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Abstract 

Since U.S. President Barack Obama announced the Precision Medicine Initiative in his New Year’s State of the Union 
address in 2015, the establishment of a precision medicine system has been emphasized worldwide, particularly in 
the field of oncology. With the advent of next-generation sequencers specifically, genome analysis technology has 
made remarkable progress, and there are active efforts to apply genome information to diagnosis and treatment. 
Generally, in the process of feeding back the results of next-generation sequencing analysis to patients, a molecular 
tumor board (MTB), consisting of experts in clinical oncology, genetic medicine, etc., is established to discuss the 
results. On the other hand, an MTB currently involves a large amount of work, with humans searching through vast 
databases and literature, selecting the best drug candidates, and manually confirming the status of available clinical 
trials. In addition, as personalized medicine advances, the burden on MTB members is expected to increase in the 
future. Under these circumstances, introducing cutting-edge artificial intelligence (AI) technology and information 
and communication technology to MTBs while reducing the burden on MTB members and building a platform that 
enables more accurate and personalized medical care would be of great benefit to patients. In this review, we intro-
duced the latest status of elemental technologies that have potential for AI utilization in MTB, and discussed issues 
that may arise in the future as we progress with AI implementation.
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language processing

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The human genome project, which began in 1990 to ana-
lyze the entire human sequence, was declared complete 
in April 2003 after 13 years and a budget of approximately 

US$3  billion [1–3]. The world then entered the post-
genomic era, and expectations grew for the development 
of “personalized medicine,“ in which genomic informa-
tion is applied to medical treatment [4–6]. When the 
454 Genome Sequencer 20 (GS20), the first next-gener-
ation sequencing (NGS) technology, was introduced in 
2005, genetic analysis using NGS became actively pur-
sued. Further, research in fields such as genetic medi-
cine and pharmacogenomics became more active toward 
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the realization of personalized medicine, which aims to 
provide medical care based on an individual’s genetic 
information [7–9]. In 2014, Illumina made genetic anal-
ysis increasingly accessible with the announcement of a 
$1,000 genome offer upon the sale of the HiSeq X Ten 
[10, 11]. Under these circumstances, the precision medi-
cine initiative was announced by U.S. President Barack 
Obama in his New Year’s State of the Union address on 
January 20, 2015. The presentation declared that the 
study of how genomic information, environmental fac-
tors, and lifestyle affect health maintenance and disease 
development using large clinical samples will divide 
patients/potential patients into subgroups with respect to 
disease susceptibility and develop appropriate treatment 
and disease prevention methods for each group [12–
14]. President Obama’s announcement impacted global 
healthcare policy, and the establishment of precision 
medicine systems was prioritized in countries globally. 
In particular, the U.S. FDA’s approval of MSK-IMPACT™ 
and FoundationOne® CDx, tumor profiling tests for solid 
tumors based on NGS-based genetic mutation analysis, 
in late 2017 increased momentum for optimal treatment 
based on genetic information in actual clinical practice 
[15–17]. In Japan, the OncoGuide™ NCC Oncopanel 
system and FoundationOne® CDx were approved by 
the Ministry of Health, Labour and Welfare in 2018 and 
covered by insurance in 2019, making cancer genomic 
medicine available under insurance reimbursement 
[18–20]. On the other hand, the molecular tumor board 
(MTB), which is composed of experts in various fields 
such as clinical oncology and genetic medicine, discusses 
the results of genetic mutation analysis; however, it is a 
complex, time-consuming, and labor-intensive process 
[21–23]. With the growing expectations for precision 
medicine and the need to make MTBs more efficient and 
effective, several MTBs have been reported that utilize a 
virtual environment [24–26]. The expectation and bur-
den on MTB members are predicted to increase in the 
future, and the introduction of artificial intelligence (AI) 
and the latest information and communication technol-
ogy (ICT) to improve the efficiency and automation of 
MTB is important when establishing a precision medi-
cine system.

Along with recent advances in machine learning tech-
nology, particularly deep learning, AI technology has 
been attracting attention, and social implementation of 
AI is progressing in a variety of fields [27–29]. The medi-
cal field is no exception, with a succession of AI-based 
medical device programs being approved in countries 
globally, and their use in clinical settings is progressing 
[30–35]. Because deep learning technology is particularly 
strong in image analysis, AI research and development 
using medical images, such as radiological, endoscopic, 

ultrasound, and skin, has been actively conducted, and 
many important findings have been obtained [36–45]. In 
addition to medical image analysis, AI is used for omics 
data analysis and single cell analysis, and natural language 
processing (NLP), an AI technology, is now being used to 
analyze electronic medical records and medical papers, 
with research aimed at clinical applications [46–49].

This review focuses on the introduction of AI into the 
MTB and discusses the history of AI and the introduc-
tion of computers into diagnosis, the current status of AI 
utilization in the promotion of precision medicine, and 
future directions. Importantly, machine learning tech-
niques, including NLP, are categorized as AI techniques 
because, as noted above, current AI techniques are based 
on machine learning methods.

Machine learning, the technological foundation 
of current AI research and development, and its 
application to medical research
Current AI has become vastly popular due to its basis on 
machine learning with deep learning as its technological 
foundation [30, 50]. Based on its analytical characteris-
tics, machine learning can be broadly classified into four 
categories: supervised, unsupervised, semi-supervised, 
and reinforcement learning (Fig.  1) [51, 52]. Supervised 
learning is then broadly classified into regression and 
classification problems, and regression models are used 
as models for disease onset prediction and prognostic 
prediction [53–55]. Classification by supervised learning 
is currently the most widely studied method, especially in 
medical image analysis, and is practically applied in clini-
cal practice [33, 56–63]. This is because deep learning 
technology is particularly strong in image analysis, and 
when medical AI is practically applied to clinical prac-
tice, it is important to use data obtained from physicians’ 
diagnoses (especially specialists) as training data. Unsu-
pervised learning is subsequently used for clustering and 
dimensionality compression, and its applications in med-
ical research include patient stratification, medical image 
categorization, and disease subdivision [64–68]. Semi-
supervised learning combines supervised and unsuper-
vised learning. This technology has attracted attention 
in the medical field because it enables highly accurate 
learning even with limited amount of training data avail-
able. After supervised learning with limited labeled data 
using this method, it becomes possible to perform analy-
sis based on unsupervised learning with a large amount 
of unlabeled data and generate medical images using the 
generated model [69–73]. Lastly, reinforcement learning 
is a technique that continuously learns from each expe-
rience to optimize subsequent behavior and maximize 
the final outcome. The algorithm of AlphaGo, the AI 
that defeated the world’s top Go players, uses a learning 
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method called Q-learning, which is a type of reinforce-
ment learning with the optimal action value defined 
as Q-value. The algorithm selects the action that maxi-
mizes the Q-value from a large number of trials and their 
results [74, 75]. In medical research, it is used for disease 
detection, optimization of treatment strategies, and pre-
diction of efficacy and side effects of anticancer drugs 
[76–80].

