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Abstract 

Engineered T cells have been shown to be highly effective in cancer immunotherapy, although T cell exhaustion 
presents a challenge for their long-term function. Additional T-cell sources must be exploited to broaden the applica-
tion of engineered T cells for immune defense and reconstitution. Unlimited sources of pluripotent stem cells (PSCs) 
have provided a potential opportunity to generate precise-engineered therapeutic induced T (iT) cells. Single-cell 
transcriptome analysis of PSC-derived induced hematopoietic stem and progenitor cells (iHSPC)/iT identified the 
developmental pathways and possibilities of generating functional T cell from PSCs. To date, the PSC-to-iT platforms 
encounter several problems, including low efficiency of conventional T subset specification, limited functional poten-
tial, and restrictions on large-scale application, because of the absence of a thymus-like organized microenvironment. 
The updated PSC-to-iT platforms, such as the three-dimensional (3D) artificial thymic organoid (ATO) co-culture sys-
tem and Runx1/Hoxa9-enforced iT lymphopoiesis, provide fresh perspectives for coordinating culture conditions and 
transcription factors, which may greatly improve the efficiency of T-cell generation greatly. In addition, the improved 
PSC-to-iT platform coordinating gene editing technologies will provide various functional engineered unconven-
tional or conventional T cells. Furthermore, the clinical applications of PSC-derived immune cells are accelerating from 
bench to bedside.
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Introduction
Embryonic stem cells (ESCs) isolated from blastocytes 
can be cultured in vitro and used to generate engineered 
cells and animal models. Furthermore, the technol-
ogy of reprogramming somatic cells to induced pluri-
potent stem cells (iPSCs) [1, 2] provides a possible way 
to explore the applications of stem cells in regenerative 
medicine, without ethical and immune rejection con-
cerns [3]. A recent study showed that the application of 
clinical-grade iPSC-derived functional retinal pigment 

epithelium is feasible and safe [4]. However, the biggest 
challenge is the inefficient reconstitution of iPSC-derived 
phenotypic cells in vivo.

Edited T cells are being studied for engineering chi-
meric antigen receptor (CAR) T cells which are a form 
of major cellular therapy for hematological malignan-
cies [5–7]. However, the application of cell immuno-
therapy is limited by the availability of autologous 
T cells and associated complications and resistance 
[8–10]. Meanwhile, the tumor-killing ability of patient-
derived engineered T cells is suppressed by the senes-
cent and exhausted T compartments, or by increasing 
the Treg subset [11, 12]. Compared with rare HSPCs, 
PSCs have unique advantages, such as their efficient 
gene editing and long-term self-renewal properties 
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in vitro. These advantages make them the best candi-
dates for T-cell generation. However, the progress of 
PSC-to-iT technology is still facing hurdles because 
the thymic niche cannot be accurately simulated 
in  vitro. With these challenges, another straightfor-
ward approach is to use the in vivo microenvironment 
to educate PSC-derived thymus-seeding progenitors 
(TSPs). In this review, we describe recent progress in 
understanding T cell development in the thymus, sin-
gle-cell transcriptomes of PSC-iHSPC/iT, PSC-based 
T lymphocyte generation, and the potential applica-
tions of gene editing in the PSC-to-iT platform.

T lymphopoiesis in the embryo and adult
T lymphocytes play an essential role in adaptive immu-
nity, including pathogen elimination [13], host home-
ostasis [14], and anti-tumor activity [15]. During 
hematopoiesis, fetal liver [16] and bone marrow-derived 
hematopoietic stem cells (HSCs) [17] differentiate into 
TSP, such as lymphoid-primed multipotent progeni-
tors (LMPP) [18]. Current evidence demonstrates that 
non-HSC-derived TSP supports T lymphopoiesis before 
the emerge of HSCs [19–23] (Fig.  1a). Particularly, Flt3 
signals induce CCR9 expression in TSP [24], which is 
then recruited into the thymus through CCL25 (TECK), 

Fig. 1 T lymphopoiesis in thymus. a HSC or embryonic non-HSC-derived TSP migrate into the CMJ, then differentiate into DN and DP cells, which 
are educated by different stromal cells (for example cTEC) in the cortex. DP cells mature into naïve conventional T cells and unconventional T 
cells in the presence of stromal cells (such as mTEC and DCs) in the medulla. b Different stages in T lymphopoiesis. A new cell atlas of human 
thymic development showed a unique pattern of T lymphopoiesis [31]: DN (early) → DN (P) → DN(Q) → DP(P) → DP(Q) → αβ T (entry), and new 
unconventional T subsets. Different TFs regulatory networks drive the formation of different stages and subsets. DN double negative T cells, DP 
double positive T cells, P proliferation, Q quiescent, HSC Hematopoietic stem cells, TSP thymus-seeding progenitors, CMJ cortico-medullary junction
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secreted by thymic epithelial cells (TEC), and recruits the 
TSP into the thymus [25].

