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Caspase‑8 contributes to an immuno‑hot 
microenvironment by promoting phagocytosis 
via an ecto‑calreticulin‑dependent mechanism
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Abstract 

Background  Caspase-8 (Casp8) acts as an initiator in cell apoptosis signaling. However, the role of Casp8 in tuning 
the tumor immune microenvironment remains controversial due to the complicated crosstalk between immune-
tolerogenic apoptotic cell death and immunogenic cell death cascades.

Methods  The Cancer Genome Atlas (TCGA) and publicly accessible immune checkpoint blockade (ICB)-treated 
cohorts were used to investigate the clinical relevance of Casp8. A tumor-bearing mouse model was used to charac-
terize changes in the tumor microenvironment and to explore the efficacy of ICB treatment under Casp8 knockout 
conditions.

Results  By exploring TCGA datasets, we showed that the expression level of Casp8 was associated with an immuno-
hot microenvironment across various solid tumor types. Casp8 deficiency leads to decreased CD8+ T cell infiltra-
tion and resistance to anti-PD-L1 therapy in a mouse model. Mechanistically, Casp8 deficiency or pharmacological 
disruption results in impaired ecto-calreticulin transition in tumor cells, which in turn hampers antigen presentation in 
draining lymph nodes. Furthermore, radiotherapy restored sensitivity to anti-PD-L1 treatment via elevated calreticulin 
surface expression.

Conclusions  Our data revealed a causative role of Casp8 in modulating the immunogenicity of tumor cells and 
responsiveness to ICB immunotherapies and proposed radiotherapy as a salvage approach to overcome Casp8 
deficiency-mediated ICB resistance.
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Background
The application of immune checkpoint blockade (ICB), 
such as programmed death-1 receptor (PD-1) and 
programmed death ligand 1 (PD-L1) antibodies, was 
shown to reinvigorate T cell function and prolong sur-
vival in various cancer types [1–5]. However, due to 
intrinsic or acquired drug resistance, only a minority of 
patients experience long-term benefits from ICB. Pre-
existing cytotoxic T cells in the tumor microenviron-
ment (TME) are a prerequisite for the reinvigoration of 
T cells and the resulting inflammation, indicating that 
an immuno-hot TME induces a beneficial response to 
ICB administration [6]. However, the intrinsic tumor-
driven force that leads to an immuno-hot TME remains 
unclear.

It is known that the form of tumor cell death instructs 
an immuno-hot or -cold TME. Immunogenic cell death 
(ICD) supplies an immuno-hot TME by promoting 
antigen release, antigen presentation, and cytotoxic T 
cell activation, inducing successful antitumor immunity 
[7]. Strategies aimed at eliciting ICD have been used 
to overcome resistance to ICB treatments [8]. Necrop-
tosis, pyroptosis, and ferroptosis are the predominant 
immunogenic forms of cell death, and apoptosis is usu-
ally regarded as an immune-tolerogenic process [9–11]. 
Furthermore, cells that undergo necroptosis activate 
the immune system, particularly through antigen pres-
entation and cross-priming of CD8+ T cells [12]. In 
pyroptosis, gasdermin proteins are cleaved by inflam-
matory caspases, leading to inflammatory cytokine 
release and cell death [13]. In cancer cells, gasdermin E 
cleaved by caspase-3 is an essential mediator of pyrop-
tosis, which converts non-inflammatory apoptotic sig-
nals into pyroptotic cell death and suppresses tumor 
growth [14].

Caspase-8 (Casp8) is a switch for immune-tolerogenic 
apoptosis, immunogenic necroptosis, and pyroptosis 
[15]. It has been reported that in the presence of Casp8 
malfunctions, the form of cell death could switch to 
necroptosis [16]. It is likely that Casp8 malfunction leads 
to ICD in cancer cells, which may provoke an adap-
tive immune response, facilitating CD8+ T cell infiltra-
tion and inducing an inflamed (hot) TME, which in turn 
improves the efficacy of ICB immunotherapies. Consist-
ent with this theory, in a TRAF−/− melanoma mouse 
model, tumor cells redirected the TNF signaling pathway 
to favor RIPK1-dependent necroptosis, enhance tumor 
eradication, and show a better response to anti-PD-1 
therapy than the control group [17].

