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Abstract 

The N(6)-methyladenosine (m6A) modification is the most pervasive modification of human RNAs. In recent years, 
an increasing number of studies have suggested that m6A likely plays important roles in cancers. Many studies have 
demonstrated that m6A is involved in the biological functions of cancer cells, such as proliferation, invasion, metas-
tasis, and drug resistance. In addition, m6A is closely related to the prognosis of cancer patients. In this review, we 
highlight recent advances in understanding the function of m6A in various cancers. We emphasize the importance of 
m6A to cancer progression and look forward to describe future research directions.
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Introduction
N6-methyladenosine (m6A) is the most prevalent, abun-
dant and conserved posttranscriptional modification in 
eukaryotic RNAs and is deposited primarily within the 
RRACH consensus sequence [1, 2]. As one of the most 
common chemical modifications in eukaryotic RNAs, 
m6A exerts important effects on RNA stability, localiza-
tion, translation, splicing, and transport [3–6]. m6A is 
widespread on mRNA, miRNA, lncRNA, circRNA, tRNA 
and other protein-coding and noncoding RNAs and has 
been a research focus in the field of epigenetics [7, 8]. 
(Fig. 1).

In the past ten years, with the development of new 
technologies, an increasing number of tools, such as next-
generation sequencing, have been applied to research on 
m6A [9] (Table 1). m6A is involved in a variety of impor-
tant cell processes, such as biological rhythms [10] and 
stem cell differentiation [11], and in a variety of diseases, 
including tumors [12–14] and obesity [15, 16]. Notably, 
m6A has been found to play an important role in the 

progression of human malignant tumors [8, 13]. Abnor-
mal levels of m6A modification have been found in vari-
ous tumors, and this disordered abundance is closely 
related to the progression, metastasis, drug resistance 
and prognosis of malignant tumors [17–20].

This review focuses on the progress of research into 
the mechanisms of m6A methylation, particularly with 
respect to regulatory proteins in various cancers. We also 
look forward and describe likely future m6A research 
trends.

Writers, erasers, readers
There are three kinds of proteins that regulate m6A 
modification: writers, erasers, and readers [32]. Writers 
promote methylation and include METTL3, METTL5, 
METTL14, WTAP, RBM15, ZC3H13, and VIRMA. Eras-
ers are demethylases and include FTO and ALKBH5. 
Readers are methylation reader proteins specific to m6A 
and include IGF2BP1/2/3, YTHDF1/2/3, and ELAVL1. 
These three types of regulatory proteins are often dys-
regulated in cancer. By regulating different downstream 
molecules and signaling pathways, they play roles in pro-
moting cancer and/or suppressing cancer, affecting can-
cer progression and patient prognosis (Fig. 2).
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Writers
Methyltransferase-like 3 (METTL3), the only catalytic 
subunit of the m6A methyltransferase complex (MTC), 

was identified as the first m6A methyltransferase [17]. It 
can bind to approximately 22% of all m6A sites [33] and 
plays a dual role as an oncogene and a tumor suppres-
sor in different tumors and, in some cases, in the same 
tumor [34, 35]. However, METTL3 is an oncogene in 
most tumors [36–40], although it has both carcinogenic 
and tumor-suppressing effects in colorectal cancer [41], 
breast cancer [42], prostate cancer [43], cervical cancer 
[35], and other cancers.

METTL5 is an m6A methyltransferase that functions 
works independently of the MTC to catalyze m6A of 
RNAs such as the U6 snRNA, 28S rRNA, and 18S rRNA 
[8]. Two m6A modification sites are located on mamma-
lian ribosomal RNA, one at position 28S A4220 of the 
large subunit and the other at position 18S A1832 of the 
small subunit [44].

METTL14 is one of the important components of the 
MTC. METTL14 exerts carcinogenic and anticancer 
effects in different tumors. METTL14 can regulate the 
expression of PERP [45], USP48 [46], PTEN [47], and 
SOX4 [48] in a m6A-dependent manner and inhibit 

Fig. 1  Effects of m6A modification in different types of RNA molecules (mRNA, tRNA, rRNA, circRNA, miRNA, lncRNA)

Table 1  m6A detection technologies

Technologies References

m6A-Seq [21]

MeRIP-seq [22]

m6A-LAIC-seq [6]

PA-m6A-Seq [23]

miCLIP [24]

m6A-CLIP [25]

SCARLET [26]

MAZTER-seq [27]

RNAmod [28]

FunDMDeep-m6A [29]

Direct RNA sequencing [30]

m6A-REF-seq [31]
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tumor proliferation, invasion, migration, metastasis 
and drug resistance. On the other hand, METTL14 
can regulate the expression of miR-146A-5p [49] and 
the lncRNA OIP5-AS1 [50] and thus promote tumor 
development.

METTL16 was identified as a m6A methylase after 
METTL3, and the action of METTL16 is independent 
of the MTC. The substrates of METTL16 are consider-
ably less abundant than those of METTL3 and include 
mainly U6 snRNA and S-adenosylmethionine (SAM) 
synthetase MAT2A [51].

WTAP is a regulatory subunit of the RNA methyltrans-
ferase complex, and it connects METTL3 to METTL14 
and facilitates in the positioning of this dimer. Studies 
have found that WTAP affects the MAPK [52], AKT [52], 
Wnt [53, 54], and NF-κB [55] signaling pathways and pro-
motes tumor progression by regulating the downstream 
targets EGR3 [56], HK2 [57], ETS1 [58], and CAV-1 
[55]. KIAA1429 (VIRMA) participates in the formation 
of the MTC and serves as a scaffold. Studies have found 
that KIAA1429 induced m6A methylation on the 3’UTR 
of GATA3 pre-mRNA, which led to the degradation of 

Fig. 2  m6A regulators, as well as molecules and signaling pathways that can be regulated by m6A regulators. Red indicates regulators that play an 
oncogenic role, and blue indicates regulators that plat an anti-oncogenic role. a, b Writers. c, d Erasers. e, f Readers
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GATA3 pre-mRNA and promoted the progression and 
metastasis of liver cancer [59].