Once the TSP cells seed into the cortico-medullary 
junction (CMJ) in the thymus [26], a new identity is 
acquired as early thymic progenitors (ETP) [27]. Pub-
lished studies have shown that ETP have lineage pattern 
similar to that of LMPP with T cells, B cells, NK cells, and 
myeloid potential [28–30]. And ETP lack the megakaryo-
cytic and erythroid potential. As a specialized organ for 
T lymphopoiesis, the thymus provides a complex, highly 
ordered, and unique niche. Although the microenviron-
ment is complex, the thymus provides cascaded and 
conserved signaling pathways such as Notch signaling, 
morphogenic pathway, and protein tyrosine kinase sign-
aling. The thymus mainly contains hematopoietic cells (T 
cells, B cells, NK cells, monocytes, dendritic cells [DCs], 
and macrophages) and non-hematopoietic stromal ele-
ments (TEC, fibroblasts, vascular smooth muscle cells, 
lymphatic endothelial cells, and endothelial cells) [31]. 
Nude mouse research has shown that TEC is the most 
pivotal element [32–34]. TEC and other stromal cells 
foster natural T lymphopoiesis by providing a microen-
vironment and expressing chemokines, Notch ligands 
(JAG1, JAG2, Delta-like ligand 1, and 4), Wnt ligands, 
Hh proteins, BMPs, SCF, and IL7 [35–52]. Coordinating 
with stem/progenitor-cell gene network (Hoxa9, Runx1, 
Gata2, Meis1, Lmo2, Myb, Mycn, and others) (Fig.  1b), 
the thymic niche-provided Notch signal initiates the 
T-lineage-specific development program of TSP, as a 
pre-commitment phase [53]. Also, interfering with the 
function of Notch results in a complete block of T lym-
phopoiesis [54, 55].

During T lymphopoiesis in the thymus, ETP dif-
ferentiates into immature CD4/CD8 double-negative 
thymocytes, (DN1, DN2, DN3, and DN4 cells), and 
immature CD4/CD8 double-positive thymocytes (DP 
cells) (Fig.  1a). After undergoing positive and negative 
selection, DP cells mature into naïve mature CD4 single-
positive (CD4SP) thymocytes and CD8 single-positive 
(CD8SP) thymocytes. In addition to conventional T cell 
subpopulations (TCRαβ+ CD4SP T subset and TCRαβ+ 
CD8SP T subset), TSP also differentiate into unconven-
tional T cell subpopulations (γδ T subset, Treg subset, 
CD8αα+ T cell subset, natural killer T-like [NKT-like] 
subset, and fetal TH17-like subset) [31]. The rapid 
deployment of single-cell sequencing technology has 
helped us to discriminate rare T precursors and uncon-
ventional T subsets from the thymus atlas [31], analyze 
the dynamics of thymocyte development, and simulate 
T-cell generation in  vitro. New unconventional subsets 
were identified through single-cell RNA sequencing (sc-
RNAseq), such as the CD8αα(I) subset (expressing PD-1, 
TNFRSF9, CD72, CREB3L3, GNG4, and XCL1 at mRNA 

level), CD8αα(II) subset (PD-1, ZNF683, and MME), T 
(agonist) subset (MIR155H), Treg (diff) subset (IKZF4, 
GNG8, and PTGIR), and Th17-like cell subset (CD40LG, 
RORC, KLRB1, and ZBTB16) (Fig. 1b). The marker genes 
CD34, ST18 and IGLL1 were used to identify cells at the 
double-negative (DN) early stage.

Single‑cell transcriptome analysis of PSC‑iHSPC/iT
Single-cell transcriptional profiling has been used for 
the analysis of adult/embryonic hematopoietic develop-
ment and immune states monitoring. In most cases, it is 
difficult to accurately confirm whether the PSC-derived 
cells are the desired cell types. Indeed, the desired PSC-
derived cells were mixed with undifferentiated PSC, 
mesodermal progenitors, endothelial cells, lineage-spe-
cific hematopoietic progenitors, and other unexpected 
cell types. Fortunately, the single-cell transcriptional 
sequencing technology has made it possible to reliably 
delineate the directed differentiation process of PSC to 
hematopoietic lineages (Table  1). Using such technol-
ogy, Guo lab reported that PSCs are heterogenous cell 
populations themselves and thereby have variable effi-
ciency of hematopoietic differentiation [56]. The PSC cell 
lines from different labs also showed obvious differences 
identified through sc-RNAseq analysis (Fig. 2a). Without 
mesodermal lineage differentiation-related cytokines, it 
is difficult for the PSCs to generate hemogenic endothe-
lium cells (HECs) (Fig. 2a). The combination of glycogen 
synthase kinase (GSK) 3 inhibitor (CHIR99021) with 
BMP4 and Activin A helps PSCs efficiently differentiate 
into mesoderm progenitors (cytokine-driving differen-
tiation pattern A). VEGF and bFGF further enforce these 
progenitors to differentiate into EC and HECs/hemat-
opoietic cells (cytokine-driving differentiation pattern 
B) (Fig. 2b). There is strong evidence indicating that the 
heterogeneities of embryonic and PSC-derived HECs 
result in diverse lineage potentials as demonstrated at the 
sc-RNAseq levels (Fig. 2c)[57–60]. Based on the decision 
of the hematopoietic fate, HECs can be divided into two 
groups: primitive hematopoietic development-related 
HECs (pHECs) and definitive HECs (dHECs); dHECs are 
major populations producing T-lineage cells. Despite the 
comprehensive work of embryonic hematopoietic devel-
opment at the sc-RNAseq level, mimicking hematopoi-
etic development using PSC-derived hematopoietic cells 
remains a challenge. With the help of embryonic hemat-
opoietic development and adult hematopoiesis at sc-
RNAseq levels, the hematopoietic differentiation of PSC 
is moving closer and closer to physiological hematopoi-
etic development by adding missing critical transcription 
factors and culture niche [60, 61]. Unlimited functional 
PSC-derived HSC or T/NK cells are one of the ultimate 
goals of PSC-based regenerative medicine, and several 



