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Abstract 

Background:  Acute graft-versus-host disease (aGVHD) remains the major cause of early mortality after haploidentical 
related donor (HID) hematopoietic stem cell transplantation (HSCT). We aimed to establish a comprehensive model 
which could predict severe aGVHD after HID HSCT.

Methods:  Consecutive 470 acute leukemia patients receiving HID HSCT according to the protocol registered at 
https://​clini​caltr​ials.​gov (NCT03756675) were enrolled, 70% of them (n = 335) were randomly selected as training 
cohort and the remains 30% (n = 135) were used as validation cohort.

Results:  The equation was as follows: Probability (grade III–IV aGVHD) =  1
1+exp (− Y)

 , where 
Y = –0.0288 × (age) + 0.7965 × (gender) + 0.8371 × (CD3 + /CD14 + cells ratio in graft) + 0.5829 × (donor/recipient 
relation) − 0.0089 × (CD8 + cell counts in graft) − 2.9046. The threshold of probability was 0.057392 which helped 
separate patients into high- and low-risk groups. The 100-day cumulative incidence of grade III–IV aGVHD in the 
low- and high-risk groups was 4.1% (95% CI 1.9–6.3%) versus 12.8% (95% CI 7.4–18.2%) (P = 0.001), 3.2% (95% CI 
1.2–5.1%) versus 10.6% (95% CI 4.7–16.5%) (P = 0.006), and 6.1% (95% CI 1.3–10.9%) versus 19.4% (95% CI 6.3–32.5%) 
(P = 0.017), respectively, in total, training, and validation cohort. The rates of grade III–IV skin and gut aGVHD in 
high-risk group were both significantly higher than those of low-risk group. This model could also predict grade II–IV 
and grade I–IV aGVHD.

Conclusions:  We established a model which could predict the development of severe aGVHD in HID HSCT 
recipients.
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Introdution
Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) is the most important curative method for acute 
leukemia (AL), which can significantly improve the long-
term survival [1, 2]. Human leukocyte antigen (HLA) 
haploidentical related donors (HIDs) have become one 
of the most important donors, which accounted for the 
proportion at 42% among allo-HSCT from family donors 
in Europe [3], and accounted for the proportion at 60% 
among all of the allo-HSCT in China [4].

Although many strategies [e.g., antithymocyte globulin 
(ATG) and post-transplant cyclophosphamide (PTCy)] 
are used to prevent acute graft-versus-host disease 
(aGVHD), it is still inevitable [5]. Only half of aGVHD 
patients could achieve durable responses to initial cor-
ticosteroid therapy [6], and there is no standard therapy 
for steroid refractory aGVHD and the survival among 
these patients is poor [7]. Thus, severe aGVHD remains 
the major cause of early mortality after HID HSCT [8–
10]. An early-warning method for severe aGVHD can 
help to provide risk-stratification directed prophylaxis for 
aGVHD and significantly improve the survival of patients 
receiving HID HSCT.

Several demographic and transplant characteristics, 
such as patient age, underlying disease (e.g., chronic 
myeloid leukemia), comorbidities before allo-HSCT, 
donor/recipient gender mismatching (i.e., female 
donor/male recipient combination), donor and recipi-
ent cytomegalovirus (CMV) serostatus, donor type (i.e., 
HLA‐non‐identical donors), HLA disparity, and GVHD 
prophylaxis methods are reported as important risk 
factors for aGVHD [11, 12]. Particularly, donor/recipi-
ent relation [i.e., collateral relative donors (CRDs) [13] 
and maternal donors (MDs)] [14, 15] is associated with 
aGVHD after HID HSCT with ATG or PTCY for GVHD 
prophylaxis.

In addition, graft composition may be associated with 
aGVHD after allo-HSCT. For example, the CD4+/CD8+ 
T cells ratio in granulocyte colony-stimulating factor 
(G-CSF)-mobilized bone marrow (G-BM) [16] or the 
CD3+/CD14+ cells ratio in G-CSF-primed peripheral 
blood (G-PB) [17] can predict aGVHD after HID HSCT. 
However, most of the studies only reported the risk fac-
tors for aGVHD, and there was no comprehensive model 
which included the characteristics of demographic, dis-
ease, transplant, and graft composition for aGVHD 
prediction.