RBM15 (RNA binding motif protein 15) belongs to the 
SPEN (split-end) family. It is located on chromosome 
1p13.3. It can encode the RNA-binding protein RBM15, 
which is a protein homolog of RBM15B. RBM15/15B 
relies on WTAP to bind to the METTL3/METTL14 
dimer, and knocking down RBM15/15B expression led 
to a significant decrease in the overall level of m6A, indi-
cating that RBM15/15B is a functional component of the 
MTC [60, 61]. The role played RBM15 in the MTC with 
respect to tumor progression has been reported only for 
leukemia, liver cancer, and laryngeal cancer.

Zinc finger protein 217 (ZFP217) is a transcription fac-
tor with a conserved zinc finger structure that is highly 
expressed in a variety of cancers and is related to prog-
nosis [62–69]. In 2016, research showed that ZNF217 
inhibited the m6A methylation of KLF4 and NANOG 
mRNA, which was catalyzed by METTL3 and resulted in 
elevated KLF4 and NANOG protein levels, which in turn 
promoted the progression of breast cancer [70]. Zinc 
finger CCCH domain-containing protein 13 (ZC3H13) 
mainly promotes the binding of MTC with RNA [71]. 
ZC3H13 deletion led to a decrease in the overall m6A 
level of RNA, which was mainly attributed to reduced 
methylation of the 3’UTR in mRNA [72]. ZC3H13 has 
been shown to play a tumor-suppressing role, inhibiting 
the progression and metastasis of colorectal cancer and 
breast cancer by regulating the Ras-ERK and Wnt signal-
ing pathways, respectively [73, 74].

A potential RING finger E3 ubiquitin ligase, Hakai is a 
member of the MTC, and it is the least studied molecule 
in the MTC. In 2021, Yan Dong and the Bawankar P’s 
team confirmed that Hakai is a core member of the m6A-
modified protein family and an indispensable component 
of the MTC in Drosophila and human cells. However, no 
studies have shown that Hakai mediates tumor progres-
sion through m6A.

Erasers
In 2011, Professor Chuan He first showed that fat mass 
and obesity-associated protein (FTO) can reverse m6A 
in vivo. FTO was thus the first m6A demethylase discov-
ered, which led to an upsurge in basic m6A research [75]. 
In 2017, it was first reported that the FTO gene affected 
cancer progression [18]. Studies showed that FTO 
reduced the level of m6A on ASB2 and RARA mRNA 
transcripts, regulated the expression of targets, including 
ASB2 and RARA, inhibited the differentiation of AML 
cells induced by all-trans-retinoic acid (ATRA), and 
promoted the progression of AML [18]. FTO promoted 
tumor progression in liver cancer [76–78], lung cancer 
[79–83], breast cancer [84–86], cervical cancer [87–89], 

and colorectal cancer [90, 91]. However, FTO exerted a 
tumor-suppressing effect in kidney cancer [92–95], pan-
creatic cancer [96], thyroid cancer [97], and cholangio-
carcinoma [98].

ALKBH5 was the second m6A demethylase discovered 
after FTO. ALKBH5 is involved in the biological progres-
sion of a variety of cancers, where it plays an important 
role [99–104]. PD-L1 mRNA is the direct target of the 
m6A mechanism, and the level of this mRNA is regu-
lated by ALKBH5. Specifically, the deletion of ALKBH5 
led to increased m6A abundance in the 3’UTR of PD-L1 
mRNA, promoting mRNA degradation in a YTHDF2-
dependent manner [103]. Therefore, ALKBH5 plays an 
important role in regulating the tumor immune micro-
environment and mediating the effect of immunotherapy. 
ALKBH5 plays a dual role as a carcinogen and tumor sup-
pressor in different cancers and, in certain cases, in the 
same type of cancer. ALKBH5 promotes cancer progres-
sion by regulating TIMP3 [105], FOXM1 [106], CDKN1A 
[107], JAK2 [108], FOXM1 [101, 109, 110], AURKB [111], 
G6PD [112], HBx [113], USP1 [114], NANOG [115], 
PVT1 [116], IGF1R [117] lncRNA NEAT1 [118, 119], and 
lncRNA RMRP [120] expression. In addition, ALKBH5 
inhibited cancer progression by regulating PD-L1 [103], 
CK2α [121], LYPD1 [102], PER1 [122], WIF-1 [99], and 
lncRNA KCNK15-AS1 [123] expression.

Readers
The YTH N6-methyladenosine RNA-binding protein 
(YTHDF) family consists of m6A readers. YTHDF fam-
ily members located in the cytoplasm include YTHDF1, 
YTHDF2, and YTHDF3, which are also called DF1, 
DF2, and DF3, respectively. According to reports, these 
three DFs exhibit different functions. DF1 promotes the 
translation of mRNA, DF2 promotes the degradation 
of mRNA, and DF3 promotes translation and degrada-
tion of mRNA [124], but the mechanisms through which 
these three DFs perform different functions are unclear. 
Studies showed that YTHDF1/3 exhibited only carcino-
genic effects in cancer [125–129], while YTHDF2 exerted 
both carcinogenic and anticarcinogenic effects [122, 
130–132]. Therefore, the influence of the YTHFD family 
on the biological behavior of cancer and the reasons for 
the functional differences between family members need 
to be further studied.

The insulin-like growth factor-2 mRNA-binding pro-
tein (IGF2BP) family consists of unique m6A readers 
that, in contrast to YTH domain family proteins, do 
not promote mRNA degradation; in fact, they stabilize 
mRNA (such as MYC mRNA)  [133]. The IGF2BP fam-
ily includes IGF2BP1, IGF2BP2 and IGF2BP3. IGF2BP1 
and IGF2BP3 are carcinoembryonic proteins that are 
produced by tumor and fetal tissues, but their expression 
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is downregulated in adult tissues [8]. Recent studies 
revealed that IGF2BP1 bound to the 3’UTR m6A site of 
SOX2 mRNA and inhibited the degradation of SOX2 
mRNA, which in turn led to the proliferation and metas-
tasis of endometrial cancer cells [134]. IGF2BP protein 
family gene products have been found to be overex-
pressed in a variety of tumors and to regulate the stabil-
ity of PEG10  [135], SOX2  [134], FSCN1  [7], MYC  [7, 
136], HMGA1  [137], YAP  [138], LEF1  [139], FOXM1  
[140], ABCB1  [141], CCND1  [142], VEGF  [142], HIF1A  
[143], TMBIM6  [144], and lncRNA HAGLR [145] 
expression in an m6A-dependent manner to promote 
tumor progression.