However, evidence also suggests that necrosis-induced 
inflammation only facilitates tissue repair responses and 
is not sufficiently effective to induce anticancer immu-
nity [18, 19]. Moreover, the function of Casp8 may be 

catalytically activity-dependent or -independent. Apart 
from the aforementioned role of cleavage-dependent 
Casp8 function, the expression of catalytically inactive 
Casp8 is both necessary and sufficient to induce inflam-
masome formation [15]. This implies a complicated role 
of Casp8 in cell death and adaptive and innate immune 
responses.

In this study, we explored The Cancer Genome Atlas 
(TCGA) database and ICB-treated cohorts to determine 
the role of Casp8 in the TME and ICB responsiveness. We 
further established a Casp8 knockout cell line and animal 
models to understand the underlying mechanisms.

Methods
Cell lines
B16F10 cells were purchased from the American Type 
Culture Collection and cultured in Dulbecco’s modified 
Eagle’s medium supplemented with fetal bovine serum 
(10%), penicillin (100 U/mL), and streptomycin (100 mg/
mL) at 37  °C in a humidified atmosphere containing 5% 
CO2. The caspase-8-knockout B16F10 cell line (B16-
C8KO) was generated using CRISPR/Cas9 technology. 
The gRNAs encoding caspase-8 are shown in Additional 
file 1: Fig. S1.

Animals and animal models
Female C57BL/6 mice aged 6–8  weeks were purchased 
from the Center of Experimental Animals of the Third 
Military Medical Univercity (TMMU). Nude mice were 
purchased from VitalStar Biotechnology Co. Ltd. (Beijing, 
China). The mouse handling protocols were approved 
by the Institutional Animal Care and Use Committee of 
TMMU. To establish tumor models, B16F10 cells (2 × 105 
in 100  µL of PBS) were subcutaneously inoculated into 
the right flank of 6–8-week-old female C57BL/6 mice or 
nude mice. When the tumors became palpable, tumor 
volume was monitored twice per week. In immunothera-
peutic models, 2 × 105 B16F10 cells were subcutaneously 
inoculated into the right flank of 6–8-week-old female 
C57BL/6 mice. Mice received 200  µg of intraperitoneal 
anti-PD-L1 monoclonal antibody (10F.9G2, Be0101, 
BioXcell) or the equivalent isotype control antibody 
(BioXcell, BE0090) on days 4, 7, and 10.

For radiation-combined immunotherapeutic models, 
2 × 105 B16F10 cells were subcutaneously inoculated 
into the right legs of C57BL/6 mice. When the tumors 
reached approximately 50 mm3, the mice were locally 
irradiated using the Varian Trilogy Stereotactic System at 
a single dose of 20 Gy. On the same day, 200 µg of anti-
PD-1 monoclonal antibody (10F.9G2, Be0101, BioXcell) 
or equivalent isotype control antibody (BioXcell, BE0090) 
was injected intraperitoneally every three days three 
times.



Page 3 of 14Gong et al. Experimental Hematology & Oncology            (2023) 12:7 	

Detected cell surface ecto‑calreticulin (ecto‑CTR) 
expression and total calreticulin (total CRT) expression
The B16-C8KO cells or control cells (B16F10 cells treated 
with Z-IETD-FMK or dimethyl sulfoxide (DMSO) for 
8 h) were collected and washed with PBS with 0.3% goat 
serum, fixed with 4% formaldehyde with 10% goat serum 
solution, and incubated with calreticulin antibody at 4 °C 
for 1 h. After washing three times with FACS buffer, ecto-
CRT was detected using flow cytometry. To detect total 
CRT, the cells were fixed using a Cytofix/Cytoperm Kit 
(554714, BD). After washing twice with wash buffer, the 
samples were enclosed in 10% goat serum, incubated 
with the calreticulin antibody at 4  °C for 30  min, and 
detected by flow cytometry.

In vivo phagocytosis assay
In vivo phagocytosis was performed in accordance with a 
previously established protocol [20]. Briefly, B16F10 cells 
were stained with 1 µM Cell Tracker Deep Red dye (Inv-
itrogen), following the manufacturer’s protocol, and then 
treated with 50 µM Z-IETD-FMK or DMSO for 30 min, 
follow by 25  µM doxorubicin for 24  h. Cells were har-
vested and adjusted to 5 × 107 cells/mL in PBS. Labeled 
tumor cells (5 × 106 in 100 µL PBS) were injected into the 
spleen. After 2  h, the mice were sacrificed, the spleens 
were harvested and stained with anti-mouse CD11c anti-
body, and phagocytosis was assessed by flow cytometric 
analysis.