Page 4 of 17Guo et al. Experimental Hematology & Oncology           (2022) 11:27 

problems remain to be solved, such as Q1: how to effi-
ciently get dHECs but not pHECs; Q2: how to enforce 
the differentiation of dHEC into bona fide HSCs and lym-
phoid-primed HPCs; and Q3: how to provide a suitable 
niche for T-lineage to mature and harvest both functional 
 CD4+ T and  CD8+ T cells robustly. Taken together, the 
single-cell transcriptional profiling of PSC-derived cells 
clearly shows the possibility of generating functional T 
cells in vitro, although some problems still remain.

Generation of T lymphocytes from PSCs in vitro
Reprogramming of somatic cells to iPSCs [1] provides 
the possibility of solving the source problem arising from 
limited T-cell or HSC sources [69]. Early studies have 
illustrated the ability of ESCs differentiating to T lineage 
in vitro and in  vivo [70–75]. Based on the understand-
ing of T-lineage commitment in the thymus, researchers 
have established OP9-DLL1 as stromal cells to harvest 
T-lineage commitment cells from PSCs [76]. The OP9-
DLL1/4-PSC co-culture system is widely applied to T cell 
development research in  vitro as a stable and efficient 
culture method [77–81]. Interestingly, OP9-DLL1/4-
PSC coculture exhibited unconventional T-subset bias 
in vitro, such as γδ T cells and NKT cells, compared with 
T lymphopoiesis in the thymus in vivo [77, 78].

The function of PSC-derived T lymphocytes was only 
partially defined, because of the random TCR rear-
rangements during T lineage differentiation in  vitro. 
Meanwhile, complicated and unpredicted T-lineage com-
mitment in  vitro limits the knowledge about whether 
HLA restriction or positive/negative selection is normal 
[82]. The use of antigen-specific  CD8+ T-derived iPSCs 

to regenerate specific T cells is a promising source of 
off-the-shelf immune cells [83]. However, endogenous 
expression of RAG1 and RAG2 may lead to an undesir-
able loss of antigen specificity with TCR rearrangement 
[69]. As a classic example of cellular immunotherapy 
[84], anti-CD19 CAR (CD19-CAR)‐modified T‐cell ther-
apy provides new ideas for antigen-specific T-cell gen-
eration. One study showed the potential of anti-tumor 
therapeutic CAR-engineered PSCs [82]. Intriguingly, 
CD19-CAR engineered T cells from iPSCs were innate 
“γδ-like” CAR-T cells instead of conventional T sub-
sets. Single-cell sequencing technology provides an 
opportunity to understand rare and unconventional cell 
subsets. Multiple-development-stage, large-scale, and 
high-throughput sc-RNAseq analysis of the human thy-
mus revealed a rational framework for the generation 
of functional T lymphocytes [31]. The iPSC-derived 
“γδ-like” CD19-CAR-T cells conform the phenotype of 
TCRαβ+TCRγδ−CD8α+CD8β−/lowIL2RB−CCR7−CD62L 
(SELL)− (Fig. 3a). CD8αβ heterodimers, not CD8αα, pro-
vide co-receptor function for CD8-dependent TCR, as an 
effective co-receptor for TCR signaling [85] and binding 
to MHC-I molecules efficiently [86].

Following a previous OP9-DLL1/PSC monolayer co-
culture protocol [87], Takuya Maeda and his colleagues 
harvested PSC-derived LMP2-specific CD8αα+ T cells, 
with low cytotoxic activity compared with primary CTLs 
[88] (Fig.  3b). Interestingly, purified iPSC-derived DP 
cells, but not DN cells, could differentiate into CD8αβ 
T cells after stimulation with CD3 Ab or agonist peptide 
(Fig.  3b). To avoid the loss of antigen-specificity caused 
by TCRα rearrangement, Shin Kaneko’s lab depleted 

Table 1 Single-cell transcriptome datasets of PSC-derived cells during hematopoietic differentiation

iPSC induced pluripotent stem cells, HPSC hematopoietic stem cells, scRNA-seq  single-cell RNA sequencing; HESC; EB; ATO artificial thymic organoid, qRT-PCR 
quantitative real-time-polymerase chain reaction

Year of publication Cell types Dataset ID (data type) Generating T cell or not (Condition) Function

2017 [62] hESC-derived HE, non-HE, and HP cell 
populations

-(scRNA-seq) Unknown Unknown

2017 hiPSC-derived CD34 + cells GSE87422 (single cell qRT-PCR) Unknown Unknown

2020 [63] CD34 + CD43- derived cells E-MTAB-8205 (scRNA-seq) Unknown Unknown

2020 [64] CD235a-CD43 + cells https:// lab. anton ellafi danza. 
com (scRNA-seq)