Both YTHDC1/2 and YTHDF1/2/3 are mammalian 
m6A readers with a YTH domain. YTHDC1 regulates 
gene transcription through transposons [146], carRNA 
[147], chromatin modification [148], etc., and mRNA 
alternative splicing [149], stability [150] and subcel-
lular localization [151] to regulate downstream target 
gene expression. Michael G Kharas’s team clarified the 
important role played YTHDC1 in AML and found that 
c-Myc was a key factor that mediated the functions of 
multiple m6A-related proteins in AML [152]. YTHDC2 
is an RNA helicase whose helicase domain contributes to 
RNA binding and participates in the regulation of mRNA 
translation or degradation [153]. According to current 
research reports, YTHDC1/2 affected the progression 
of cancer by regulating CYLD [154], SLC7A11 [155], 
SLC3A2 [156], HOXA13 [156], and miR-30d [157].

Embryonic lethal abnormal vision-like protein 1 
(ELAVL1), also known as human antigen R (HuR), is an 
RNA-binding protein that preferentially binds AU- or 
U-rich elements in the 3’UTR [158, 159]. ELAVL1 par-
ticipates in a variety of tumor biological processes as an 
oncogene. Studies showed that ELAVL1 promoted the 
progression of liver cancer [160], lung cancer [161–163], 
colorectal cancer [164–166], gastric cancer [36], esopha-
geal cancer [167], breast cancer [168, 169], prostate can-
cer [170, 171], and ovarian cancer [172]. However, few 
studies have investigated whether the effect of ELAVL1 
on the expression of downstream molecules relies on 
m6A, and the role played by ELAVL1 in tumors is 
unclear.

The heterogeneous nuclear ribonucleoprotein (hnRNP) 
family consists of RNA-binding proteins that have been 
named hnRNPA1-U on the basis of their molecular 
weight [173]. The hnRNP complex includes at least 20 
hnRNP proteins with complicated and diverse functions 
[173]. A large number of studies showed that hnRNPs 
were closely related to the occurrence and development 
of tumors. Recent studies showed that the interaction 
of the lncRNA MIR100HG with hnRNPA2B1 promoted 
m6A-dependent TCF7L2 mRNA stabilization and 

colorectal cancer progression [174]. HNRNPA2B1 rec-
ognizes the m6A site on ILF3 mRNA to stabilize ILF3 
mRNA, leading to increased ILF3 expression and pro-
moting the malignant progression of lymphoma [175].

m6A and cancers
In recent years, many studies have proven that deregula-
tion of m6A is closely related to various human cancers 
[8] (Table 2, Additional file 1: Table S1). These m6A regu-
lators are described above. We explain the roles played 
by these molecules in tumor proliferation, invasion, 
migration, metastasis, drug resistance, and prognosis 
from the perspective of different cancers in the following 
subsections.

Breast cancer
Breast cancer is a major cause of morbidity and mortality 
in women worldwide, accounting for 11.7% of all cancer 
cases, and the mortality rate ranks fifth among cancers 
[176]. Many studies have been carried out to analyze the 
mechanism of the m6A effect on breast cancer. Writers, 
erasers, and readers mainly play cancer-promoting roles, 
participating in cancer cell proliferation, invasion, metas-
tasis and drug resistance [177–180]. KIAA1429 regulates 
the expression of CDK1 in an m6A-dependent manner 
and exerts a carcinogenic effect on breast cancer [181]. 
YTHDF3 promotes brain epithelial cell adhesion, inva-
sion and tumor cell angiogenesis, which is closely related 
to breast cancer brain metastasis [128]. METTL3 accel-
erates the maturation of pri-microRNA221-3p in a m6A-
dependent manner, leading to adriamycin resistance in 
breast cancer cells [182]. In addition, a few studies have 
suggested that certain writers (METTL3 [42], METTL14 
[74], and ZC3H13 [74]) exert a tumor-suppressing effect. 
For example, Yuee Teng’s team found that METTL3 
downregulated the expression of COL3A1 by increasing 
the m6A abundance on COL3A1 mRNA and thus inhib-
ited the metastasis of triple-negative breast cancer cells 
[42].

Lung cancer
Lung cancer is the second most common cancer, with 
an estimated 2.2 million new cancer cases and 1.8 mil-
lion deaths each year, accounting for approximately 
one-tenth (11.4%) of diagnosed cancers and one-fifth 
(18.0%) of cancer-related deaths [176]. Writers play a 
cancer-promoting role in lung cancer and are signifi-
cantly related to poor prognosis, except for METTL14 
[183–192]. METTL3/YTHDF2 reduces the expression of 
ZBTB4 mRNA in a m6A-dependent manner, enhances 
the expression of EZH2, induces the EMT, and promotes 
the proliferation and metastasis of lung cancer [186]. 
However, ALKBH5 inhibits the growth and metastasis of 
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Table 2  Role of the modifier in cancer

See Additional file 1: Table S1 for detailed references

Type of cancer Role of the modifier m6A(methylation) modifier

Breast cancer Oncogene METTL5, WTAP, VIRMA, ZNF217, FTO, ALKBH5, ELAVL1, YTHDF1/2/3, IGF2BP1/2/3, HNRNPs

Tumor suppressor ZC3H13, HAKAI

Bivalent METTL3/14

Lung Cancer Oncogene METTL3/5, WTAP, VIRMA, HAKAI, FTO, ELAVL1, YTHDF1, IGF2BP1/3, HNRNPs