Flow cytometry
In subcutaneous animal models, tumors were harvested 
on days 18–20. After euthanasia, the tumors were col-
lected and filtered through a 70-μm cell strainer to obtain 
single-cell suspensions. For the analysis of tumor-infil-
trating immune cells, the samples were stained with anti-
CD45 (30-F11), anti-CD11b (M1/70), anti-CD3 (17A2), 
anti-CD8 (53-6.7), anti-CD4 (GK1.5), anti-F4/80 (BM8), 
anti-Gr-1 (RB6-8C5), and Fixable Viability Dye eFluor 
780 (65-0865) (eBioscience). For T cell function analy-
sis, samples were cultured with a cell stimulation cock-
tail (00-4975-03; eBioscience) for 6  h and subsequently 
stained with anti-CD45 (30-F11), anti-CD3 (17A2), 
anti-CD8 (53-6.7), anti-IFN-γ (XMG1.2), and anti-
GZMB(GB11) using the Cytofix/Cytoperm™ Kit (554714, 
BD).

In the subcutaneous mouse model, draining lymph 
nodes were harvested for dendritic cell analysis. After 
filtering through a 70-μm cell strainer, the single-cell 
suspensions were stained with anti-CD11c (N418), 
anti-CD103 (2E7), anti-CD45 (30-F11), anti-MHC-II 
(M5/114.15.2), and Fixable Viability Dye eFluor 780 (65-
0865) (eBioscience). Data were collected using a Gallios 
flow cytometer (Beckman Coulter) and analyzed using 

FlowJo software. To detect the cell surface and total cal-
reticulin, cells were treated with the caspase-8 inhibitor 
Z-IETD-FMK or DMSO and then irradiated using the 
Varian Trilogy Stereotactic System with a single dose of 
20  Gy. After 16  h, the cells were collected for analysis. 
Staining protocols were performed according to the man-
ufacturer’s instructions, using anti-calreticulin (EPR3924, 
Abcam).

Data collection
Bulk RNA sequencing data from 31 tumor types and four 
ICB-treated datasets with clinical information are availa-
ble in the database of TCGA and under Accession codes: 
PRJEB23709 [21], GSE78220 [22], and GSE91061 [23]; 
see Table S8 of the original paper [24].

RNA sequencing
Five pairs of control or B16-C8KO subcutaneous tumors 
from the right flank of 6–8-week-old female C57BL/6 
mice were collected for RNA sequencing.

Bioinformatics analysis
To investigate the contribution of caspase-8 to the 
inflamed TME, the cases were split into CASP8-high or 
CASP8-low groups based on the expression level of cas-
pase-8 in each tumor type. The 1st and 4th quartiles were 
defined as CASP8-high and CASP8-low, respectively. 
Gene rank was generated based on the log2 fold change 
between the two groups, which was calculated using the 
R package DESeq2 [25]. Then, the normalized enrich-
ment scores and p-values of the inflamed TME gene set 
[26] were computed by fgsea for each tumor type. To con-
firm the significance, enrichment analysis was applied to 
the cases with group information using Gene Set Enrich-
ment Analysis (GSEA). A heatmap was plotted based on 
the group information for each gene in the gene set.

To validate the benefit of caspase-8 for ICB treat-
ment, cases in each ICB-treated cohort were grouped 
as CASP8-high and CASP8-low based on the median 
expression level of CASP8. The hazard ratio was calcu-
lated by survival and survminer, and forest plots were 
plotted using forest plots. A heatmap was plotted for each 
gene of the inflamed TME gene set in ICB-treated data-
sets. Columns of the heatmap were arranged according to 
the expression level of CASP8.

To characterize the transcriptome profile of Casp8 
knockout and control cells in B16-bearing mice prin-
cipal component analysis was performed using Facto-
MineR, and the top two principal components were used 
for plotting. Enrichment signaling pathways were ana-
lyzed using Gene Ontology based on the differentially 
expressed genes between caspase-8-Casp8 knockout and 
control mice.
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Statistics
Comparisons between two groups of continuous vari-
ables were performed using an unpaired t-test or 
Mann–Whitney U test. Comparisons of continuous 
variables from three or more groups were performed 
using one-way analysis of variance (ANOVA). The asso-
ciation between responders and the categorical variables 
Casp8-high and Casp8-low was compared using the χ2 
test or Fisher’s exact test. Tumor growth was compared 
using one-way ANOVA. Survival was estimated using 
Kaplan–Meier curves, and the p-value and hazard ratio 
were determined using a log-rank test. Statistical analy-
ses were performed using Prism 6 software (GraphPad, 
Prism Software Inc., CA, USA) and R version 4.0.0. Sta-
tistical significance was set at p < 0.05.