Thus, in the present study, we aimed to establish a 
comprehensive model which could predict the severe 
aGVHD in patients receiving HID HSCT with ATG for 
GVHD prophylaxis.

Patients and methods
Study design
Consecutive AL patients receiving HID HSCT between 
January 21, 2020 and May 31, 2021 at Peking Univer-
sity, Institute of Hematology (PUIH) were enrolled. 
The end point of the last follow-up for all survivors was 
November 11, 2021. A total of 67 patients had been pre-
viously reported by Ma et al. [18], and all of them were 
further followed-up. All patients were treated accord-
ing to the protocol registered at https://​clini​caltr​ials.​gov 
(NCT03756675). Informed consent was obtained from 
all patients or their guardians. The study was conducted 
in accordance with the Declaration of Helsinki, and the 
protocol was approved by the Institutional Review Board 
of Peking University People’s Hospital.

Transplant regimens
Major conditioning regimen consisted of cytarabine, 
busulfan, cyclophosphamide, and semustine [19, 20]. 
Twelve patients received total body irradiation (TBI)-
based conditioning regimen. G-PB harvests were admin-
istered to the recipients on the same day of collection 
[18]. ATG, cyclosporine A, mycophenolate mofetil, and 
short-term methotrexate were administered to prevent 
GVHD. Particularly, patients with CRDs or MDs could 
receive low dose cyclophosphamide after transplantation 
based on ATG for GVHD prophylaxis (Additional file 1: 
Additional methods) [21].

Evaluation of graft composition
The methods for graft composition evaluation were 
showed in Additional file 1: Additional methods [16, 22].

Definitions
The definitions for disease risk index (DRI), engraftment, 
aGVHD, relapse, mortality, and survival were showed in 
Additional file 1: Additional methods [23–25].

Building machine learning models
Our method consisted of three steps: selecting features, 
building models, and finding the optimal threshold (Fig. 1 
and Additional file 1: Additional methods).

Keywords:  Acute leukemia, Acute graft-versus-host disease, Haploidentical donor, Hematopoietic stem cell 
transplant, Predicted model
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Backward feature selection strategy
We randomly selected 70% of the entire population 
(n = 335) as the training cohort, the remains 30% were 
used as validation cohort (n = 135). For primary outcome 
(i.e., grade III-IV aGVHD), the model building steps were 
performed in the training cohort and validated in the 
validation cohort. The sensitivity, specificity, area under 
curve score, and accuracy score were identified in both 
the training and validation cohort.

We used feature selection techniques to select the pre-
dictive variables (Additional file  1: Additional methods) 
[26]. By doing this, we could reduce the complexity of 
machine learning model, while also improve the gen-
eralizability. We set age and gender to be obligate vari-
ables in the machine learning model. For other variables, 
we selected top-3 significant variables using backward 
feature selection strategy. In detail, we started with all 
variables including age and gender. At each iteration, we 
removed the least significant variable (variable with the 
highest P-value) except age and gender. Aside from the 
involved variables, we also added an extra constant vari-
ate to make the feature selection more robust. The selec-
tion was realized using generalized linear models with 
binomial exponential family distribution of statsmodels 
v0.13.0 statistical models module with Python 3.8 based 
on anaconda3 development platform [27].

Building models
We used generalized linear models with binomial expo-
nential family distribution to realize logistic regression 
models, which were equivalent models. Aside from the 
selected variables, we added an extra constant variate for 
the predicted model to make the machine learning mod-
els stronger. We used statsmodels v0.13.0 with Python 

3.8 to build the models based on anaconda3 develop-
ment platform. The model parameters were set to be the 
defaults [28–30].