Tumor suppressor METTL14, YTHDC2

Bivalent ALKBH5, YTHDF2, IGF2BP2

Prostate cancer Oncogene VIRMA, ZNF217, ELAVL1, YTHDF2, IGF2BP2, HNRNPs

Tumor suppressor FTO

Bivalent METTL3

Colorectal cancer Oncogene WTAP, ZNF217, HAKAI, ELAVL1, YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, HNRNPs, FTO

Tumor suppressor METTL14, ZC3H13

Bivalent METTL3, ALKNH5

Gastric cancer Oncogene METTL3/16, WTAP, VIRMA, ZNF217, ALKBH5, ELAVL1, YTHDF1, IGF2BP1/2/3, HNRNPs

Tumor suppressor METTL14, YTHDF2

Bivalent FTO

Liver cancer Oncogene METTL3, WTAP, VIRMA, ZNF217, FTO, YTHDF1/3, YTHDC2, IGF2BP1/2/3, HNRNPs

Tumor suppressor METTL14

Bivalent ALKBH5, ELAVL1, YTHDF2

Cervical cancer/ endometrial 
cancer/ ovarian cancer

Oncogene ZNF217, WTAP, FTO, ALKBH5, YTHDF1, IGF2BP1/2/3, HNRNPs, ELAVL1, YTHDF2

Bivalent METTL3, YTHDF2

Esophageal cancer Oncogene METTL3, WTAP, FTO, ELAVL1, IGF2BP1/2/3, HNRNPs

Bivalent ALKBH5

Thyroid cancer Oncogene METTL14, IGF2BP1/2/3

Tumor suppressor FTO

Bivalent METTL3

Bladder cancer Oncogene METTL3, WTAP, YTHDF2, IGF2BP1

Tumor suppressor METTL14, ALKBH5

Bivalent FTO

Pancreatic cancer Oncogene METTL3/14, WTAP, YTHDF2, IGF2BP2/3, HNRNPs

Tumor suppressor FTO, ALKBH5, YTHDC1

Leukaemia Oncogene METTL3/14, WTAP, FTO, ALKBH5, YTHDF2, IGF2BP1/2/3, RBM15

Kidney cancer Oncogene WTAP, IGF2BP1/3, HNRNPs

Tumor suppressor METTL14, FTO, YTHDF2

Bivalent ALKBH5

Melanoma Oncogene METTL3, FTO, ALKBH5, ELAVL1, YTHDF1/2, IGF2BP1/2/3, HNRNPs

Head and neck cancer Oncogene METTL3, FTO, ALKBH5, ELAVL1, YTHDF1, IGF2BP1/2//3, HNRNPs

Bivalent YTHDC2

Glioblastoma Oncogene METTL3, ZNF217, ALKBH5, ELAVL1, YTHDF1/2, IGF2BP1/2/3

Osteosarcoma Oncogene METTL14, ZNF217, ELAVL1, IGF2BP1

Tumor suppressor YTHDF2

Bivalent ALKBH5

Cholangiocarcinoma/ gall-
bladder cancer

Oncogene IGF2BP1/2

Tumor suppressor FTO, ALKBH5

Retinoblastoma Oncogene METTL3, IGF2BP1

lymphomas Oncogene METTL3/14, WTAP, RBM15, FTO, ALKBH5, YTHDF2, IGF2BP1/2/3

Rhabdomyosarcoma Oncogene IGF2BP1

Seminoma Oncogene METTL3

Thymic epithelial cancer Oncogene METTL3
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NSCLC by reducing YTHDF-mediated YAP expression 
and inhibiting miR-107/LATS2-mediated (HuR-depend-
ent) YAP activity [193]. In addition, many m6A readers 
have been found to be involved in the occurrence and 
development of lung cancer [20, 127, 194, 195]. YTHDF1 
promotes the translation of cyclin B1 mRNA in an m6A-
dependent manner, thereby promoting KRAS/TP53-mut 
LUAD proliferation and leading to poor prognosis [195]. 
YTHDC2 exerts an antitumor effect on lung cancer 
[154–156, 196]. M6A plays an important role in the pro-
liferation [82, 106, 120], invasion [80, 83, 106], metastasis 
[79, 193], drug resistance [197, 198] and prognosis [191] 
of lung cancer and may become a new molecular thera-
peutic target.

Prostate cancer
Prostate cancer is the second most common cancer in 
men and the fifth leading cause of cancer deaths, with 
approximately 1.4 million new cases and 375,000 deaths 
each year [176]. Studies showed that METTL3 regulates 
LEF1 [199], KIF3C [200], USP4 [201], GLI1 [202], ITGB1 
[170], IGF1R [203], and lncRNA PCAT6 [203] expres-
sion in an m6A-dependent manner to promote pros-
tate cancer malignant progression. One study showed 
that knocking out METTL3 drives prostate cancer cell 
resistance to androgen receptor antagonists; hence, the 
change in m6A abundance may be a mechanism under-
lying treatment resistance in metastatic prostate cancer 
[43]. To date, only study has reported the role played by 
erasers in the development and progression of prostate 
cancer [204]. The m6A demethylase FTO inhibits the 
invasion and migration of prostate cancer cells by regu-
lating the total m6A level [204].

Colorectal cancer
Colorectal cancer (CRC) has the third highest incidence, 
as measured by total cases, and the second highest mor-
tality among total cancer deaths, with more than 1.9 mil-
lion new cancer cases and 935,000 deaths estimated to 
occur yearly [176]. In CRC, all readers and most writers 
and erasers show cancer-promoting effects, except for 
METTL3 [41], METTL14 [205, 206] and ALKBH5 [207]. 
Professor Zhou Yang’s team found that after knocking 
down METTL3, the reduction in translation efficiency of 
the important EMT regulators Snail and HIF-1α depends 
on m6A modification, and the reduced activity of these 
regulators significantly inhibits the proliferation and 
clone formation of CRC cells [208]. However, an article 
reported that METTL3 inhibited the proliferation, migra-
tion and invasion of CRC cells by regulating the p38/ERK 
pathway (activating p-p38 and p-ERK)  [41]. The rea-
son for these contradictory findings may be explained 
by METTL3 playing different roles in the regulation of 

different pathways, but the METTL3-regulated pathways 
that contribute to a tumor-suppressing effect remain 
unknown.