Results
Caspase‑8 indicates an immuno‑hot TME in solid tumors
To investigate whether Casp-8 contributes to an inflamed 
TME favoring effective antitumor immunity, designated 
as immuno-hot TME in solid tumor types, expression 
profiling data from TCGA were introduced. A normal-
ized GSEA score was used to compare the immuno-hot 
and -cold microenvironments between patients with high 
or low (1st and 4th quartiles as the cutoff for high vs. low 
groups) expression levels of CASP8 with a well-estab-
lished T cell-inflamed gene set. For all 31 types of solid 
tumors (4874 cases) in TCGA, we observed consistently 
over-presented (normalized enrichment score > 0) T cell-
inflamed gene sets in patients with high CASP8 expres-
sion levels, indicating an immuno-hot microenvironment 
in these patients (Fig.  1a). In addition, when applying 
this analysis to a merged cohort containing all the above 
tumor types, we confirmed the significant upregulation 
of the T cell-inflamed gene set in patients with high levels 
of CASP8 (Fig. 1b). Furthermore, the heatmap in Fig. 1c 
clearly illustrates a pattern of upregulated expression of 
18 genes in the T cell-inflamed gene set, further support-
ing a strong association between CASP8 expression and 
the immuno-hot microenvironment.

Knockout of Casp8 results in an immuno‑cold 
microenvironment
To determine whether Casp8 expression is causative or 
merely a concomitant characteristic of an immuno-hot 
microenvironment, a B16-C8KO cell line was established 
using the CRISPR/Cas9 strategy. Western blotting and 
sequencing assays demonstrated the effectiveness of our 
depletion strategy at both the genomic and protein levels 
(Additional file 1: Fig. S1a and b). Consistently, a decrease 
in cell apoptosis was observed in  vitro and in tumor-
bearing immunocompetent mice (Additional file  1: Fig. 
S1c and d).

To identify the immunological consequences of Casp8 
knockout, B16-C8KO and control cells were subcutane-
ously inoculated into immunodeficient nude mice and 
immunocompetent mice. Identical tumor volumes were 
observed in immunodeficient nude mice, demonstrating 
no intrinsic difference in the cell growth rates resulting 
from Casp8 knockout (Fig. 2a). For the immunocompe-
tent group, although there was no statistically signifi-
cant difference in tumor size, we identified numerically 
increased tumor volumes in B16-C8KO-bearing mice, 
implicating an immuno-dependent mechanism of Casp8-
mediated antitumor immunity (Fig. 2b). To comprehen-
sively characterize the TME, homogenates of the tumor 
mass were subjected to RNA sequencing profiling. Prin-
cipal component analysis revealed a pattern of fully dis-
tinct transcriptomes between B16-C8KO and control 
tumors, demonstrating a substantial reprogramming 
of the TME due to Casp8 knockout (Fig.  2c). Focusing 
on a list of prominent genes in the antitumor immune 
response, a trend of lower expression of these genes was 
found in the B16-C8KO group (Fig. 2d), which success-
fully recapitulated our observations in the TCGA cohort 
(Fig. 1c).

Furthermore, flow cytometry showed significantly 
impaired infiltration of T cells, especially CD8+ T cells, 
in the B16-C8KO microenvironment (Figs. 2e and f and 
Additional file  1: Fig. S2a). Profiling analysis revealed 
comparable infiltration of myeloid-derived suppressor 
cells and tumor-associated macrophages (Additional 
file  1: Fig. S3). Moreover, regarding the cytotoxic func-
tion of CD8+ T cells, granzyme-B and INF-γ production 
decreased in B16-C8KO tumor cells (Figs. 2g and h and 
Additional file 1: Fig. S2b).