Finding the optimal threshold
Logistic regression model produced values between 
0 and 1, which could be treated as the probabilities to 
be positive prediction. We needed to determine the 
threshold of output positive predictions (1) or nega-
tive predictions (0). In detail, we drew Receiver Operat-
ing Characteristic (ROC) curves [31] and calculated the 
g-mean for each threshold [32]. The best threshold cor-
responded to the largest g-mean. The g-mean was calcu-
lated as sqrt [tpr × (1 − fpr)], where tpr represented true 
positive rate, fpr represented false positive rate, under a 
given threshold.

Evaluation for model
ROC-AUC was defined as the area under the curve of the 
true positive rate versus the false positive rate at various 
thresholds ranging from zero to one. Confusion matrix 
was a summary table of predictions. In this paper, the 
confusion matrix was of two-by-two shape. The diagonal 
showed the count values of correct predictions, while the 
others showed the count values of incorrect predictions. 
Besides, we also normalized the count values by the 
number of True Label (Outcome) or the number of Pre-
dicted Label (Prediction). To better visualize the matrix, 
we colored the values with Blues colorbar.

Statistical methods
In the present study, the primary outcome was grade III 
to IV aGVHD. The secondary outcomes included grade II 
to IV aGVHD, grade I to IV aGVHD, relapse, non-relapse 
mortality (NRM), leukemia-free survival (LFS), and over-
all survival (OS).

Mann–Whitney U-test was used to compare continu-
ous variables, χ2  and Fisher’s exact tests were used for 
categorical variables. The Kaplan–Meier method was 
used to estimate the probability of LFS and OS. Compet-
ing risk analyses were performed to calculate the cumula-
tive incidence of aGVHD, relapse, and NRM [33]. Testing 
was two-sided at the P < 0.05 level. Statistical analysis was 
performed on SPSS 22.0 software (SPSS, Chicago, IL), 
and R software (version 4.0.0) (http://​www.r-​proje​ct.​org).

Results
Patient characteristics
A total of 470 patients were enrolled, and the char-
acteristics were all comparable between training and 
validation cohort (Table  1). All patients achieved neu-
trophil engraftment and the median time from HSCT to 

Fig. 1  Flow diagram of building machine learning model

http://www.r-project.org


Page 4 of 10Shen et al. Experimental Hematology & Oncology           (2022) 11:25 

Table 1  Patient characteristics

Characteristics Training cohort (n = 335) Validation cohort (n = 135) P value

Median age at allo-HSCT, years (range) 28 (1–66) 31 (1–64) 0.596

Gender, n (%) 0.635

 Male 198 (59.1) 83 (61.5)

 Female 137 (40.9) 52 (38.5)

Underlying disease, n (%) 0.704

 Acute myeloid leukemia 187 (55.8) 78 (57.8)

 Acute lymphoblastic leukemia 143 (42.77) 55 (40.7)

 Mixed-phenotype acute leukemia 5 (1.55) 2 (1.5)

Disease status before allo-HSCT, n (%) 0.535

 CR1 321 (95.8) 131 (97.0)

 > CR1 14 (4.2) 4 (3.0)

Disease risk index before allo-HSCT, n (%) 0.714

 Low and intermediate risk 268 (80.0) 110 (81.5)

 High and very high risk 67 (20.0) 25 (18.5)

Donor/recipient relation, n (%) 0.379

 Mother donor 26 (7.8) 12 (8.9)

 Collateral donor 12 (3.6) 0 (0.0)

 Others 297 (88.7) 123 (91.1)

Donor/recipient gender matched, n (%) 0.258

 Female donor/male recipient combination 57 (17.0) 29 (21.5)

 Others 278 (83.0) 106 (78.5)

HCT-CI scores before allo-HSCT, n (%) 0.121

 0 (Low-risk) 237 (70.7) 105 (77.8)

 1–2 (Intermediate-risk) 74 (22.1) 23 (17.0)

 ≥ 3 (High-risk) 24 (7.2) 7 (5.2)