Medical applications of computer‑aided diagnosis 
support and NLP
Computer-aided detection/diagnosis (CAD) is impor-
tant in describing AI-based diagnostic assistance. CADe 
(computer-aided detection) is a device that incorporates 
a software that allows a computer to automatically detect 
and mark the location of candidate lesions on an image, 
and the computer processes medical images and inspec-
tion data if possible to assist in the detection of lesions or 
abnormal values [81]. CADx (computer-aided diagnosis) 
is a stand-alone software or device with a software that 
detects suspected lesion sites, outputs quantitative data 
as numerical values and graphs, such as discrimination of 
lesion candidates as good or bad and the degree of dis-
ease progression [82], including those that provide diag-
nostic support by providing candidate diagnostic results, 
information on risk assessment, etc.

In the late 1950 s, during the dawn of modern comput-
ers, studies examined the development of CAD [83–85]. 
In the 1970 s, there was substantial worldwide interest in 
expert systems, and the MYCIN expert system was devel-
oped as an early CAD system. MYCIN is generally rec-
ognized as one of the most important early applications 
of AI in the medical field [86]. It uses a simple inference 
engine and has a knowledge base of ~ 500 rules. Sev-
eral simple “yes/no” or written response questions are 
asked by the physician, and a final list of possible causa-
tive bacterial names (in order of probability), the level 
of confidence in each, its reason, and the recommended 
course of drug therapy are determined. Since it showed 
a relatively good diagnostic accuracy of ~ 65% in clini-
cal cases [87], further refinement of the algorithm was 
expected to lead to more accurate diagnoses in various 
areas, leading to many research and development efforts 
aimed at applying the expert system to medicine. How-
ever, MYCIN was never applied clinically because com-
puter performance was poor at that time, and the social 
infrastructure, such as laws and bioethics, had not been 
developed. The development of an expert system requires 
a substantial amount of time and effort; the expert sys-
tem cannot convert ambiguous human expressions into 
rules, resulting in inconsistencies, and other fundamental 
shortcomings [30, 88].

Subsequently, in the late 1980 s and early 1990 s, the 
focus shifted to the use of data mining approaches for 
more sophisticated and flexible CAD systems. A sig-
nificant milestone was achieved in 1998 when the first 
commercial CAD system for mammography, the Image-
Checker M1000 system, was approved by the U.S. Food 
and Drug Administration (FDA) [89, 90]. Following 
this, CAD for detecting lung cancer (nodule shadows) 
in plain chest radiographs and chest CT images, and for 
polyp detection in colon CT examinations received FDA 
approval in rapid succession [91–93].

In the 21st century, with the development of deep 
learning technology using autoencoder by Hinton et al., 
image analysis using AI technology began to attract 
attention [94]. This trend has also been observed in the 
medical field, and the focus is on the development of 
CAD systems that take advantage of AI. Particularly in 
2015, in the ImageNet Large-Scale Visual Recognition 
Challenge (ILSVRC), an object recognition rate competi-
tion, a group from Microsoft demonstrated recognition 
accuracy with lesser than the average human error rate 
of 4.9% by using deep learning technology. Furthermore, 
in 2017, AlphaGo was named the world’s top performer 
in the game of Go, and there were a number of reports 
of AI surpassing human capabilities [95–97]. These facts 
spurred the development of the AI-based software as a 
medical device (SaMD). More than 300 AI-SaMDs have 
been approved by the U.S. FDA so far, and clinical appli-
cations are being explored, focused on medical image 
(radiological, endoscopic, ultrasound, etc.) analysis [98, 
99]. Additionally, AI is also being introduced for analysis 
of omics, and medical information and research papers 
[100–105].

NLP, a branch of artificial intelligence, is a series of 
techniques that allows computers to process everyday 
human language [106]. With the recent developments 
in deep learning technology, it is becoming possible for 
machines to understand and translate natural language 
[107]. NLP is also being actively studied in the medical 
field, as a significant portion of its diverse data gener-
ated contains such sentences [108–112]. Until recently, 
secondary use of medical data had been primarily based 
on relatively structured data, such as health checkup and 
medical fee data, but recently it is being developed for 
handling larger-scale, unstructured data. We categorize 
the utilization of natural language data in the medical 
field into three major trends. The first is toward the utili-
zation of data from physicians’ daily practice, represented 
by medical records (electronic) [113–115]. For example, 
automatic extraction of adverse drug reaction signals 
from electronic medical records is being attempted [116–
118]. The second major trend is the use of NLP to analyze 
published data, such as medical articles and case reports, 
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to extract important information for clinical applications 
[119–121]. In particular, a vast number of medical papers 
and case reports are published daily, and it is physically 
impossible for a clinician to comprehensively examine 
them [110]. Therefore, we believe that the extraction of 
important information using NLP is rather essential. 
The third major trend, which has been gaining attention 
over the past few years or so, is toward the private data 
that patients exchange through social media and patient 
associations [122–126]. The NLP system extracts epi-
sodes related to patients’ treatment, problems, and prac-
tical knowledge obtained from texts via social media. By 
creating and providing content with appropriate medi-
cal information to the extracted episodes, and building 
a mechanism for sharing similar episodes and practical 
knowledge among patients, an attempt is being made 
to create a foundation for patients and medical profes-
sionals to learn and utilize this information to enhance 
patient care.

Therefore, it is important to use NLP appropriately 
when considering MTB efficiency.

General MTB tasks and workflow
MTB, a meeting held to medically interpret the clinical 
implications of the results of genetic analysis obtained 
using NGS with the aim of proposing appropriate treat-
ments for each individual patient, is critically important 
in promoting precision medicine [127–132]. Table  1 
describes the general workflow of the MTB, showing an 
example of the MTB conducted at the National Cancer 
Center (NCC) Japan. Although the databases used and 
other details vary by country and institution, the basic 
work performed is common. In addition, Table  2 intro-
duces databases that are important for MTB.

The first important step in obtaining data from patient-
derived samples analyzed using NGS is to assign biologi-
cal significance to the genetic abnormality (e.g., whether 
it contributes to the acquisition of a particular trait, such 
as oncogenic potential). In the NCC Japan, focusing on 
variants whose pathological significance is judged differ-
ently in laboratory company reports and survey results of 
Center for Cancer Genomics and Advanced Therapeutics 
(C-CAT) [133], the registration status of gene polymor-
phism database (gnomAD), somatic mutation database 
(COSMIC), and ClinVar, a public database of variant 
interpretations, will be checked to determine the patho-
logical significance of the final judgment.