Poor responsiveness to anti‑PD‑L1 treatment 
in the B16‑C8KO‑bearing model
It is well known that the T cell-inflamed gene is a sur-
rogate measure of responsiveness to anti-PD-1/PD-L1 
treatment. Since Casp8 knockout significantly reduced 
CD8+ T cell infiltration and the inflammatory response 
in tumor cells, we speculated that the B16-C8KO clone 
was resistant to ICB immunotherapy. In the therapeutic 
mouse model, the anti-PD-L1 antibody was successively 
injected every three days three times (Fig. 3a). However, 
this treatment only led to weak (statistically insignifi-
cant) tumor control in the B16-C8KO groups compared 
to their wild-type counterparts (Fig. 3b, c). Accordingly, 
no survival benefit was observed in B16-C8KO-bearing 
mice, demonstrating less sensitivity to anti-PD-L1 immu-
notherapy (Fig.  3d). Furthermore, as observed in the 
control mice receiving this treatment, anti-PD-L1 admin-
istration failed to increase the infiltration of CD8+ T cells 
(Figs. 3e, f and Additional file 1: Fig. S2d).
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Taken together, our findings revealed an impaired 
CD8+ T cell response and poor sensitivity to anti-PD-L1 
treatment in Casp8 knockout bearing mouse model.

Responsiveness to ICB treatment in clinical datasets
Subsequently, we aimed to test the clinical relevance of 
caspase-8 in ICB-treated clinical datasets. To this end, 
four datasets with available outcome follow-up and base-
line RNA sequencing data from tumor biopsies were 
introduced. Eighteen genes in the T cell-inflamed gene 

set were used to characterize the immune microenviron-
ment [21–24]. The heatmap displayed enriched expres-
sion of signature genes in patients with high levels of 
CASP8, supporting an immuno-hot microenvironment 
in these patients (Fig.  4a). Furthermore, to monitor the 
response to ICB administration, we observed a correla-
tion between CASP8 expression and the responder/non-
responder categories in the four datasets (Fig. 4b, c). For 
the survival outcome, a more favorable overall survival of 
ICB-treated patients was found in CASP8-high patients 
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based on the 18 ICB responsiveness-related genes. d Heat map of the 18 genes. e and f B16-C8KO or control cells were subcutaneously inoculated 
into the right flanks of C57BL/6 mice, the TME of subcutaneous xenografts was analyzed. e Representative flow cytometry of CD4+ or CD8+ 
tumor-infiltrating cells. f Fractions of CD3+, CD4+, or CD8+ cells in CD45+ leukocytes in tumors. g and h Production of granzyme-B and INF-γ by 
CD8+ T cells was determined by flow cytometry. g Representative flow cytometry of tumor-infiltrating cytotoxic T cell function and h statistical 
analysis

(See figure on next page.)
Fig. 3  Casp8 knockout induced less CD8+ T cell infiltration and poor response to anti-PD-1 treatment in B16F10 mice models. B16-C8KO or control 
cells (2 × 105) were subcutaneously inoculated into the right flanks of C57BL/6 mice. Mice received 200 µg of intraperitoneal anti-PD-L1 monoclonal 
antibody or the equivalent isotype control antibody on days 4, 7, and 10. Tumor volume was monitored twice per week. a Experimental schematic 
of the B16F10 mouse model. b and c Tumor growth curves of the indicated groups (b) and each tumor (c). d The overall survival in the indicated 
groups. The mice were sacrificed when the tumor volume reached 2000 mm3. e and f CD4+ and CD8+ tumor-infiltrating cells in subcutaneous 
xenografts were analyzed by flow cytometry. e Representative flow cytometry of tumor-infiltrating T cells pre-gated for viable CD45+ cells. f 
Portions of T cells among CD45+ leukocytes in tumors
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than in CASP8-low patients, suggesting a higher sensitiv-
ity to ICB treatment in CASP8-high patients (Fig. 4d).