Median donor age at allo-HSCT, years (range) 40 (9–70) 36 (10–63) 0.094

Cytomegalovirus serostatus before HSCT, n (%) 0.501

 Donor +/recipient + 312 (93.1) 128 (94.8)

 Donor +/recipient − 11 (3.3) 3 (2.2)

 Donor −/recipient +  10 (3.0) 4 (3.0)

 Donor −/recipient − 2 (0.6) 0 (0.0)

Number of HLA-A, HLA-B, HLA-DR mismatches, n (%) 0.914

 1 Locu 8 (2.4) 3 (2.2)

 ≥ 2 Loci 327 (97.6) 132 (97.8)

Blood group compatibility, n (%) 0.719

 Matched 175 (52.2) 73 (54.1)

 Mismatched 160 (47.8) 62 (45.9)

Conditioning regimen, n (%) 0.350

 Chemotherapy-based regimen 325 (97.0) 133 (98.5)

 TBI-based regimen 10 (3.0) 2 (1.5)

Cell type, median count (range)

 MNC counts (× 108/kg) 9.2 (4.4–27.3) 9.3 (4.2–27.5) 0.218

 CD34+ cell counts (× 106/kg) 3.8 (0.7–25.33) 3.9 (1.1–29.4) 0.572

 CD3+ cell counts (× 106 kg) 340.9 (116.2–874.2) 352.0 (170.4–1172.2) 0.617

 CD4+ cell counts (× 106/kg) 182.5 (68.3–600.1) 184.7 (75.2–492.7) 0.688

 CD8+ cell counts (× 106/kg) 126.7 (29.6–347.9) 128.0 (46.1–1511.2) 0.559

 CD14+ cell counts (× 106/kg) 211.3 (73.3–1065.0) 215.6 (95.8–716.9) 0.373

 CD8+/CD3+ cells ratio 0.4 (0.2–0.7) 0.4 (0.1–1.3) 0.817
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Table 1  (continued)

allo-HSCT, allogeneic hematopoietic stem cell transplantation; CR, complete remission; HLA, human leukocyte antigen; HCT-CI, hematopoietic cell transplantation-
specific comorbidity index; MNC, mononuclear cells; TBI, total body irradiation

Fig. 2  ROC curve and confusion matrix for grade III to IV aGVHD model in the training (A) and validation cohort (B)

Characteristics Training cohort (n = 335) Validation cohort (n = 135) P value

 CD4+/CD8+ cells ratio 1.5 (0.4–4.7) 1.5 (0.3–3.0) 0.672

 CD4+/CD3+ cells ratio 0.6 (0.2–0.8) 0.5 (0.1–0.7) 0.627

 CD3+/CD14+ cells ratio 1.6 (0.6–4.4) 1.5 (0.6–3.7) 0.601

Median follow-up of survivors, days (range) 203 (62–490) 192 (52–509) 0.134

neutrophil engraftment was 12  days (range 9–28) days. 
Four hundred and fifty-eight (97.4%) patients achieved 
platelet engraftment and the median time from HSCT 
to platelet engraftment was 13 days (range 7–144) days, 
respectively.

Two hundred and sixty-six (56.6%), 129 (27.4%), and 
33 (7.0%) patients experienced grade I to IV aGVHD, 
grade II to IV aGVHD, and grade III to IV aGVHD after 
allo-HSCT, respectively. The median time from HSCT 
to aGVHD was 20  days (range 8–99) days. The cumu-
lative incidence of grade I to IV aGVHD, grade II to IV 
aGVHD, and grade III to IV aGVHD at 100  days after 
HID HSCT was 56.5% (95% CI 52.0–61.0%), 27.3% (95% 
CI 23.3–31.3%), and 6.8% (95% CI 4.5–9.1%), respectively.

Thirty-eight (8.1%) patients experienced relapse, and 
16 (3.4%) patients died of NRM. Four hundred and forty-
nine patients survived until the last follow-up, and the 
median duration of follow-up was 200  days (range 52 
to 509) days. The probabilities of relapse, NRM, LFS, 
and OS at 100 days after HID HSCT were 2.8% (95% CI 

1.3–4.3%), 1.5% (95% CI 0.4–2.6%), 95.7% (95% CI 93.9–
97.6%), and 97.8% (95% CI 96.5–99.2%), respectively.