Unknown Unknown

2020 [65] iPSC-derived EB at day 9/18/20 GSE134355 (scRNA-seq) Unknown Unknown

2020 [63] iPSC-derived CD34 + /CD43 − cells and 
their derivatives

E-MTAB-8205 (scRNA-seq) Unknown Unknown

2020 [66] hESCs-derived CD43 + HPCs GSE148215 (scRNA-seq) CD8+ T/CD4+ T/CD4+CD8+ T (OP9-
DLL4 co-culture)

Unknown

2021 [67] hPSC/hPSC-derived D2/4/6 cells GSE145859 (scRNA-seq) CD3 + T (ATO); CD8 + T(anti-CD3/28 
stimulation)

Cytotoxic 
function 
in vivo

2021 [68] CD45 + CD34 + CD7 + iPSC-proT cells GSE169279
(scRNA-seq)

CD3 + αβ T cells
(DL4-μbeads)

Unknown

https://lab.antonellafidanza.com
https://lab.antonellafidanza.com
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RAG2 by CRISPR-Cas9 in antigen-specificT-derived 
iPSCs (T-iPSCs) [89]. Alternatively, myeloid cell-derived 
iPSCs carrying TCR expression cassettes have overcome 

the hurdle of mispaired TCRαβ. Song et  al. also estab-
lished a solid protocol for PSC-to-iT based on the OP9-
DLL1/PSC monolayer co-culture system, which helped to 

Fig. 2 scRNA-seq technology reveals the heterogeneity of PSCs and its derivatives and the complexity of the hematopoietic differentiation 
process of PSCs. a UMAP on the transcriptome of the PSCs and PSC-derived cells from Cheng’s lab (H1 ESC and H1 ESC-derived cells at day 2/4/6 
during directed hematopoietic differentiation) and Guo’s lab (iPSCs and iPSC-derived EB cells at day 9/18/20 without adding any lineage-specific 
cytokines or conditions). b Schematic diagram of two types of PSC differentiation with or without lineage-specific cytokine combinations 
based on scRNA-seq datasets of Cheng’s lab and Guo’s lab. c A brief schematic overview of key differentiation steps (Q1, Q2, and Q3) from PSCs 
to T lymphocytes. pHEC primitive HEC, pErythro primitive erythroid cells, EMP erythromyeloid progenitor, dHEC definitive HEC, M-primed HPC 
myeloid-primed HPC, L-primed HPC lymphoid-primed HPC, MEP megakaryocyte-erythroid progenitor, Pro T progenitor T-cells
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harvest functional hepatitis B virus (HBV) Ag-specific T 
lymphocytes and target HBV  Ag+ cells in a mouse model 
[90]. In summary, without a well-organized thymus-like 
microenvironment, the designed program of T lineage 
from PSCs is disrupted by unpredictable factors, such as 
PSC-derived unfavorable cells, abnormal TCR signal, or 
endogenous RAG  gene expression.

A recent study compared the OP9-DLL1/PSC mon-
olayer co-culture with 3D thymic co-culture and 
identified aberrant physiological developmental sig-
nals of T development in the OP9-DLL1 monolayer 
[91] (Fig.  3c). After agonist peptide and anti-CD3/
CD28 stimulation, PSC-derived CD8β T cells with 
weak immunophenotype, converted characteristics as 

Fig. 3 Schematic diagram of the differentiation strategies to generate T lineage subsets from PSCs. a iPSC-derived “γδ-like” CD19-CAR-T cell [82] is 
similar to the  GNG4+CD8αα+ T(I) subset, which identified the phenotype of TCRαβ+TCRγδ−CD8α+CD8β−/lowIL2RB−CCR7−CD62L(SELL)− from the 
cell atlas of the human thymic development [31] (https:// devel opmen tcell atlas. ncl. ac. uk/ datas ets/ HCA_ thymus/ fetal_ thymus_ Tcell_ inter active_ 
gene_ expre ssion_ heatm ap. html). b T-cell generation models in OP9-DLL1/PSC monolayer co-culture system. The ectopic-expressing Notch ligands 
on stromal cells enhanced the T-lineage commitment, the following immature T cells mature into CD8αα+ T cells or CD8αβ+ T cells under different 
culture conditions. c T-cell generation models in 3D co-culture system. 2-deoxyguanosine-treated thymus lobes, and MS5-DLL1/4-constructed ATO, 
can be used for 3D coculture system, which may provide a thymus-like microenvironment. MC, monolayer culture. d A scalable iPSC-to-iT platform 
under Ff condition

https://developmentcellatlas.ncl.ac.uk/datasets/HCA_thymus/fetal_thymus_Tcell_interactive_gene_expression_heatmap.html
https://developmentcellatlas.ncl.ac.uk/datasets/HCA_thymus/fetal_thymus_Tcell_interactive_gene_expression_heatmap.html
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CD8αα+/DN cells in the OP9-DLL1/PSC co-culture 
system, and anti-TCR antibody stimulation leading 
to NKT-like cells separately. To generate an in  vitro 
physiological thymic microenvironment, a fetal thymic 
organ culture (FTOC) system was used to facilitate the 
maturation of iPSC-derived immature T cells to CD8αβ 
T cells. As designed, 2-deoxyguanosine-treated fetal 
thymic lobes enforced the generation of functional 
 CD62L+CD69−MHC-I+ CD8αβ T cells.