This is followed by interpretation of genetic evidence 
for diagnosis and prognosis. Here, public databases 
(CIViC, OncoKB, etc.) and literature are searched to 
determine if there are any findings regarding diagnosis 
and prognosis.

The next step is to attach specific candidate drugs and 
evidence corresponding to the genetic abnormality, con-
sidering basic patient information (cancer type). Here, 
the level of evidence based on the latest findings was con-
firmed by searching public databases (CIViC, OncoKB, 
etc.) and literature, focusing on drugs listed in labora-
tory company reports and C-CAT survey results. When 
germline gene abnormalities are present (or suspected), 
the significance and response should be based on guide-
lines, guidance, and recommendations related to second-
ary findings. The list of clinical trials being conducted at 
the hospital will be reviewed and the possibility of enroll-
ment in the relevant clinical trials will be considered.

If necessary, the specific candidate drugs listed will be 
reviewed to see if any of them are recommended for the 
patient’s condition and availability. Here, the pathological 
significance of each gene, level of evidence for the drug 
linked to the genetic variant, and availability of the drug 
are identified.

The OncoKB database is used as an example for further 
details (as of September 2022) [134] because interpre-
tation of evidence for genetic abnormalities is impor-
tant [135]. First, FDA-approved biomarkers that predict 
response to FDA-approved drugs are level 1, with 44 reg-
istered genes. Then the FDA-approved standard of care 
biomarker that predicts response to the drug is at level 2, 
with 23 registered genes. There is strong clinical evidence 
showing that the biomarkers are predictive of response 
to drugs, but neither the biomarkers nor the drugs are 
standard of care at Level 3, with 33 registered genes. In 
addition, there is strong biological evidence showing that 
a biomarker predicts response to drugs, but neither the 
biomarker nor the drug is a standard treatment, which 
is level 4, with 25 genes registered. Furthermore, eight 
genes are registered at level R1, the FDA-approved stand-
ard of care biomarker for predicting resistance to drugs.

These are the series of MTB flows; however, with the 
increasing expectations for precision medicine, increas-
ing burden on MTB members, and aim to conduct more 
efficient and comprehensive surveys, attempts are being 
made to introduce state-of-the-art AI and ICT technolo-
gies into MTB. The next section introduces research 
results using AI technology that could be applied to each 
task in MTB.

AI‑based prediction of biological significance 
for genetic abnormalities and its application 
to diagnosis and proposal of candidate drugs 
for treatment
Despite the existence of an excellent database on onco-
genes, it is difficult to determine the significance of most 
of the mutations identified in oncogenes for tumorigen-
esis, regardless of tumor type. To address this challenge, 
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Table 2  Databases commonly used in MTB

Database name Operating organization [URL]* Database contents References

ClinVar NCBI [https://​www.​ncbi.​nlm.​nih.​gov/​clinv​ar] This database collects information on the diversity of 
the human genome and related diseases and provides 
it as a freely available archive. It contains polymorphism 
locations, gene names, and their relationship to diseases. 
Gene information is linked to dbSNP and dbVar at NCBI, 
and phenotypes are linked to MedGen. Information is also 
collected from the NIH Genetic Testing Registry (GTR), 
OMIM, and PubMed. Each data can be viewed in HTML 
format or downloaded in XML or tab-delimited format, 
and some data in VCF files.

[209]

COSMIC Wellcome Trust Sanger Institute [https://​cancer.​sanger.​ac.​
uk/​cosmic]

COSMIC is the most detailed and comprehensive resource 
for studying the effects of somatic mutations in human 
cancer. In addition to coding mutations, COSMIC covers 
all genetic mechanisms by which somatic mutations 
promote cancer, including non-coding mutations, gene 
fusions, copy number mutations, and drug resistance 
mutations. The core COSMIC database is complemented 
by additional datasets that allow users to contextualize 
the biomarkers they detect. The Cancer Gene Census 
provides a detailed catalog of > 700 genes involved in 
cancer, their biological functions, and descriptions of the 
genetic mechanisms that cause cancer. The Cancer Muta-
tion Census provides information on the significance of all 
coding mutations based on biological and biochemical 
information from multiple sources. Mutation Actionability 
in Precision Oncology (Actionability) provides updates on 
drugs targeting specific somatic mutations at all stages 
of development. The Cell Lines Project advocates cell line 
omics data through systematic characterization of the 
genetics and genomics (variation and gene expression) of 
over 1,000 cancer cell lines.

[210]

gnomAD Broad Institute [https://​gnomad.​broad​insti​tute.​org] gnomAD is a resource developed by an international 
coalition of researchers with the goal of aggregating 
and harmonizing exome and genome data from various 
large-scale sequencing projects and making them avail-
able to a wider audience of scientists. The v2.1.1 dataset 
(GRCh37/hg19) provided by this site covers 125,748 
exome sequences and 15,708 whole genome sequences 
of unrelated individuals sequenced as part of various 
disease-specific and population genetic studies (as of 
March 2022). v3.1.2 dataset (GRCh38) has 76,156 genomes 
selected (as of March 2022), similar to v2.

[211]

OncoKB Memorial Sloan Kettering Cancer Center [https://​www.​
oncokb.​org]

OncoKB is a groundbreaking precision oncology 
knowledge base that leverages the clinical expertise of 
Memorial Sloan Kettering (MSK) to provide accurate and 
up-to-date information on the biological and clinical sig-
nificance of > 5,000 cancer gene mutations. On October 
7, 2021, the U.S. Food and Drug Administration approved 
OncoKB for partial listing as the first tumor mutation data-
base to be included in the Public Human Gene Mutation 
Database. This is the first tumor mutation database to be 
recognized by the FDA. Treatment information is catego-
rized by the OncoKB Levels of Evidence system, which 
assigns clinical utility (from standard to investigational 
treatment) to individual mutational events.

[212]

CIViC The McDonnell Genome Institute at Washington Univer-
sity School of Medicine [https://​civic​db.​org/​home]

CIViC is an expert knowledge base for the clinical inter-
pretation of variants in cancer, describing the therapeutic, 
prognostic, diagnostic, and predispositional relevance of 
all types of genetic and somatic mutations. CIViC is com-
mitted to open source code, open access content, public 
application programming interfaces (APIs), and proof of 
supporting evidence, enabling the transparent creation 
of current and accurate variant interpretations for use in 
precision medicine for cancer.