Impaired antigen presentation and ecto‑calreticulin 
translocation by Casp8 knockout
To explore the underlying mechanism of the Casp8-medi-
ated antitumor immune response, we compared RNA 
sequencing data to identify the differentially regulated 
signaling pathways between Casp8-8 knockout and control 
tumors in a B16F10 tumor-bearing mouse model. Gene 
Ontology analysis showed that the antigen processing and 
presentation pathway ranked among the top enriched sign-
aling pathways in tumors with wild-type caspase-8 expres-
sion (Figs.  5a and b), leading us to suspect a phenotypic 
change in dendritic cells in the Casp8 knockout group. 
Flow cytometry identified significantly fewer antigen-pre-
senting (CD103+) dendritic cells from the drained lymph 
nodes in the Casp8 knockout group than in the control 
group (Figs.  5c, d and Additional file  1: Fig. S2c). In  vivo 
phagocytosis assays showed that caspase-8 inhibitor treat-
ment (Fig. 5e) or knockout (Fig. 5f) downregulated phago-
cytosis. Surface-bound calreticulin (ecto-CRT) acts as a 
bridge for saturable binding sites on phagocytes and favors 
phagocytosis. In vitro, Casp8 knockout (Fig. 5g) and phar-
macological inhibition (Fig. 5h) blocked CRT translocation 
from the endoplasmic reticulum to the cell surface without 
altering the total expression of CRT (Figs. 5g, h and Addi-
tional file 1: Fig. S4). In addition, Casp8 knockout did not 
affect other well-known danger-associated molecular pat-
terns, such as HSP70 and HMGB1 (Additional file 1: Fig. 
S4). In spleen cells with the same pretreatment before 
phagocytosis, Casp8 malfunction had a limited effect on 
the ratio of cell death (Additional file  1: Fig. S5). Taken 
together, our findings suggest a CRT-mediated downregu-
lation of antigen presentation in the Casp8-associated 
immuno-hot microenvironment.

Irradiation rescues ecto‑CRT and sensitizes Casp8 
knockout tumors to ICB treatment
Radiation can also lead to endoplasmic reticulum stress. 
We found that ecto-CRT in Casp8 knockout and Casp8 
inhibitor-pre-treated B16F10 cells was significantly ele-
vated relative to the control group when a single dose of 
20  Gy irradiation was delivered (Fig.  6a). To determine 
whether radiotherapy could rescue the sensitivity to anti-
PD-L1 treatment for Casp8 knockout tumors in  vivo, an 
additional single dose of irradiation was administered 

on the same day of ICB initiation (Fig.  6b). Consistently, 
irradiation attenuated poor growth control in the Casp8 
knockout group compared to the control group treated 
with ICB (Fig.  6c, d). In addition, irradiation combined 
with anti-PD-1 prolonged survival in Casp8 knockout 
mice compared to those receiving ICB treatment alone, 
demonstrating the feasibility of a radio-immunother-
apy combinational regimen in treating Casp8-deficient 
patients (Fig. 6e).

Discussion
ICD can be induced by different stressors such as chem-
otherapy, irradiation, and targeted anticancer agents. 
Anthracycline chemotherapy drugs, such as doxo-
rubicin, induce caspase-dependent ICD by emitting 
damage-associated molecular patterns [27]. Many chem-
otherapeutic drugs, such as cisplatin, can induce casp8 
expression and lead to apoptosis, but these drugs are 
non-specific inducers [28]. Casp8 is a key regulator of cell 
death [15]. As both necrosis and pyroptosis are immuno-
genic, we could infer that a loss of Casp8 function leads 
to ICD, which triggers a stronger antitumor immune 
response and benefits ICB therapy. However, our findings 
suggest that the role of Casp8 is more complex. The clini-
cal data from TCGA and ICB-treated datasets revealed 
that in certain cancer types, especially melanoma, Casp8 
plays a pro-inflammatory role.

Previous studies have revealed that Casp8 may be related 
to ICB responsiveness, and Casp8 mutant cells accumu-
lated in tumors with a highly cytotoxic TME [29]. One 
explanation is that a loss of Casp8 function leads to resist-
ance to immune cell death. To test this theory, tumor cells 
were treated with CRISPR and co-cultured with natural 
killer cells and T cells [30, 31]. However, caspase-8 knock-
out was enriched in MC38/MC38-OVA tumors, but not 
in B16F10 cells, implying that the role of Casp8 may vary 
among cancer types. In contrast, in MC38-OVA cells co-
cultured with OT-I T cells in  vitro, treatment with anti-
PD-1 failed to enhance tumor eradication [31].