Gastric cancer
Gastric cancer is a common malignant tumor of the 
digestive system, and it is responsible for more than 1 
million new cases and an estimated 769,000 deaths every 
year [176, 209]. Studies have found that m6A is involved 
in the regulation of gastric cancer cell proliferation [210–
213], invasion [214], migration [215], metastasis [34, 36, 
216, 217] and drug resistance [218]. M6A modifiers are 
important biomarkers for early gastric cancer diagno-
sis, prognosis and therapy predictions [217, 219, 220]. 
METTL3 enhances the stability of ZMYM1 as facilitated 
by HuR via m6A and activates the EMT to promote the 
metastasis of gastric cancer [36]. Most m6A modifiers 
play a role in promoting gastric cancer, and only a few 
studies have reported m6A modifiers that play a tumor-
suppressing role in gastric cancer. METTL14 increases 
m6A of PTEN mRNA, stabilizes PTEN mRNA, increases 
protein expression, and inhibits the growth and metas-
tasis of gastric cancer [47]. METTL14 also inhibits the 
proliferation and invasion of gastric cancer cells by inhib-
iting PI3K/AKT/mTOR pathway activation and the EMT 
[221]. YTHDF2 negatively regulates the expression of 
FOXC2 through m6A and inhibits the proliferation, inva-
sion and migration of gastric cancer cells [132]. Accord-
ing to recent research results, m6A plays an important 
role in the progression of gastric cancer.

Liver cancer
Primary liver cancer is the sixth most common cancer in 
the world and the third leading cause of cancer deaths; 
approximately 906,000 new cases and 830,000 deaths are 
reported each year [176]. Many studies on m6A regula-
tors in liver cancer have been performed, and the main 
role of m6A has been shown to be cancer promotion. 
METTL3 regulates the expression of the downstream 
targets ASPM [222] and SOCS2 [40] in a m6A-depend-
ent manner and promotes the proliferation and metas-
tasis of liver cancer. KIAA1429 regulates circular RNA 
DLC1 to promote cancer through m6A mediation [223]. 
METTL14 plays a tumor-suppressing effect in liver can-
cer and is the only m6A modifier that suppresses liver 
cancer tumorigenesis [46, 224–227]. The m6A demethy-
lase FTO and ALKBH5 play roles in promoting liver 
cancer progression. FTO promotes the occurrence of 
liver cancer by mediating the demethylation of PKM2 
mRNA [76]. ALKBH5 catalyzes the demethylation of 
m6A of the HBx mRNA, stabilizes and promotes the 
expression of the HBx mRNA, and promotes hepato-
cellular carcinogenesis [113]. However, a study found 
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that ALKBH5-mediated m6A demethylation resulted in 
the posttranscriptional inhibition of LYPD1 expression, 
which in turn may have inhibited the progression of liver 
cancer [102].

The m6A readers in the YTHDF protein family all 
play a role in promoting liver cancer progression, except 
for YTHDF2 [131, 224, 228]. YTHDF1 promotes the 
progression of liver cancer by regulating FZD5 [229], 
ATG2A/14 [126], and PI3K/AKT/mTOR signaling activ-
ity [230] and the EMT [231]. The IGF2BP protein family 
of m6A readers all play a role in promoting liver cancer 
progression. The downstream targets regulated by these 
family members include c-MYC [232, 233], MGAT5 
[234], GLI1 [235], IGF1R [236], FEN1 [237], and TRAF5 
[238]. HNRNPA2B1 can promote the proliferation and 
invasion of liver cancer cells, but whether it depends on 
m6A is unclear.

Cervical cancer
Cervical cancer is the fourth most common cancer and 
the fourth leading cause of cancer death in women [176]. 
In 2020, there were an estimated 604,000 new cases and 
342,000 deaths worldwide [176]. Recent research results 
have indicated that m6A regulators play a role in promot-
ing cervical cancer [87–89, 239–247]. Only one study 
found that METTL3 downregulated the expression of 
RAGE in cervical cancer cells, inhibited cell viability, 
increased cell apoptosis, and enhanced the sensitivity of 
these cells to cisplatin therapy [35]. The downstream tar-
gets of m6A regulators in cervical cancer are HK2 [239], 
the lncRNA FOXD2-AS1 [241], RAB2B [242], RAGE 
[35], E2F1 [87], MYC [87], β-catenin [88], the lncRNA 
HOXC12-AS [89], RANBP2 [245], and FOXM1 [140].

Endometrial cancer
Endometrial cancer is one of the most common female 
reproductive system tumors, with approximately 200,000 
new cases diagnosed each year, and is the third most 
common gynecological malignancy that causes death 
(after ovarian cancer and cervical cancer) [248]. Few 
studies have been directed to m6A regulators in endo-
metrial cancer, and the results of these studies have indi-
cated that these regulators mainly promote cancer. FTO 
demethylates m6A of HOXB13 mRNA and promotes 
endometrial cancer metastasis by activating the WNT 
signaling pathway [249]. YTHDF2 recognizes m6A on 
the lncRNA FENDRR to promote the lncRNA degra-
dation, thereby increasing the expression of SOX4 to 
promote the proliferation and inhibit the apoptosis of 
endometrial cancer cells  [250]. IGF2BP1 recognizes the 
m6A site on PEG10 and SOX2 mRNAs and increases the 
expression of these mRNAs by enhancing their stability, 

promoting the malignant progression of endometrial 
cancer [134, 135].