Although the 3D thymic co-culture system has 
unique advantages, the source of primary organs, pro-
duction expansion, and quality control are irreconcil-
able challenges. The strategy of the 3D ATO co-culture 
system ensures positive selection and harvests conven-
tional T cells from HSPCs in  vitro, which provides a 
new method for conventional T-subset generation [92]. 
Crooks extended the ATO strategy to the PSC-to-iT 
field [93] (Fig. 3c). Purified PSC-derived  CD326−CD56+ 
embryonic mesodermal progenitors (EMPs) were 
aggregated into 3D embryonic mesodermal organoids 
(EMO) with MS5-DLL1/4 in low-serum conditions. 
After two weeks, the T-lineage commitment medium 
was used for ATO culture where derivation of PSCs 
produced a dominant CD8αβ T subset with transit 
CD8αα T subset and a few CD4SP T cells. The pattern 
of CDR3 lengths and DNTT expression indicated that 
PSC-ATO could provide a fetal thymus-like microenvi-
ronment. By applying the same strategy, Shin Kaneko’s 
lab could also harvest  CD4+ T helper (Th) cells with 
Th1 or Th2 function mediated by knocking out IL4 or 
TBX21, respectively [94]. Altogether, the FTOC sys-
tem and ATO systems provide CD8αβ+TCRαβ+ T-cell 
and  CD4+ Th cell generation platforms, which are 
closer to the thymic microenvironment. However, these 
approaches must be optimized to save time, reduce 
complex steps, and become operation friendly.

Shin Kaneko’s lab developed an efficient and scal-
able feeder-free (Ff) differentiation system that can 
regenerate cytotoxic T-cells from iPSCs[95]. This 
Ff system drives a well-defined T lineage commit-
ment in  vitro: iPSCs →  CD235a−CD14−CD34+CD43+ 
iHPCs →  CD7+CD5+ T-cell progenitors →  CD4+CD8αβ+ 
DP cells → CD8αβ iT cells. The combination of several fac-
tors (CXCL12, SB203580, retronectin, IL-7, IL-15, IL-12, 
IL-18, IL-21, TL1A, and so on) in synergy helps to 
establish a novel strategy of large-scale production of 
CD8αβ+ T cells from iPSCs (Fig. 3d). Notably, CXCL12 
and SB203580 can expand iT by approximately 3000-
fold during T-cell differentiation. This culture system 
could avoid safety issues, such as replacing OP9-DLL4 
stromal cells with DLL4 protein, FBS with BIT (BSA 
supplemented with insulin and transferrin) or serum-
free medium. This is a credible and comprehensive 

culture system of PSC-to-iT; however, reducing the 
tedious technical process will be a serious challenge.

Reconstitution of T lymphopoiesis from PSCs 
in vivo
Reconstitution of T lymphopoiesis from PSC‑derived TSP
Obtaining engraftable functional PSC-derived mature 
lineage cells is the most important challenge in the field 
of regenerative medicine, owing to the challenges of the 
recipient’s immunological rejection, dysfunctional cell 
survival/ proliferation/differentiation signal, or inability 
of the cells to migrate to a suitable microenvironment 
[76, 80]. PSC-derived cells cannot effectively exert their 
physiological functions in  vivo. However, under specific 
circumstances, PSC-derived T progenitors can produce 
CD4SP T cells and CD8SP T cells in subcutaneously 
implanted FTOCs, which indicates that these T progeni-
tors lack thymus-seeding ability [76]. The latest platform 
of physiological conventional T-subset generation in vivo 
provides a novel idea for the practical application of PSC-
to-T technology [60, 96].

Transcription factors (TFs) are the core organizers 
of cell fate [97, 98]. Among them, Runx1 is the master 
regulator of embryonic hematopoietic development [99, 
100], This factor helps the generation of T cells from 
PSCs. Transient expression of Runx1 during hematopoi-
etic commitment, enforced the emergence of pre-HSC-
like  (CD31+CD41lowCD45−c-Kit+CD201high) inducible 
hemogenic endothelial cells (iHECs) and HPC-like cells, 
but not T cells in vitro or in vivo in the further differen-
tiation, indicating that Runx1 alone is not sufficient to 
initiate the PSC-to-iT program. Further scRNA-seq anal-
ysis showed that inducible Runx1-mESC-derived iHEC 
has divergent gene expression patterns when compared 
with those from mouse E11 Type I pre-HSC (T1-pre-
HSC), especially missing the expression of some impor-
tant hematopoietic TFs, such as Hoxa family members, 
Hlf, Ikzf1, Setbp1, and Nkx2-3. Using the strategy of 
“Runx1 + 1”, the combination of Runx1 and Hoxa9 can 
enforce strong T lineage commitment markedly, but not 
other combinations (Fig. 4). The Hoxa family is essential 
for the proliferation of HSPC and lymphoid commit-
ment, especially Hoxa9 [101]. The inducible Runx1-p2a-
Hoxa9 mESC (iR9-ESC)-derived iHEC showed molecular 
features between E11 EC and T1-pre-HSC, and then dif-
ferentiated to TSP-like  (Lin−c-kit+CD127+/CD135+) 
progenitors. Also iR9-ESC-derived iHECs gave rise to 
T cells at the single-cell level efficiently, regardless of 
in  vitro or in  vivo conditions. After iR9-ESC-derived 
pre-thymic progenitors were transplanted into irradi-
ated B-NDG mice, these progenitors generated induc-
ible T (iT) cells, which showed features of abundant TCR 
diversity, multi-organ distribution, and conventional T 
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development pattern. More importantly, different stages 
(DN1, DN2, DN3, DN4, DP, and conventional SP) of T 
lymphopoiesis were detected in the thymus. These PSC-
derived iT cells have a physiological adaptive immune 
response, which has been identified by allogeneic skin 
transplantation. TCR -edited iPSC-derived iT cells effi-
ciently eradicated E.G7-OVA tumor cells. Furthermore, 
these iPSC-derived functional iT cells can be further 