[213]

https://www.ncbi.nlm.nih.gov/clinvar
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://gnomad.broadinstitute.org
https://www.oncokb.org
https://www.oncokb.org
https://civicdb.org/home


Page 7 of 23Hamamoto et al. Experimental Hematology & Oncology           (2022) 11:82 	

Muiños et  al. developed BoostDM, a machine learning-
based methodology for in silico saturation mutagenesis 
of cancer genes to assess the carcinogenicity of muta-
tions in human tissues (Fig. 2A) [136]. In silico saturation 
mutagenesis is a term that generally refers to the compu-
tational assessment of all possible changes in a gene or 
protein. BoostDM defines a supervised learning strategy 
based on mutations observed in sequenced tumors and 
their annotation by site-specific mutation features, com-
paring mutations observed in genes with sufficiently high 
result type-specific excess (by dNdScv) with randomly 
selected mutations according to three-base mutation 
probabilities. This method examines the protein-coding 
sequence of the genome, and all considered mutations 
are mapped to the canonical transcript of the protein-
coding gene according to Ensembl Variant Effect Predic-
tor (VEP.92) [137]. Gene-tumor type-specific BoostDM 
models can be complemented with other models trained 
on pooled mutations from relevant tumor types and used 
to classify mutations observed in a patient’s tumor into 
drivers and passengers, an important step toward pre-
cision cancer medicine. According to the ClinVar and 
OncoKB databases, only 6,886 and 5,136 (12% and 9%) of 
the 55,729 coding variants in 568 cancer genes in 28,076 
tumor samples are considered drivers (pathogenic or 
potentially pathogenic) or passengers (benign or poten-
tially benign), respectively. In contrast, more than half 
of the mutations can be interpreted using the BoostDM 

model (26% via gene-tumor type-specific models). The 
BoostDM model is incorporated into the cancer genome 
interpreter (CGI; https://​www.​cance​rgeno​meint​erpre​ter.​
org/), a system designed to assist in the interpretation of 
newly sequenced tumor genomes.

Motzer et  al. performed an integrative, multi-omics 
analysis of 823 tumors from patients with advanced 
renal cell carcinoma (RCC) and identified molecular 
subsets associated with differences in clinical outcomes 
with angiogenesis inhibitors alone or in combination 
with immune checkpoint inhibitors (Fig.  2B) [138]. In 
this study, to better understand the biology of RCC, an 
RNA-seq dataset of 823 tumor samples from patients 
with advanced RCC, including 134 tumor samples with 
sarcoma-like features, obtained from a randomized inter-
national phase III trial (IMmotion151) [139], was used 
to classify patients into seven clusters by utilizing non-
negative matrix factorization (NMF). NMF is a machine 
learning method [140], and unsupervised clustering was 
used to identify subtypes with different angiogenesis, 
immunity, cell cycle, metabolism, and stroma programs. 
Results showed that VEGF receptor tyrosine kinase 
(sunitinib) and angiogenesis inhibitor (bevacizumab, 
anti-VEGF) + immune checkpoint inhibitor (atezoli-
zumab) were effective in subsets with high angiogen-
esis, and bevacizumab + atezolizumab had improved 
clinical efficacy in tumors with high T effectors and cell 
cycle transcription. Somatic mutations in the PBRM1 

Table 2  (continued)

Database name Operating organization [URL]* Database contents References

ClinicalTrials.gov U.S. National Library of Medicine [https://​www.​clini​caltr​
ials.​gov]

ClinicalTrials.gov is a registry of clinical trials. Operated by 
the National Library of Medicine (NLM) of the U.S. National 
Institutes of Health, it is the largest clinical trials database 
with > 408,000 registered clinical trials in 220 countries. 
ClinicalTrials.gov was created as a result of the Food and 
Drug Administration Modernization Act of 1997 (FDAMA), 
which required the U.S. Department of Health and Human 
Services (HHS), through the NIH, to verify the effectiveness 
of experimental drugs for serious or life-threatening dis-
eases and conditions by using the Clinical Trials. The NIH 
and the FDA jointly developed the site, which became 
available to the public in February 2000, to establish a 
registry of information on federal and private clinical trials 
conducted pursuant to an application.

[214]

BRCA Exchange Global Alliance for Genomics and Health [https://​brcae​
xchan​ge.​org/]

This database aims to improve our understanding of the 
genetic basis of breast, ovarian, pancreatic, and other 
cancers by compiling BRCA1/2 gene mutations and 
corresponding clinical data from around the world. It is 
possible to search for BRCA1 or BRCA2 variants online.

[215]

LOVD Molecular Health [https://​www.​lovd.​nl/] The database provides a flexible and freely available tool 
to display gene-centric collections and DNA mutations. 
It also provides storage for patient-centric and NGS data, 
and extragenic mutations. LOVD is open source, released 
under the GPL license, and is being actively improved.

[216]

*This information is current as of September 2022

https://www.cancergenomeinterpreter.org/
https://www.cancergenomeinterpreter.org/
https://www.clinicaltrials.gov
https://www.clinicaltrials.gov
https://brcaexchange.org/
https://brcaexchange.org/
https://www.lovd.nl/
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and KDM5C genes were associated with high angiogen-
esis and AMPK/fatty acid participation gene expression, 
while changes in CDKN2A/B and TP53 were also asso-
ciated with an increased cell cycle and anabolic metab-
olism. Sarcomas have a lower prevalence of PBRM1 
mutations and angiogenic markers, higher frequency of 
CDKN2A/B mutations, and increased PD-L1 expression. 
These findings can be applied to the molecular stratifi-
cation of patients, improving the prognosis of sarcomas 
by combining checkpoint inhibitors with angiogenesis 
inhibitors, and developing personalized medicine in RCC 
and other indications.

Substitutional mutations in tumors have been reported 
to account for 95% of somatic mutations, 90% of which 

are missense mutations [141]. Substitutional muta-
tions are further classified into driver mutations that 
favor cancer cell growth and passenger mutations that 
do not contribute to growth. Since the emergence of 
driver mutations and cancer heterogeneity are key fac-
tors in overcoming treatment resistance and treatment 
failure, distinguishing whether a substitution mutation 
is a driver or passenger mutation is an important chal-
lenge. Therefore, Dragomir et al. developed and reported 
a new method (DRIVE) that utilizes machine learning 
techniques to identify driver and passenger mutations 
(Fig. 3 A) [142]. Mutation-level characteristics are based 
on pathogenicity scores, while gene-level characteris-
tics include the maximum number of protein-protein 

Supervised learning Unsupervised learning

ClassificationRegression Clustering/Dimensional compression

Main models for analysis
*Linear regression

*Neural network regression
*Bayesian linear regression

*XGBoost regression
*Logistic regression

Examples of applications in medical research
* Model for predicting disease onset

*Prognostic model

Main models for analysis
*k-means clustering
*Spectral clustering

*Gaussian mixture model
*Affinity propagation

*Nonnegative matrix factorization

Examples of applications in medical research
*Disease subdivisions
*Patient stratification

Main models for analysis
*Generative model: adversary generation networks, variational autoencoders, etc.

