated with response to 
immune checkpoint inhibitors, which would be of high 
translational relevance [14]. Our study opens the way to 
further development in metastatic ccRCC.

Abbreviations
ccRCC   Clear‑cell rencal cell carcinoma
LAL‑T  Lymphoblastic acute leukemia T
XRCC   Xenograft renal cell carcinoma
FFPE  Formalin‑Fixed Paraffin‑Embedded
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Additional file 1: Fig S1. Copy number gains and losses in 4 metastatic 
RCC samples using Oncoscan® (A) compared with 433 metastatic RCC 
samples from our meta‑analysis on genomic data of clear‑cell RCC (B). 
Some of the abnormalities were not previously described, including 
9q11.2 and 15q11.1–11.2 amplifications (red arrows on panel A). Fig S2. 
NOTCH1 protein structure and signaling pathway. (A) NOTCH1 protein 
structure, the mature NOTCH1 receptor is a heterodimer composed of an 
extracellular subunit (NOTCH1‑EC) and a transmembrane and intracellular 
subunit (NOTCH1‑TMIC). NOTCH1‑EC includes epidermal growth factor 
(EGF)‑like repeats, involved in ligand binding, three LIN‑12/NOTCH repeats 

(LNR), which prevent receptor activation in the absence of ligands, and 
the heterodimerization domain (HD) involved in non‑covalent interactions 
between NOTCH1‑EC and NOTCH1‑TMIC. NOTCH1‑TMIC comprises the 
transmembrane domain (TM) and the intracellular domain (ICD) (NOTCH1‑
ICD). NOTCH1‑ICD comprises an RBPJ‑associated molecule (RAM) 
domain, seven ankyrin (ANK) repeats, nuclear localization signals (NLS), 
a transactivation domain (TAD), and a PEST domain, in turn involved in 
proteasomal degradation of active NOTCH1‑ICD. Most NOTCH1 mutations 
are located in the HD and PEST domains (red arrows), and the pL1575P_
c4724T_C NOTCH1 mutation (highlighted in yellow) is located in the HDN 
domain. (B) Newly synthesized NOTCH1 precursor is cleaved by a furin‑like 
convertase (Furin) in the Golgi apparatus to generate the mature receptor. 
NOTCH1 signaling occurs when a JAGGED or DELTA ligand expressed 
on a signal‑sending cell interacts with NOTCH1 on a signalreceiving cell. 
This interaction triggers two sequential cleavages of NOTCH1: the first, by 
way of an a disintegrin and metalloproteinase (ADAM) metalloproteinase, 
generates the substrate for the second cleavage by γ‑secretase, which 
releases the active NOTCH1‑ICD. NOTCH1‑ICD translocates to the nucleus 
where it forms a transcriptional activation complex by interacting with 
the transcription factor CSL/RBP‑Jk, mastermind‑like proteins, and other 
coactivators (CoA), leading to the expression of NOTCH1 target genes. In 
physiological conditions, NOTCH1 expression is controlled by ubiquitina‑
tion and proteasomal degradation of NOTCH1‑ICD. Fig S3. ddPCR allelic 
discrimination for the pL1575P_c4724T_C NOTCH1 mutation in 5 XRCC 
tumor xenografts at the first (in gray) and the fifth (in black) passages. Fig 
S4. Response to sunitinib treatment in first‑line setting for two patients 
who provided metastatic samples for xenograft in murine models. (A) 
Patient corresponding to the XRCC4 model. (B) Patient corresponding to 
the XRCC5 model. Fig S5. In vivo anti‑tumor effect of CB‑103 in the XRCC5 
xenograft model. (A) CB‑103 monotherapy, sunitinib monotherapy, or the 
combination of CB‑103 and sunitinib significantly inhibit tumor growth 
after 30 days of treatment (n = 6 per treatment group). This is associated 
with a significant gradual increase in the percentage of necrotic areas 
(B), and significant decrease in microvessel density (C). For cell prolifera‑
tion, the decrease is only significant with the combination of CB‑103 and 
sunitinib compared to untreated mice (C). After 30 days of treatment 
with CB‑103 monotherapy, the pL1575P_c4724T_C NOTCH1 mutation 
(D) has virtually disappeared. (*P < 0.05, ***P < 0.001). Fig S6. Oncoscan® 
technology and the Molecular Inversion Probe: Target Generation and 
Hybridization Procedures. a) Annealing: Probe and gDNA hybridization; 
b) Gap filling with A/T or G/C nucleotides; c) Exonuclease selection for 
gap filled probes; d) Cleavage at site 1 for probe opening and inversion; e) 
Probe amplification and biotinylation; f ) Cleavage at site 2 to release the 
tag sequence; f ) Array hybridization followed by staining with phyco‑
erythrin through the biotin‑streptavidin interaction; g) Array scanning. 
Blue and gray colors indicate presence and absence of the phycoerythrin 
fluorescence signal respectively. Fig S7. Tumor growth inhibition coeffi‑
cient in XRCC models. For a drug or a drug combination, the coefficient of 
inhibition is calculated as (a’‑a)/a, a being the slope of the curve before the 
start of treatment (Day 0), and a’ the slope of the curve between Day 0 and 
Day 30 of treatment. If this growth inhibition coefficient is found to be less 
than 0, the tumor is considered sensitive to the drug administered; if it is 
above 0, the tumor is considered resistant to the drug. Table S1. Charac‑
teristics of the four patients included in the initial study using Oncoscan® 
technology. Table S2. List of genes located in locus 9p11.2, 15q11.1, and 
15q11.2. Table S3. Point mutation identified on RCC metastases before 
treatment. Table S4. NOTCH1 targeted therapeutics. Table S5. Growth 
inhibition coefficient for drugs tested in XRCC model. Table S6. Character‑
istics of the five patient‑derived xenograft models.
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