Ovarian cancer
The incidence of ovarian cancer ranks third among 
gynecological malignancies, with 230,000 new cases 
diagnosed each year [251]. However, the mortality rate 
of ovarian cancer greatly exceeds that of cervical can-
cer or endometrial cancer, ranking first in gynecologi-
cal cancer deaths [251]. The results of recent research 
have indicated that m6A regulators in ovarian cancer all 
exert cancer-promoting effects. METTL3-mediated miR-
126-5p maturation promotes the progression of ovarian 
cancer through the PI3K/Akt/mTOR pathway mediated 
by PTEN [252]. METTL3 also inhibits the expression 
of CCNG2 by promoting pri-microRNA-1246 matura-
tion, thereby promoting the occurrence and metastasis 
of ovarian cancer [253]. ALKBH5 activates the JAK2/
STAT3 signaling pathway by mediating JAK2 m6A dem-
ethylation to promote cisplatin resistance in ovarian can-
cer [108]. YTHDF1 promotes the translation of TRIM29 
mRNA by recognizing the 3’UTR m6A site and thus pro-
motes the progression of ovarian cancer [254]. YTHDF2 
significantly downregulates the level of m6A and pro-
motes the proliferation and migration of ovarian cancer 
cells [255].

Esophageal cancer
The incidence and mortality of esophageal cancer rank 
seventh and sixth, respectively, with approximately 
604,000 new cases and 544,000 deaths reported each 
year [176]. Studies have found that the m6A regulators 
in esophageal cancer all play a cancer-promoting role, 
except for ALKBH5 [100, 256]. The downstream targets 
that the m6A writer METTL3 regulates in esophageal 
cancer are GLS2 [257], p21 [258], Wnt/β-catenin [38, 
259], AKT [259], the EMT [259], and the Notch [260] 
signaling pathway. ALKBH5 plays dual roles in promot-
ing and suppressing tumor growth in esophageal can-
cer. Knocking down ALKBH5 upregulates m6A level 
on CDKN1A(p21) mRNA, increases the stability of p21 
mRNA, and promotes the proliferation of esophageal 
cancer cells by regulating cell cycle progression [107]. 
However, a study showed that ALKBH5 inhibits the 
malignant behavior of esophageal cancer by indirectly 
regulating the Hippo signaling pathway [100].

In addition, the IGF2BP protein family plays an impor-
tant role in the proliferation, invasion, migration and 
metastasis of esophageal cancer and can be used as bio-
markers for predicting prognosis. The downstream tar-
gets regulated by IGF2BP protein family members are 
UHRF2 [261], TK1 [262], and HTR3A [263]. High pro-
tein expression of IGF2BP predicts poor prognosis in 
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patients with esophageal cancer [264, 265]. HNRNPC 
enhances the stability of ZEB1 and ZEB2 mRNA and pro-
motes the development of esophageal squamous cell car-
cinoma [266]. High expression of HNRNPA2B1 has been 
associated with a low survival rate in esophageal cancer 
[267].

Thyroid cancer
In 2020, the global incidence of thyroid cancer was 
586,000, and the incidence in women was threefold 
greater than that in men [176]. Thyroid cancer is the 
most common endocrine cancer, and its incidence is 
increasing globally, but the cause for this increase is 
unclear [176]. Studies showed that the upregulation of 
miR-222-3p induced by METTL3 inhibits STK4 activity 
and promotes the malignant behavior of thyroid cancer 
cells [268]. However, another study found that METTL3 
cooperates with YTHDF2 to regulate downstream c-Rel 
and RelA, participates in the inactivation of the NF-κB 
pathway, and plays a key tumor-suppressing role in pap-
illary thyroid cancer [269]. IGF2BP2 can regulate the 
expression of MYC [136], lncRNA HAGLR [145], and 
IGF2 [270] in a m6A-dependent manner and promote 
the progression of thyroid cancer.

Bladder cancer
Bladder cancer is the tenth most common cancer in 
the world, with approximately 573,000 new cases and 
213,000 deaths reported each year, and is more common 
in men than women [176]. Recent studies showed that 
METTL3-mediated m6A hypermethylation promotes the 
progression of bladder cancer by regulating SETD7/KLF4 
mRNA expression [271], pri-mrR221/222 maturation 
[37] and AFE4/NF-κB/MYC signaling network activation 
[272]. METTL14 inhibits the occurrence and progres-
sion of bladder cancer by regulating the EMT [273] and 
the Notch [274] signaling pathway. ALKBH5 can reduce 
the stability of CK2α mRNA in a m6A-dependent man-
ner, significantly inhibiting the proliferation of bladder 
cancer cells and sensitizing bladder cancer cells to cispl-
atin in  vivo and in  vitro [121]. M6A readers (YTHDF2, 
IGF2BP1, and IGF2BP3) promote the progression of 
bladder cancer by stabilizing SETD7 [271], KLF4 [271], 
FSCN1 [7], and MYC [7] mRNA and regulating JAK/
STAT [275] signaling pathway activation.

Pancreatic cancer
Pancreatic adenocarcinoma is a malignancy with an 
extremely poor prognosis, high mortality and short 
survival. In 2020, the number of deaths from pancre-
atic cancer (466,000) was almost as great as the num-
ber of patients (496,000), and it is the seventh leading 
cause of cancer deaths [176]. The role played by m6A in 

pancreatic cancer is gradually being discovered. m6A has 
been found to be closely related to the occurrence [96, 
276], progression [45, 54], drug resistance [99, 277–279] 
and prognosis [280, 281] of pancreatic cancer. Studies 
have found that the METTL3-miR-25-3p-PHLPP2-AKT 
signaling axis may be related to the occurrence and devel-
opment of smoking-related pancreatic cancer [282]. Inhi-
bition of METTL14 expression can significantly increase 
the sensitivity of drug-resistant pancreatic cancer cells 
to gemcitabine [278] and cisplatin [277]. The m6A eras-
ers FTO and ALKBH5 play roles in promoting pancre-
atic cancer. FTO inhibits the occurrence of pancreatic 
cancer by reducing the methylation level of PJA2 mRNA 
and inhibiting Wnt signaling pathway activation [96]. 
ALKBH5 regulates WIF-1 [99], PER1 [122], and lncRNA 
KCNK15-AS1 [123] expression in an m6A-dependent 
manner and inhibit the occurrence and progression of 
pancreatic cancer tumors.