engineered with CD19-CAR T cells, which can robustly 
eliminate lymphoma cells both in vitro and in vivo [102]. 
Combining this strategy with those of Notarangelo’s lab 
or Mikkers’ lab reconstituted T lymphopoiesis in  vivo 
and rescue severe combined immune deficiency (SCID) 
patients early in life [103, 104]. Altogether, regenerated 
bona fide TSP-like cells through transient expression of 
Runx1 and Hoxa9 are effective, allow normal conven-
tional T development in the thymus, and avoid the gen-
eration of abnormal cells because of in vitro unfavorable 
factors.

Reconstitution of T lymphopoiesis from PSC‑derived 
induced HSC
HSCs become the major source of thymopoiesis once 
these rare cells emerge. Reconstituting T lymphopoie-
sis by HSCs is an additional feasible way, but there is 
no robust culture method for expanding HSCs ex  vivo. 
Generation of HSCs from pluripotent stem cells (PSCs) 
is a useful idea for cell therapy. Exogenous expression 
of hemogenic transcription factors to guide conversion 
of PSC-derived mesodermal cells to HSCs is a main-
stream method reported by different research groups 
[105] (Fig. 5). Daley laboratory provides several options, 

Fig. 4 Summary of the reconstitution of T lymphopoiesis in vivo by 
transient Runx1 and Hoxa9 expression. Specific TFs combination of 
Runx1 and Hoxa9 were screened from several important TFs, which 
robustly drive the T-lineage specification. The iR9-PSCs differentiate 
into iHECs by mesoderm specification and HEC induction. And the 
OP9-DLL1 stomal cells promote T-lineage commitment with the 
transit expression of Runx1 and Hoxa9. PSC-derived iHPCs can be 
transplanted into B-NDG mice for T lymphopoiesis in the thymus, and 
differentiate into different functional T subsets, as the classical T-cell 
developmental pattern

Fig. 5 The strategies of reconstitution of T lymphopoiesis in vivo 
by iHSCs from PSCs. Different TFs can be used to drive the iHSPCs 
formation and teratoma can also be used for iHSPCs generation. The 
iHSPC-derived TSP then migrates into the thymus for T lymphopoiesis
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such as Hoxb4 [106], Cdx4 [107], the combination of 
HOXA9/ERG/RORA/SOX4/MYB with shEZH1 targeting 
[108], and the combination of ERG/HOXA5/HOXA9/H
OXA10/LCOR/RUNX1/SPI1 [61]. LIM-homeobox gene 
Lhx2 can drive the in vitro generation of HSC-like cells 
from mPSCs, but the inappropriate persistence of Lhx2 
expression suppresses the developmental program at 
the DN stage in the thymus [109]. Terminating the Lhx2 
expression can pave the way to mature T cells from the 
DN stage in  vivo [110], which helps to reconstitute T 
lymphopoiesis from PSC-derived TSP-like cells. Tan et al. 
found that inducing MLL-AF4 expression promotes the 
generation of PSC-derived engraftable induced HSPCs 
(iHSPCs) with T lineage potential [111]. PSC-derived 
teratoma as a disorganized and spontaneous differen-
tiation system may occasionally produce rare engraft-
able HSPC [112–114] (Fig. 5), but this must be optimized 
to control the risk of tumorigenesis. For example, large 
animal models, such as gene-edited immunodeficient 
pigs [115], can be used as containers to avoid the risk 
of teratoma formation or leukaemogenesis in patients, 
and produce sufficient engraftable iHSPCs from PSCs. 
Naturally, current strategies for PSC-derived iHSPC gen-
eration need to be modified by reducing the number of 

tumorigenesis-related TFs (such as MYB and MLL-AF4), 
or avoiding the formation of PSC-derived abnormal cells.

T‑cell generation meets gene editing
Several forms of adoptive T-cell transfer (ACT), such as 
tumor-infiltrating lymphocytes (TILs), TCR-engineered 
T cells (TCR-T), CAR-T, and T cell antigen coupler-
engineered T cells (TAC-T) [116], have been developed 
for antitumor therapy [6, 117], antivirus therapy [118], 
and targeting cardiac fibrosis [119]. CAR-T cells have 
unique advantages, such as MHC-independent recog-
nition, which can kill tumor cells without MHC-associ-
ated antigens. Compared to CAR-T, MHC-dependent 
TCR-T cells have the advantages of intracellular target-
ing, lifelong persistence, robust ability to enter the solid 
tumor microenvironment, and reduced cytokine release 
syndrome. CAR-T and TCR-T cells can both effectively 
eliminate tumor cells and prolong patient survival. How-
ever, the efficiency of gene editing in patient-derived pri-
mary T cells remains an obstacle, which limits the purity 
of antigen-specific T cells and restrict the scope of gene 
editing at the genomic level.