*Virtual adversarial training
*Laplace regularization
*Low-density separation

Examples of applications in medical research
*Analysis of large volumes of medical data with small amounts of labeled data

*Generation of medical images

Main models for analysis
*Temporal difference learning

*Q-learning
*State–action–reward–state–action

*Markov decision process
*Monte Carlo methods

Examples of applications in medical research
*Optimization of treatment strategy

*Prediction of anticancer drug efficacy, side effects
*Disease detection

Main models for analysis
*Convolutional neural network
*k-nearest neighbor classifier

*Support vector machine
*Random forest

*Naive Bayes classifier

Examples of applications in medical research
*Diagnostic imaging support (radiological imaging,

endoscopic imaging, pathological imaging, etc.)

Semi-supervised learning

Clustering/Classification

Reinforcement learning

Optimization

Fig. 1  Applications of machine learning technology. The main models used in the analysis of each objective and their application to medical 
research are shown. The model is also used for various other aspects, for example, support vector machine is used for regression as well as 
classification

Fig. 2  Examples of platforms for the prediction of biological significance for genetic abnormalities and its application to diagnosis. A Schematic 
diagram showing an overview of BoostDM modified from Ref. [136]. A specific model (gradient boosted tree) was constructed for each of the 282 
gene-tissue combinations based on 18 features that characterize the mechanism of tumorigenesis of oncogenes. Specifically, 50 basic classifiers 
were trained on random subsets with equal numbers of positive and negative mutations to adequately represent the diversity of passenger 
mutations and prevent overfitting. B Schematic diagram of the identification of seven molecular subtypes of RCC tumors utilizing machine 
learning, modified from Ref. [138]. An integrative, multi-omics analysis of 823 tumors from RCC patients identified molecular subsets associated 
with differences in clinical outcomes with angiogenesis inhibitors alone or in combination with checkpoint inhibitors. Unsupervised transcriptome 
analysis using NMF revealed seven molecular subsets with different angiogenic, immune, cell cycle, metabolic, and stromal programs

(See figure on next page.)



Page 9 of 23Hamamoto et al. Experimental Hematology & Oncology           (2022) 11:82 	

Fig. 2  (See legend on previous page.)
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interactions, biological processes, and types of post-
translational modifications. To validate the ability of the 
proposed method, it was evaluated on a benchmark data-
set, which showed that both gene- and mutation-level 
features were representative of driver mutations, and the 
proposed method was > 80% accurate in finding the true 
mutation type. The results suggest that machine learning 
methods can be used to gain knowledge from mutation 
data to achieve more targeted cancer treatments [142].

Cancer immunotherapy, represented by immune 
checkpoint inhibitors, is a treatment that can induce 
the immune system to effectively recognize and attack 
tumors. The main approved drugs are antibodies that 
target CTLA-4 and PD-1/PD-L1 and can induce sus-
tained responses in patients with advanced cancer [143, 
144]. However, clinical benefit has not been achieved in 
many patients, highlighting the need to identify patients 
who will respond to immunotherapy [145, 146]. Chow-
ell et  al. integrated genomic, molecular, demographic, 
and clinical data from a comprehensive curated cohort 
(MSK-IMPACT) of 1,479 patients treated with immune 
checkpoint inhibitors in 16 different cancer types to 
develop a machine learning platform (Fig.  3B) [147]. 
Using random forests as the machine learning technique, 
the platform achieved high sensitivity and specificity in 
predicting clinical response to immunotherapy in a ret-
rospective analysis, predicting both overall survival (OS) 
and progression-free survival in test data across dif-
ferent cancer types. The analysis platform also signifi-
cantly outperforms the tumor mutation burden-based 
predictions recently approved by the U.S. FDA for pre-
dicting immune checkpoint inhibitor responses and can 
quantitatively assess the most salient model features for 
prediction.

Integrated analysis of EHR data using AI and its 
application to diagnosis and treatment
Modern healthcare systems generate and store vast 
amounts of digital information and have great potential 
for personalizing and improving healthcare delivery [148, 
149]. Morin et  al. developed a secure, comprehensive, 
dynamic, and scalable infrastructure called MEDomics 
designed to continuously capture multimodal electronic 
medical information across large, complex healthcare 

networks (Fig. 4) [150]. MEDomics maintains structural 
data that encapsulates the entire timeline of a particular 
individual’s medical care, and this cross-sectional profile 
can be used to develop a variety of AI applications aimed 
at practical interventions that can be returned to the 
healthcare system. Utilizing the MEDomics profile, an 
institution-wide mortality study in breast and lung can-
cer patients revealed correlations of mortality by stage 
and other factors consistent with the published literature. 
The impact of targeted and immunologic therapies on 
survival in metastatic breast and lung cancer patients was 
also investigated. In addition, this infrastructure allowed 
us to investigate the impact of previously reported non-
oncologic risk factors, such as the Framingham cardio-
vascular risk score, on mortality in cancer patients. This 
indicates that MEDomics is not only useful for continu-
ous learning, but also for generating and testing clinical 
hypotheses. Importantly, the study also used statistical 
learning to create a prognostic model to predict mortal-
ity with a high degree of accuracy. Furthermore, utilizing 
a chronological natural language processing approach, 
more electronic medical records were incorporated as 
the course of an individual’s illness progressed, and accu-
racy was found to improve over time. Based on these 
results, we believe that an approach that combines struc-
tured and unstructured multimodal health information 
in a longitudinal context has the potential to facilitate the 
development of predictive and dynamic AI applications 
in oncology that improve the quality and duration of life 
for individuals.

Peterson et al. proposed a model to predict the risk of 
preventable acute care unit (ACU) after chemotherapy 
initiation using a machine learning algorithm trained 
on comprehensive electronic health record (EHR) data 
(Fig. 5 A) [151]. ACU, including emergency department 
visits and hospitalizations, accounts for approximately 
half of all cancer care-related costs in the United States 
[152, 153]. Not only is ACU costly, but unscheduled 
ACU negatively impacts a patient’s quality of life and 
result in poor quality care [154, 155]. To improve qual-
ity of care, increase transparency, and reduce costs, the 
Centers for Medicare & Medicaid Services (CMS) intro-
duced the chemotherapy measure (OP-35) [156, 157]. 
Peterson et al. successfully identified patients at high risk 

(See figure on next page.)
Fig. 3  Introduction of a machine learning-based genetic mutation analysis platform. A Schematic diagram showing an overview of DRIVE, a 
feature-based machine learning platform for pan-cancer assessment of somatic missense mutations, modified from Ref. [142]. This approach uses 
a total of 51 features spanning the gene and mutation levels. Several state-of-the-art supervised machine learning algorithms were applied to 
the final dataset, with results presented for the highest performing algorithms, including random forests, logistic regression, extreme gradient 
boosting, k-nearest neighbors, support vector machines, and multilayer perceptron. B Figure outlining a machine learning model for predicting 
response to immune checkpoint inhibitors, modified from Ref. [147]. Sixteen cancers were individually divided into training (80%) and testing 
(20%) subsets. To predict (responder and non-responder) immune checkpoint inhibitors, random forest models were trained on multiple genomic, 
molecular, demographic, and clinical characteristics on the training data using fivefold cross-validation. Consequently, trained models with optimal 
hyperparameters were evaluated on various performance measures using the test set