Leukemia
Leukemia is a heterogeneous malignant disease charac-
terized by the accumulation of clonal and undifferenti-
ated hematopoietic cells in the bone marrow and blood 
[283]. Its incidence is increasing every year, and improv-
ing treatment effectiveness remains a great challenge 
[283, 284]. Recent studies have found that m6A regula-
tors all play roles in promoting leukemia. In 2017, Pro-
fessor Tony Kouzaridesd found that overexpression of 
METTL3 promoted the development of acute myeloid 
leukemia (AML)  [39]. The research team identified, for 
the first time, a small-molecule inhibitor of the m6A 
methylase METTL3 in the body, STM2457, and con-
firmed that this inhibitor effectively inhibits the develop-
ment of acute myeloid leukemia (AML)  [39]. FTO and 
ALKBH5 are also involved in the occurrence and promo-
tion of leukemia. FTO regulates the translation of PFKP, 
LDHB, ASB2, and RARA mRNA in a m6A-dependent 
manner to promote the occurrence of leukemia [18, 285]. 
ALKBH5 also plays a key role in promoting the occur-
rence of leukemia by regulating the activity of key targets 
(such as TACC3 and USP1)  [114, 286].

Kidney cancer
Kidney cancer is among the ten most prevalent cancers, 
with approximately 430,000 new cases and 180,000 
deaths reported every year [176]. Kidney cancer is dif-
ficult to detect and treat, and little is known about it 
[287]. Few studies have been directed to the mecha-
nism of m6A action in renal cancer. Studies showed 
that the m6A writer METTL14 regulates the expression 
of PTEN in a m6A-dependent manner and inhibits the 
progression of clear cell renal cell carcinoma (ccRCC) 
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[288]. FTO may be involved in the regulation of ccRCC 
by regulating the downstream target BRD9 [94].

Melanoma
Melanoma is a highly malignant tumor derived from 
melanocytes. Although it is mostly likely to affect 
skin mucous membranes and internal organs can be 
affected. After the introduction of new therapies, 
including immune checkpoint inhibitors and targeted 
treatment of metastatic melanoma, the mortality 
rate of melanoma in the United States has decreased 
markedly, by approximately 6.4% every year, but some 
patients who cannot benefit from immunotherapy [176, 
289]. The role played by m6A in melanoma is not fully 
understood, and only a few research results have been 
reported. A study found that METTL3 induced UCK2 
m6A hypermethylation and promoted the metastasis of 
melanoma cells through the WNT/β-catenin pathway 
[290]. METTL3 may be involved in the proliferation, 
invasion, migration and resistance of melanoma cells 
[291, 292]. ALKBH5 increases the stability and expres-
sion of FOXM1 mRNA via m6A demethylation and 
induce the epithelial-mesenchymal transition (EMT) 
to promote melanoma metastasis [110]. FTO promotes 
the growth of melanoma and reduces the response to 
anti-PD-1 blocking immunotherapy [293].

Head and neck cancer
Head and neck cancer is a squamous cell carcinoma 
that originates from the mucosal surface of the oral 
cavity, nasal cavity, pharynx, larynx, or nasopharyngeal 
cavity. According to 2018 data, head and neck cancer 
is the seventh most common cancer in the world, with 
890,000 new cases and 450,000 deaths [294]. METTL3 
modulates m6A of CDC25B and promotes the malig-
nant progression of head and neck squamous cell car-
cinoma [295]. METTL3 regulates the m6A levels on 
EZH2, tankyrase and snail and promotes the progres-
sion of nasopharyngeal carcinoma [296–298]. METTL3 
may regulate the expression of PRMT5, PD-L1 and 
c-MYC through m6A to promote the progression of 
oral squamous cell carcinoma [299, 300]. YTHDC2 
physically binds to insulin-like growth factor 1 receptor 
(IGF1R) mRNA to promote the translation of IGF1R 
mRNA, which in turn activates the IGF1-AKT/S6 sign-
aling pathway and promotes radiotherapy resistance in 
nasopharyngeal carcinoma cells [301]. RBM15-medi-
ated m6A modification of TMBIM6 mRNA enhances 
the stability of TMBIM6 mRNA in an IGF2BP3-
dependent manner and promotes the progression of 
laryngeal squamous cell carcinoma [144].

Glioblastoma
Glioblastoma (GBM) is a rare tumor and one of the most 
challenging malignant tumors to treat. The prognosis and 
quality of life of patients are very poor [302]. Studies have 
found that m6A regulators play roles in promoting malig-
nant gliomas and are closely related to glioma cell prolif-
eration [303–305], invasion [304, 305], metastasis [306], 
drug resistance [307] and prognosis [308]. METTL3 reg-
ulates MGMT, ANPG, COL4A1, MALAT1, and UBXN1 
expression in an m6A-dependent manner and promotes 
the progression of malignant glioma [303–305, 307]. 
ALKBH5 regulates FOXM1, G6PD, SOX2, and AKT2 
expression in an m6A-dependent manner to promote 
cancer cell proliferation, invasion and drug resistance 
[101, 112, 309–311]. The YTHDF protein family regu-
lates LXRA [312], HIVEP2 [312], MYC [313], VEGFA 
[313], and UBXN1 [305] expression in an m6A-depend-
ent manner and promotes the occurrence, metastasis and 
drug resistance of malignant gliomas.

Osteosarcoma
Osteosarcoma is the most common primary bone can-
cer in children and young adults. It is a very rare cancer, 
and there are approximately 400 newly diagnosed cases 
in children and young adults in the United States each 
year [314]. There are few studies on m6A in osteosar-
coma, and the conclusions reported have been inconsist-
ent. ALKBH5 inhibits the progression of osteosarcoma 
through m6A-dependent epigenetic silencing of the 
premiR-181b-1/YAP signaling axis  [315]. Another study 
found that ALKBH5 mediates the upregulation of PVT1 
expression through m6A and promotes the prolifera-
tion of osteosarcoma cells [116]. METTL3 and ELAVL1 
induce the upregulation of DRG1 expression in an m6A-
dependent manner and promote the occurrence of osteo-
sarcoma [316].