The advent of the PSC-to-T technique provides a scal-
able system that can produce large doses of gene-edited 

Fig. 6 Schematic model of the combination of immunotherapy strategies and gene editing technologies in the PSC-to-T platforms. Based on the 
unique advantages of PSCs, we can perform gene editing to obtain engineered iPSCs for producing safe, universal and function-enhanced iT cells 
or iHSPCs
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T cells in one batch, reduces substantial economic bur-
den, increases product consistency, and easily achieves 
predetermined genetic engineering. Theoretically, the 
existing gene-editing approaches in primary T cells can 
be applied to PSCs more efficiently (Fig.  6). To avoid 
graft-versus-host-disease (GVHD), Hiroki Torikai and 
his colleagues made universal CD19-CAR T cells by 
curbing the expression of endogenous αβ TCR  [120]. 
Eliminating B2M in transplanted cells prevents the stim-
ulation of allogeneic T cells, and expressing HLA-E can 
help avoid allogeneic rejection by preventing host NK-
mediated lysis [121]. Therefore, we can introduce mul-
tiplex gene editing in the TCR/B2M locus and HLA-E 
expression in PSCs for universal engineered iT genera-
tion. Moreover, inactivation of HLA-A and HLA-B, but 
not HLA-C, is another ideal strategy which could cover 
a large population [122]. T-iPSCs with RAG2 knockout 
and non-T-iPSCs with transduced TCR  can also help 
avoid unpredictable TCR generation [89]. It is notable 
that CAR, as an artificial fusion molecule, may disturb 
the normal pattern of T lymphopoiesis [123] and this can 
be overcome by constructing conditional expression cas-
settes at the stem cell level. Additionally, eliminating the 

expression of GM-CSF in CAR-T cells mitigates neuro-
toxicity and cytokine release syndrome (CRS) [124–126]. 
Notably, multi-target CAR-T cells are entering clinical 
trials [127, 128], which might help us to cope with more 
complex disease processes. Defects in CTLA-4, PD-1, or 
HPK1 in T cells enhance T cell function [129–131]. This 
notion prompts the disruption of these genes to generate 
function-enhanced T cells from PSCs. The safety concern 
for engineered T cells or regenerated cells relates to the 
off-tumor side effects and potential tumorigenicity. These 
risks can be solved by employing inducible suicide gene 
systems, such as HSVTK/GCV and iCasp9/AP1903 [132, 
133]. The synNotch AND-gate circuit is another unique 
strategy for reducing the adverse effects on bystander 
tissues [134]. According to treatment purposes, we can 
perform precise gene editing mentioned above in PSCs 
to obtain multiplex engineered PSC-iT cells. However, 
the current PSC-to-T platforms are inefficient, limit-
ing the development of immune cell-based regenerative 
therapies. When an efficient and stable PSC-to-T plat-
form is established, diversified immunotherapy strategies 
through precise gene editing technologies will quickly 
translated to the clinic.

Fig. 7 Schematic overview of the optimized reprogramming methods used in generating and maintaining iPSCs (a), and a stromal cell/serum-free, 
DL4-μbeads-based approach for progenitor T cells generation (b)



Page 11 of 17Guo et al. Experimental Hematology & Oncology           (2022) 11:27  

Table 2 iPSC-derived cellular agents for immunotherapy

Organization Product Cell type Tumor type Characteristic Phase/ClinicalTrials.gov 
Identifier

National Cancer Institute 
(NCI)

iPSC T T Gastrointestinal Cancers
Breast Cancer
Pancreatic Cancer
Melanoma
Lung Cancer

1) Generation of an iPSC-
derived thymic organoid
2)  Cancer antigen-specific 
T-cells

Preclinical studies/
NCT03407040

Fate Therapeutics FT819 T B-cell Malignancies 1) CAR19 1XX placed 
under the control of 
endogenous TCR activity;
2) TCR KO

Phase 1/NCT04629729

FT500 NK Advanced solid tumors – Phase 1/NCT03841110

FT596 NK r/rB Lymphoma
B-CLL

1) CD19 CAR 
2) High-affinity 158 V, non-
cleavable CD16 (hnCD16) 
Fc receptor
3) IL-15 receptor fusion 
(IL-15RF)

Phase 1/NCT04245722

FT516 NK r/rAML
r/rB-cell lymphoma
Advanced solid tumors

hnCD16 Fc receptor Phase 1 /NCT04551885/ 
NCT04023071

FT536 NK – 1) MICA/B CAR 
2) IL15RF
3) CD38 KO

Preclinical studies/-

FT538 NK Advanced hematologic 
malignancies

1) hnCD16 Fc receptor
2) IL15RF
3) CD38 KO

Phase 1/NCT04614636

FT573 NK Solid/hematologic malig-
nancies

1) B7H3 CAR 
2) hnCD16 Fc receptor
3) IL15RF
4) CD38 KO

Preclinical studies/-

FT576, NK MM 1) BCMA CAR 
2) hnCD16 Fc receptor
3) IL15RF
4) CD38 KO

Preclinical studies/-

Allogene Therapeu-
tics + Notch Therapeutics

iPSC-AlloCAR T/NK NHL
Leukemia
MM

Generating from synthetic 
Engineered Thymic Niche 
(ETN) platform

Preclinical studies/-

Century Therapeutics –NTY-101 NK r/r B-cell lymphoma 1) CD19 CAR 
2) expressing soluble IL-15
3) EGFR safety switch