Page 11 of 23Hamamoto et al. Experimental Hematology & Oncology           (2022) 11:82 	

Fig. 3  (See legend on previous page.)
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for preventable acute care, the target of the CMS’ OP-35 
measure, using machine learning models trained on 
routinely collected medical information, which showed 
strong predictive performance. After obtaining struc-
tured EHR data generated prior to chemotherapy treat-
ment, 80% of the data in the cohort was used to train a 
machine learning model to predict the risk of ACU after 
chemotherapy initiation. The remaining 20% of data 
were used to test the performance of the model by area 
under the receiver operating characteristics (AUROC) 
curve. The study included 8,439 patients, 35% of whom 
developed preventable ACU within 180 days of start-
ing chemotherapy. In the proposed model, patients at 
risk of preventable ACU were classified by an AUROC 
of 0.783 (95% CI, 0.761–0.806) [151]. Patients who were 
hospitalized were identified better than those who visited 
the emergency room, and key variables included previ-
ous hospitalizations, cancer stage, race, laboratory val-
ues, and a diagnosis of depression. The analysis showed 
limited benefit from the inclusion of patient-reported 
outcome data and demonstrated inequities in outcome 
and risk models for Black and Medicaid patients. These 
results indicate that detailed EHR data can be used to 
identify patients at risk of ACU using machine learning, 
and the model proposed in this study has the potential to 
improve cancer treatment outcomes, patient experience, 
and costs by enabling targeted preventive interventions 
[151].

In a cohort study of 42,069 lung cancer patients, Yuan 
et al. extracted key cancer characteristics from structured 
data and narrative notes by developing a customized 
NLP tool using EHRs (Fig.  5B) [158]. Predictive analyt-
ics research solution and execution (PheCAP) [159] 
version 1.2.1 was used as the phenotyping program in 
this study to develop and evaluate an algorithm to clas-
sify lung cancer status. PheCAP consists of three main 
steps: feature extraction based on the Surrogate-Assisted 
Feature Extraction (SAFE) algorithm, algorithm devel-
opment based on penalized regression, and algorithm 
validation to evaluate the accuracy of the algorithm. The 
initial PheCAP feature data also consisted of coded fea-
tures identified by domain experts, NLP features identi-
fied from online knowledge source articles proposed in 
SAFE, and medical utilization features measured by total 

counts of medical notes. After extracting eastern coop-
erative oncology group (ECOG) performance status and 
body mass index information using an electronic medi-
cal record numerical data extraction tool, the NLP inter-
preter for cancer extraction (NICE) tool was developed 
to infer cancer characteristics, such as stage, histology, 
diagnosis date, and somatic mutation information, from 
clinical records including pathology reports, discharge 
summaries, and progress notes (Fig. 5B). Smoking status 
is predicted using a classification algorithm. Importantly, 
the prognostic ability of the final model proposed in this 
study was statistically significantly superior to the base 
model AUROC, including gender, age, histology, and 
stage (1-year prediction: 0.774 [95% CI, 0.758–0.789]; 
P < 0.001; 2-year prediction: 0.779 [95% CI, 0.765–0.793]; 
P = 0.002; 3-year prediction: 0.780 [95% CI, 0.766–0.796]; 
P = 0.002; 4-year prediction: 0.782 [95% CI, 0.767–0.797]; 
P = 0.001; 5-year prediction: 0.782 [95% CI, 0.768–0.798]; 
P < 0.001). In the test set, the final and basic models had 
C-indexes of 0.726 and 0.697, respectively. On the cali-
bration plots, the measured probability of OS was gen-
erally within 95% CI of the predicted probability of OS. 
EHRs provide a low-cost means of accessing detailed lon-
gitudinal clinical data from large populations, and lung 
cancer cohorts constructed from EHR data have shown 
the potential to be a powerful platform for clinical out-
comes research.

AI‑based medical article retrieval
In the process of an MTB, it is necessary to refer to the 
literature when interpreting genetic evidence regarding 
diagnosis and prognosis, considering basic patient infor-
mation (age, gender, cancer type, etc.) to address genetic 
abnormalities and attaching specific candidate drugs and 
evidence levels [160–162]. On the other hand, the num-
ber of medical papers published to date is substantial, 
and it is a difficult task for humans to extract important 
information from them. Therefore, research has been 
conducted to efficiently extract useful information from 
medical papers using NLP [163–165], one of the AI tech-
niques, and we introduce some recent representative 
results.

Zeng et  al. developed RetriLite, an information 
retrieval and extraction framework that leverages NLP 

Fig. 4  Schematic diagram of the flow of medical data for the creation of MEDomics profiles and AI development, modified from Ref. [150].  Medical 
information generated by medical activities is continuously recorded in the Clarity (EHR) relational database. A custom report is generated from 
Clarity and sent to the MEDomics server for personal identification, data formatting, and feature extraction and calculation. Various other databases 
are processed by MEDomics, including tumor information systems (radiation), treatment planning systems, and imaging. Data are ultimately 
recorded and updated daily on a MEDomics server located behind the facility’s firewall with dual authentication access. Medical information 
flowing from hospital databases is collected in a structured database and becomes input to the MEDomicsLab platform. This information is 
integrated and processed by the MEDomicsLab engine and used in five computational modules: input, extraction, discovery, learning, and 
application. This creates a statistical model for Precision Oncology that can be returned to the hospital’s database to aid in clinical decision making