Other cancers
Studies on cholangiocarcinoma have found that PD-L1 
mRNA is the direct target of m6A, and this modification 
level is regulated by ALKBH5. The deletion of ALKBH5 
increased m6A abundance on the 3’UTR of PD-L1 
mRNA. ALKBH5 plays a role in regulating the tumor 
immune microenvironment and the effect of immuno-
therapy [103]. In retinoblastoma, the m6A methyltrans-
ferase METTL3 promotes retinoblastoma progression 
through the PI3K/AKT/mTOR pathway [317]. In rhabdo-
myosarcomas, IGF2BP1 directly binds to cIAP1 mRNA 
and mediates its translation, regulating rhabdomyosar-
coma cell death and drug resistance [318]. In seminoma, 
METTL3 regulates autophagy and sensitivity to cisplatin 
by targeting ATG5 [319]. In thymic epithelial tumors, 
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METTL3 promotes cell proliferation by controlling the 
expression of c-MYC, thereby causing carcinogenesis 
[320].

Current status and future perspectives
As the most common modification on eukaryotic RNA, 
m6A is a star in cancer research. m6A has been reported 
in many cancers and confirmed to be involved in biologi-
cal processes of tumors. Although there are some incon-
sistencies in the literature that require further detailed 
research to resolve, considerable evidence supports the 
importance of m6A in regulating the malignant pro-
gression of a variety of cancers. In the previous section, 
we summarized the molecular mechanisms of the three 
types of m6A regulatory proteins in cancer progression 
and the biological roles played by m6A regulatory pro-
teins in different cancers. However, the importance of 
m6A in the occurrence and development of cancer is 
still unclear, and whether it can completely turn off the 
“switch” that causes cancer is unknown. Many problems 
and challenges remain to be solved in the future.

Some research findings suggest that m6A is a double-
edged sword in cancer; that is, m6A regulators play dif-
ferent roles in different cancers. Moreover, one m6A 
regulator can act as both a tumor promoter and tumor 
suppressor in the same cancer [34, 35, 42, 216]. We 
need to determine why an m6A regulator plays different 
roles in different cancers or in the same cancer. Recent 
research results revealed that m6A-modified regulators 
target different downstream molecules and signaling 
pathways, which may among the reasons for their differ-
ent biological effects. In addition, tumors show obvious 
heterogeneity. In different patients or different cancer cell 
subgroups of the same patient, an m6A regulatory fac-
tor may regulate different downstream targets, leading 
to two effects: cancer promotion and cancer suppression. 
We also need to pay attention to m6A-related regula-
tors that not only play biological roles by regulating m6A 
in vivo but also play other important roles; some of these 
regulators may be responsible for certain contradictory 
results.

In recent years, with the continuous deepening of 
research, the roles played by m6A and its regulatory fac-
tors in the occurrence and development of cancer have 
become increasingly obvious. However, most of the 
recent studies on m6Ahas been basic molecular research, 
and whether m6A can be targeted for cancer treatment 
remains to be determined. In addition, the results of 
analysis based on data from public databases (such as 
the TCGA and GEO) cannot be used as sufficient evi-
dence that m6A is related to tumors. Therefore, a large 
number of basic and clinical studies need to be carried 
out. In 2019, Professor Caiguang Yang’s team reported 

that an FTO inhibitor, FB23-2, significantly inhibited the 
proliferation of human acute myeloid leukemia (AML) 
cell lines and primary AML blasts in vitro [321]. In 2020, 
Professor Jianjun Chen’s team discovered two small-mol-
ecule compounds, CS1 (bisantrene) and CS2 (brequinar), 
which are powerful FTO inhibitors, that not only reduced 
the number of leukemia stem cells but also significantly 
inhibited the immune escape of leukemia cells [322]. In 
April 2021, a study at the University of Cambridge in 
the United Kingdom reported the first small-molecule 
inhibitor of the m6A methylase METTL3 that is active in 
the body—STM2457 [39]. These research results indicate 
that encouraging steps have been made toward evaluat-
ing the clinical application and potential clinical signifi-
cance of m6A.

Innovations such as high-throughput sequencing 
and mass spectrometry technology have facilitated the 
progress of m6A research, which has been helpful for 
gaining a more comprehensive and in-depth under-
standing of cell development and tumor formation [323]. 
Although the number of studies on m6A modification 
has increased, the technology for detecting m6A is still 
characterized by high cost, low precision, and insufficient 
sensitivity. In the future, it is necessary to vigorously pro-
mote the innovation and development of analytical tech-
nology, continuously improve detection accuracy and 
sensitivity, and reduce detection costs at the same time.

Conclusions
In this review, we summarize the biological character-
istics of m6A writers, readers, and erasers in cancers. 
Writers can catalyze m6A modifications on RNA, while 
erasers can remove these modifications. Readers affect 
RNA splicing, export, degradation, translation and other 
biological processes by recognizing m6A methylation. 
Studies have found that these m6A regulators play an 
important role in regulating the occurrence, develop-
ment, metastasis, drug resistance and other biological 
processes in cancer. However, the specific molecular 
mechanism by which m6A methylation affects tumor 
biological behavior is still unclear.

It is undeniable that m6A shows good application 
prospects for cancer treatment. In the future, m6A may 
become a novel diagnostic or treatment target for can-
cer. However, this is a tortuous and lengthy process that 
requires many basic and clinical research studies as well 
as technological advances. This review comprehensively 
summarizes the recent research progress on the m6A 
methylation modification in human cancer and provides 
a theoretical basis and direction for future research on 
m6A in the field of cancer.
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transcription factor; WTAP: WT1 associated protein; XIST: X inactive specific 
transcript; YAP: Yes1 associated transcriptional regulator; YPEL5: Yippee like 5; 
YTHDF1/2/3: YTH N6-methyladenosine RNA binding protein 1/2/3; ZC3H13: 
Zinc finger CCCH-type containing 13; Zeb1: Zinc finger E-box binding 
homeobox 1; ZFP217: Zinc finger protein 217; ZMYM1: Zinc finger MYM-type 
containing 1.
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