Preclinical studies/-

CNTY-103 NK Recurrent glioblastoma CD133 + EGFR CAR Preclinical studies/-

CNTY-102 T/NK r/rB-cell lymphoma
Other B-cell malignancies

CD19 + CD79b CAR Preclinical studies/-

CNTY-104 T/NK AML Multi-specific Preclinical studies/-

CiRA + Takeda iCART T – – Preclinical studies/-

Cartherics – NK ovarian cancer 1) TAG72 CAR 
2) Delete immune sup-
pression gene
3) Multiple anti-cancer 
functionality

Preclinical studies/-

– T – CAR construct Preclinical studies/-

Shoreline Biosciences – NK – – Preclinical studies/-

– Mac – – Preclinical studies/-

CellOrigin – NK Hematological malignan-
cies

– Preclinical studies/-

iPSC-CAR-
Mac01/02/03/04

Mac Solid Tumor – Preclinical studies/-

iPSC-CAR-NK01 NK Solid tumor – Preclinical studies/-
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Clinical applications of PSC‑derived immune cells
The PSC-derived immune cells are being quickly trans-
lated from bench to bedside. Many factors, such as safety 
issues and cell purity, that hinder the clinical applications 
of PSC-derived immune cells, are being addressed. Fur-
thermore, various technologies have been developed to 
shorten the time to generate the patient-derived iPSC 
lines from somatic cells with adequate efficiency and 
safety (Fig.  7A)[135]. Unlimited sources and efficient 
gene-editing of iPSC show the high prospects for their 
clinical application and commercialization. Recently, a 
group reported a stromal cell/serum-free DL4-μbeads-
based approach that supports the development of PSC-
derived  CD34+ cells to T lineage progenitors, which can 
eliminate the concerns over the safety of animal-derived 
substances (Fig.  7b). However, this study did not show 
the function or developmental progress of PSC-derived 
T lineage in  vivo [68]. Many researchers and organiza-
tions are promoting the commercialization of iPSC-
derived immune cells (Table  2). Interestingly, almost all 
iPSC-derived immune cell therapy products are NK cells 
(NK: 17/27, NK and/or T: 4/27; T: 4/27, Mac: 2/27). The 
reason for this may be that NK cell-mediated cytotoxicity 
does not require HLA-matching [136]. Several trials have 
demonstrated the safety of adoptive transfer of allogeneic 
NK cells [137]. These universal and “off-the-shelf” iPSC-
derived NK cells can be produced easily. Furthermore, 
knocking out the HLA gene in iPSCs can help harvest 
universal iPSCs, which can subsequently be used for gen-
eration of universal iPSC- derived CAR-T cells.

Conclusions and future perspectives
The study of HSPC transplantation [138–142], as well 
as disorders of hematopoiesis, lymphatics, and immu-
nity [143] has facilitated the understanding of the HSC 
differentiation cascade. T lineage commitment not only 
involves a precise transcription factor regulatory net-
work, but also an organized thymus microenvironment 

[23]. Indeed, extensive research has demonstrated the 
feasibility of PSC-to-T [69]. To identify the T lym-
phopoiesis in the thymus, several single-cell transcrip-
tional atlas of T lymphopoiesis and embryonic/adult 
thymus organogenesis have been established [23, 31, 
144], which help us to identify the features of TSP, the 
interaction of thymocytes and stromal cells, and rare 
unconventional T subsets. Furthermore, several pub-
lished scRNA-seq datasets of PSC-derived cells clearly 
showed the differentiation pathways and possibilities of 
generating physiological T-lineage cells (Table  2). More 
importantly, by deconstructing T lymphopoiesis in the 
thymus and eliminating unnecessary factors, an organ-
ized thymus-like microenvironment was reproduced 
in  vitro for functional PSC-derived T-cell generation. 
The ATO co-culture system indicated the feasibility of 
conventional T-subset generation by constructing thy-
mus-like niche in vitro. Defined TFs (Runx1 and Hoxa9) 
were used to generate transplantable PSC-derived TSP. 
Furthermore, the improved PSC-to-T platforms through 
gene editing technology will likely facilitate the clinical 
application of PSC-T, NK and macrophage cells for can-
cer immunotherapy [145–152].
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Table 2 (continued)

Organization Product Cell type Tumor type Characteristic Phase/ClinicalTrials.gov 
Identifier

HebeCell – NK – 1) Generating from 3D 
bioreactors
2) CAR construction

Preclinical studies/-

Neukio Biotherapeutics – NK – CAR construction Preclinical studies/-

nuwacell – T/NK – CAR construction Preclinical studies/-

Biotheus + iCAMUN iPSC-CAB-NK NK Solid tumor – Preclinical studies/-

PersonGen iPS-CAR-NK NK – CAR construction Preclinical studies/-
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