(See figure on next page.)
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and domain-specific knowledge bases to computationally 
identify relevant articles and extract important informa-
tion [166]. RetriLite features systematically developed 
automatic query expansion, utilizing domain-specific 
dictionaries. The National Center for Biotechnology 
Information (NCBI) Entrez gene database uses gene sym-
bols and aliases, the NCI Thesaurus uses drug names 
and aliases, and the glossaries developed by major can-
cer centers use cancer disease dictionaries created by 
their own institution. It also uses Lucene [167], a state-
of-the-art information retrieval library, as the backbone 
of the application, rendering basic relevance-based rank-
ing, and uses a term frequency, inverse document fre-
quency weighting scheme as the default ranking, where 
terms matching search terms contribute to a document’s 
relevance score. In addition, RetriLite has a keyword 
highlighting feature, which conveniently conveys the 
hidden knowledge used in creating the extended query 
and may aid in knowledge discovery. A general named 
entity recognition mechanism has been developed that 
uses a dictionary for input, recognizes the relevant enti-
ties in the text, and normalizes them using canonical 
terms. Regarding contextual analysis, text segmentation 

was applied, and articles where the matched keywords 
did not appear in the same context were eliminated. 
Importantly, Zeng et  al. customized RetriLite for com-
bination therapy and developed a pipeline consisting of 
four modules (Fig.  6A) [166]. The “Retriever” is a mod-
ule that uses gene and drug lists as inputs. For the gene 
list, it cross-references the institutional drug database to 
identify clinically available drugs that directly target the 
gene, along with their aliases. For the drug list, all names 
are searched, including the aliases associated with each 
drug. Next, a conjunctive Boolean search query is cre-
ated, in which three elements coexist: the target drug, 
concept of cancer, and concept of combination therapy. 
Keywords related to combination therapy were created 
by two domain experts. In the second “Refiner” module, 
the article is considered qualified if it contains at least 
one sentence in which two drug entries co-occur with 
the concept of combination therapy, using named entity 
recognition and contextual analysis to refine the search 
function. In the third “Classifier” module, a customized 
weighted terminology dictionary created by the institu-
tion is used to classify the main themes of the article as 
either clinical or preclinical. The fourth “Tagger” mod-
ule generates relevant metadata tags to facilitate expert 

Fig. 5  Integrated analysis of EHR data using AI and introduction of its application to diagnosis and treatment. A Figure showing a series of 
processes to predict the risk of preventable ACU after chemotherapy initiation using the machine learning algorithm trained on comprehensive 
EHR data, modified from Ref. [151]. Nine machine learning models were developed, validated, and compared to predict ACU at 3, 6, and 12 months 
after chemotherapy initiation in patients presenting to an oncology clinic affiliated with a large academic cancer center. Patient-reported outcomes 
were also incorporated to assess the impact of these data in predicting the risk of preventable ACU. B Schematic of a lung cancer prognostic study 
using a clinical cohort constructed from EHR data, modified from Ref. [158]. Initially, data are obtained from the EHR and lung cancer diagnosis 
codes are used as filters. After creating a data mart containing structured data and narrative notes, the structured data are queried and the narrative 
notes are processed using NLP tools. A phenotyping algorithm has been developed using a combination of structured data and narrative notes to 
extract variables of interest. The performance of the phenotyping algorithm is compared to a random sample of patients selected for EHR review. 
The performance of the phenotyping algorithm is compared to a random sample of patients selected for EHR review. The accuracy of the extracted 
variables is compared to the EHR reviewed sample and the Boston Lung Cancer Study cohort data
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review and help navigate the large corpus. For example, 
tags have been created for general categories of cancer 
types related to solid tumors and/or hematological malig-
nancies, drugs matching the search query (anchor drugs), 
other drugs not included in the original search query but 
recognized in the context of the combination, types of 
studies (clinical and/or preclinical), and specific safety-
related concepts, such as side effects described in the 
abstract. Regarding the results, RetriLite achieved an F1 
score of 0.93 after more extensive validation experiments 
to identify drugs with enhanced antitumor effects in vitro 
or in vivo using poly(ADP-ribose) polymerase inhibitors 
[166]. Of the articles determined to be relevant by this 
framework, 95.5% are true positives, achieving an accu-
racy rate of 97.6% with respect to distinguishing between 
clinical and preclinical articles. It is also worth mention-
ing that the inter-observer evaluation achieved a 100% 
agreement rate [166]. These results indicate that RetriLite 
is an applicable framework for building domain-specific 
information retrieval and extraction systems, and its 
extensive and high-quality metadata tags and keyword 
highlighting may allow more effective and efficient access 
to combination therapy information.

Chen et al. applied Biomedical Natural Language Pro-
cessing (BioNLP) techniques to literature mining of 
cancer gene panels aimed at creating a pipeline that can 

contextualize genes using text-mined co-occurrence fea-
tures (Fig. 6B) [168]. The gene panel analysis framework 
was developed in this study. First, PubMed abstracts that 
mention genes relevant to humans were extracted. This 
step filters ~ 430,000 PubMed abstracts on genes from the 
current full PubMed corpus, which contains ~ 30 million 
articles. Second, biomedical named entity recognition 
is performed on the extracted PubMed abstracts using 
PubTator and Medical Subject Headings. Third, a genetic 
term-feature matrix was constructed using biomedi-
cal terms, with concepts similar to the document-term 
matrix. Fourth, to ensure the term features generated in 
the previous step correspond more strongly to the tar-
get gene panel, term feature selection is performed for 
each individual gene panel. An important aspect of this 
study is the exploration of hypergeometric distribution. 
By comparing the frequency distribution of each term 
feature in the target gene set and the total gene set, it is 
expected that term features that are more correlated with 
the target gene panel will be enriched. This approach 
allows for flexibility with respect to different target gene 
sets, such as the Oncomine Cancer Research Panel 
(OCP) [169] and cardiovascular gene panels [170]. For 
results using this framework, the cosine similarity of gene 
frequencies between text mining and statistical results 
from clinical sequencing data was 80.8%. In the different 
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machine learning models, the peak accuracies for the pre-
diction of MSK-IMPACT and OCP were 0.959 and 0.989, 
respectively. Receiver operating characteristic curve anal-
ysis also confirmed that the neural network model had 
better predictive performance (AUROC = 0.992) [168]. 
By using text-mined post-occurrence features, the litera-
ture for each gene can be ascertained, and this approach 
could be used to evaluate several existing gene panels and 
predict the remaining genes using a portion of the gene 
panel set, leading to cancer detection.

Attempts to support MTB by using AIs
Recent successes of AIs in various fields motivated 
researchers to develop AIs that support MTBs. It is well 
known that IBM won the game of Jeopardy! in 2011 
with a strong NLP technology. The technology enabled 
the development of remarkable services called Watson 
for Oncology and Watson for Genomics, where the for-
mer is based on disease history and the later on genomic 
sequencing. They achieved excellent overall consisten-
cies with human experts while reducing doctors’ efforts 
[171–173]. In spite of these achievements, they faced 
difficulties in the messy reality of healthcare system and 
its performance depends on race, age, and cancer type 
[174]. Such difficulties might be universal obstacles for 
any AIs that aim to support MTBs. Another attempt to 
support MTBs is a cloud-based virtual molecular tumor 
board (VMTB) that includes a knowledge base, scoring 
model, rules engine with > 51,000 rules, an asynchro-
nous virtual chat room and a reporting tool [160]. VMTB 
also reduced time from data receipt to report delivery. 
In addition, biomarker-driven clinical-trial opportuni-
ties were identified for more patients from personalized 
treatment plans by VMTB than from a commercial lab 
test alone. However, variability in duration of response to 
targeted therapy was observed, which might be mitigated 
with more-explicit consideration of the extent of intra-
patient tumor heterogeneity and evolution [175].