These results imply that the loss of Casp8 function may 
not be immunogenic, as expected. In clinical samples, high 
Casp8 expression was related to better overall survival and 
cytotoxicity of T cells in cancer patients [32]. Furthermore, 
based on the function of this protein, it is reasonable to 
infer that this phenomenon occurs because of resistance to 
inducers of cell death in tumor cells. However, in another 
study, when the CRISPR-treated tumor cells were treated 

Fig. 4  CASP8 expression was related to response to ICB in human cancers. a Heatmap of the expression of 18 genes in the T cell-inflamed gene 
set in four ICB-treated datasets. b CASP8 transcription level in responders and non-responders. c The response rate in CASP8-high and CASP8-low 
patients. d Forest plot of the hazard ratio for overall survival. The responders included patients with stable disease for more than 6 months, 
complete response, and partial response according to the Response Evaluation Criteria in Solid Tumors (RECIST 1.1). CASP8 expression lower than 
the median of each cohort was regarded as CASP8-low; otherwise, expression was regarded as CASP8-high

(See figure on next page.)
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with cytotoxic T cells, Casp8 knockout tumors were not 
identified. This indicates that resistance might occur ahead 
of T cell death [15].

In addition to its role in cell death, our findings showed 
that Casp8 plays a crucial role in antigen presentation. 
CRT is a fundamental molecule involved in ICD. When 
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CRT is blocked or knocked down, the immune response 
is impaired. More precisely, cell-surface-bonded CRT 
is predominant in ICD. We found that Casp8 knockout 
downregulated ecto-CRT in our B16F10 model, which is 

consistent with previous studies [33]; Casp8 knockout mice 
also showed a weak antitumor response in the CT26 mouse 
model. These reports support our finding that Casp8 is a 
key regulator of ecto-CRT, which affects the response to 
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ICB. However, in the endoplasmic reticulum stress model, 
ecto-CRT was not Casp8-dependent, and a similar finding 
was reported in the photodynamic therapy model [34]. In 
clinical practice, the detection of Casp8 mutations is prac-
tical, implying that such mutations might be independent 
predictive markers of the response to ICB.

Furthermore, we tried to rescue the resistance to ICB 
caused by the Casp8 mutation. Irradiation is an impor-
tant therapeutic method used to overcome low respon-
siveness to ICB in clinical practice. As far as immunity 
was concerned, irradiation was thought to have a dual 
effect, both inhibiting and promoting immunity [35, 
36]. Lamerton verified that if the whole body of the 
animals was exposed to radiation of 1.76  Gy/day or 
0.84 Gy/day, their immune system first responded posi-
tively and peripheral blood count increased; however, 
within 20  days, their bone marrow failed to produce 
platelets and leukocytes, and their immune system was 
destroyed [37], ultimately resulting in death. However, 
an increasing number of studies have shown that local 
irradiation might enhance antitumor immunity; for 
example, 8.5 Gy × 5 irradiation of tumors was reported 
to enhance MHC class I expression and dendritic cell 
function and improve the efficacy of tumor immuno-
therapy [38, 39]. High LET/RBE irradiation, such as 
particle and heavy-ion radiation, could induce single- 
and double-strand DNA breaks [40]. Meanwhile, in 
living tissues generating ROS/RNS and H2O2, irradia-
tion damages DNA, proteins, and membranes, result-
ing in new antigen production and strengthening of 
the immune response. A previous study by our group 
confirmed that a single local irradiation dose of 20 Gy 
for tumors could enhance the number of tumor-infil-
trating CD8+ CTLs in the TME of B16F10 tumors, and 
the depletion of CD8+ T cells significantly weakened 
the therapeutic effect of irradiation [41]. In this study, 
irradiation combined with ICB improved the ORR and 
prolonged progression-free and overall survival. In our 
model, we found that in Casp8-deficient patients, radi-
ation might be an effective approach for overcoming 
ICB resistance. We explained a new mechanism where 
stereotactic body radiation therapy enhances ICB ther-
apy by inducing calreticulin expression through cas-
pase-8 inhibition, thus enriching the immunological 
theory of stereotactic body radiation therapy-enhanced 
immunotherapy.

Conclusions
Casp8 deficiency, knockout, and inhibitor treatment led 
to an impaired ecto-calreticulin transition, which in turn 
resulted in hampered antigen presentation and a cold 
TME, which are traits associated with ICB resistance. 

Irradiation could rescue the ecto-calreticulin expression 
of tumor cells and improve phagocytosis to overcome 
ICB resistance. Consistent with TCGA and ICB-treated 
cohorts, Casp8 expression was correlated with an 
inflamed TME and a better response to ICB. These 
results imply that patients with Casp8 loss-of-function 
mutations may not benefit from ICB alone; however, 
a radiation combination strategy might sensitize non-
responders and improve clinical outcomes.
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