Current challenges and possible future AI‑based 
MTBs
In this review, we introduced the potential of AI imple-
mentation in MTBs with a particular focus on the fol-
lowing three areas: (1) AI-based prediction of biological 
significance for genetic abnormalities and its application 
to diagnosis and the proposal of therapeutic candidates; 
(2) AI-based integrated analysis of EHR and omics data 
and its application to diagnosis and treatment; and (3) 
AI-based medical article retrieval. Considering the cur-
rent situation, the use of AI technologies, including 
machine learning and NLP, is essential for MTBs to pro-
ceed smoothly and efficiently, and the active introduction 
of AI is desirable in the future. On the other hand, there 

are several issues that must be resolved in the future. The 
challenges to be addressed are discussed here.

An issue with current cancer genome medicine is the 
number of patients who can be offered appropriate treat-
ments as a result of genetic testing is limited [176–178]. 
This is mainly because current cancer genomic medicine 
is based primarily on a targeted-gene panels coupled with 
next-generation sequencing (only a limited number of 
major driver genes are tested). In the future, it is neces-
sary to build a platform for precision medicine based on 
more omics information, such as whole genome analy-
sis and epigenome information [50, 179]. These are still 
at the basic research level, and future research aimed at 
clinical application is desirable. In particular, because 
a strength of machine learning is its ability to perform 
multimodal analysis, it is also important to establish a 
method to integrate and analyze multiple omics informa-
tion [50].

Second, to date, medical image analysis has been the 
leading medical AI research and development method, 
and most AI-based medical device programs approved by 
the FDA are also targeted at medical image analysis [30, 
31, 99, 180, 181]. Compared to medical image analysis, 
the introduction of AI into omics analysis has not pro-
gressed. This is because the nature of omics data itself 
is difficult to handle, judging from the characteristics of 
machine learning technology. For example, samples in 
the medical field are difficult to obtain, and there are lim-
itations on the number of cases that can be analyzed. On 
the other hand, there are ~ 30,000 genes, which are the 
central target of omics analysis, and the target of whole 
genome analysis consists of three billion base pairs. The 
number of parameters (p) is overwhelmingly large com-
pared to the number of cases, which makes machine 
learning difficult (called the small n, large p problem) 
[182–184]. In addition, since neighboring pixels tend to 
have similar information with respect to images, models 
such as convolutional neural networks, one of the deep 
learning techniques, are useful [185, 186]. On the other 
hand, with respect to genomic information, there is often 
a divergence between chromosomal location (proxim-
ity) and functional relatedness (close proximity between 
genes does not mean that they are functionally related). 
Consequently, the usefulness of machine learning in 
medical image analysis is often not observed in omics 
analysis. New models and analysis platforms for these 
problems are being developed by our research group and 
others [100, 102, 187–190], and it is hoped that robust 
systems that can be applied clinically will be developed 
in the future.

Third, regarding cancer genome medicine, the vol-
ume of data is increasing daily, and the types of anti-
cancer drugs are also increasing; therefore, it would be 
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ideal for AI to continuously learn. On the other hand, 
the approved AI-SaMDs are basically locked AIs that 
were approved once they stopped learning, therefore 
they are not adaptive AIs that can continuously learn 
[191–193]. Various efforts are currently underway world-
wide to address this issue. In 2019 in the United States, 
the FDA published a discussion paper on the regulation 
and framework for AI-SaMDs, where it proposed “SaMD 
Pre-Specifications (SPS)”, which describe the expected or 
planned changes to the device, and “Algorithm Change 
Protocol (ACP)”, a specific proposal on the methods com-
panies should use to manage the risk of change [194]. A 
concept for the quality control of programmed medi-
cal devices called “Good Machine Learning Practice” 
(GMLP) was also proposed [195]. To limit degradation 
while allowing machine learning algorithms to com-
pletely leverage their power and continuously improve 
their performance, the total product lifecycle (TPLC) 
approach proposed by the FDA and based on GMLP is 
expected to balance benefits and risks, and enable safe 
and effective AI-SaMD delivery (Fig.  7) [196]. Subse-
quently, in January 2021, the FDA issued an action paper 
on AI-SaMD regulations and frameworks [197, 198] and 
proposed to issue draft guidance on prescribed change 
management plans. In addition, in October 2021, with 
the FDA, Health Canada, and the UK’s Medicines and 
Healthcare products Regulatory Agency jointly identified 
10 guiding principles that can inform the development of 
GMLP and issued a new guidance called “Good Machine 
Learning Practice for Medical Device Development: 

Guiding Principles” [199, 200]. It suggests that regular or 
ongoing training of the model should be managed to pre-
vent overfitting and unintended bias, as well as to place 
appropriate controls to manage risk. Since adaptive AI is 
important for the introduction of AI into MTB, progress 
in this research area is desirable.

Fourth, evidence analysis for genetic abnormalities 
based on NGS has been reported to vary considerably 
among annotation services [135, 201, 202]. For example, 
there is only moderate agreement between IBM Wat-
son for Genomics (WfG) and OncoKB over their Level 1 
treatment action likelihood recommendations [135]. This 
implies that the accuracy of annotation in tumor profiling 
tests for solid tumors based on genetic mutation analysis 
by NGS requires improvement.

In addition to the above, other sensitive issues have 
been reported, such as the fact that the MTB pro-
posal may be out of sync with the actual trial in which 
the patient can participate because it does not take into 
account the patient’s medical history (especially drug-
induced pneumonitis). Therefore, it is also important 
that the system can be easily modified to suit the cur-
rent situation in the clinical field. Furthermore, since this 
review focuses on the use of AI in MTB, it should also 
be noted that it presents only limited results among the 
MTB-related reports so far. Several studies have reported 
on the various elemental technologies required for MTB, 
though not specifically focused on AI [203–206], and 
reviewed AI efforts in clinical diagnosis of cancer (includ-
ing our previous study) [30, 33, 207, 208].

Fig. 7  Overlay of FDA’s TPLC approach based on GMLP and artificial intelligence/machine learning modified workflow [196]. This TPLC approach 
can enable the organization to continuously excel by evaluating and monitoring software products from development to post-sale performance
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Conclusion
This review has shown that AI may be used for various 
elemental technologies required for MTBs. In particular, 
the volume of data handled by MTB members is expected 
to increase in the future, and the introduction of AI into 
MTB is an urgent requirement to establish a precision 
medicine system. However, there are several potential 
challenges of AI, and it is important to progress steadily 
while solving these challenges individually and simulta-
neously creating innovative technologies. Imperatively, 
a win–win relationship between human and AI must be 
established to create a symbiotic relationship, with a clear 
understanding of which AI can be beneficial and where it 
may limit progress.
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