Predicted model for grade III to IV aGVHD (model 1)
A predictive model for grade III-IV aGVHD was devel-
oped (Additional file 1: Additional methods, Table S1 and 
Fig. S1), and the equation was as follows:

where, Y = − 0.0288 × (age) + 0.7965 × (gen-
der) + 0.8371 × (CD3 + /CD14 + cells ratio 
in graft) + 0.5829 × (donor/recipient rela-
tion) − 0.0089 × (CD8 + cell counts in graft) − 2.9046. 
Particularly, donor/recipient relation included immedi-
ate relative donors (IRDs) other than MDs (value = 0), 
MDs (value = 1), and CRDs (value = 2). Gender included 
male (value = 0) and female (value = 1). The age (years), 
CD8 + cell counts (× 106/kg), CD3+/CD14+ cells ratio 

Probability
(

grade III−IV aGVHD
)

=
1

1+ exp(−Y)
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in graft used actual numerical value (Additional file  1: 
Table S1). The threshold of probability was 0.057392 and 
the g-mean was 0.682. Patients were separated into low- 
and high-risk groups by the threshold.

In the training cohort, the sensitivity, specificity, area 
under curve score, and accuracy score were 0.632, 0.680, 
0.685, and 0.678, respectively. ROC curve for the model 
and confusion matrix is shown in Fig. 2A and Additional 
file  1: Table  S2. In the validation cohort, the sensitivity, 
specificity, area under curve score, and accuracy score 
were 0.500, 0.760, 0.673, and 0.733, respectively. ROC 
curve for the model and confusion matrix is shown in 
Fig. 2B and Additional file 1: Table S3.

Verifying the predicted model in validation and total 
cohort
The 100-day cumulative incidence of grade III-IV 
aGVHD in the low- and high-risk groups was 4.1% 
(95% CI 1.9–6.3%) versus 12.8% (95% CI 7.4–18.2%) 
(P = 0.001), respectively, in total cohort (Fig. 3A).

The 100-day cumulative incidence of grade III-IV 
aGVHD in the low- and high-risk groups was 3.2% (95% 
CI 1.2–5.1%) versus 10.6% (95% CI 4.7–16.5%) with 
P = 0.006 and 6.1% (95% CI 1.3–10.9%) versus 19.4% (95% 
CI 6.3–32.5%) with P = 0.017, respectively, in training 
cohort (Fig. 3B) and validation cohort (Fig. 3C). The 100-
day cumulative incidence of grade III-IV aGVHD in the 
low- and high-risk groups was 4.9% (95% CI 2.1–7.7%) 
versus 11.1% (95% CI 5.2–17.0%) with P = 0.033 and 2.1% 
(95% CI 0.0–4.9%) versus 18.8% (95% CI 5.0–32.5%) with 
P < 0.001, respectively, in patients with HCT-CI scores of 
0 (Additional file 1: Fig. S2) and ≥ 1 (Additional file 1: Fig. 
S3).

The rates of grade III to IV skin and gut aGVHD in 
low-risk group were both significantly lower than those 
of high-risk group (skin: 4.4% vs. 12.8%, P = 0.001; gut: 
1.6% vs. 4.7%, P = 0.045) (Fig. 3D).

Validation of the predicted model in grade II to IV aGVHD
In the total population, the 100-day cumulative incidence 
of grade II to IV aGVHD in the low-risk group and high-
risk group was 21.5% (95% CI 17.0–26.0%) and 39.6% 
(95% CI 31.7–47.5%), respectively (P < 0.001, Fig.  4A). 
The rates of grade II to IV skin and gut aGVHD in the 
low-risk group were both significantly lower than those 
of high-risk group (skin: 25.5% vs. 35.6%, P = 0.025; gut: 
7.5% vs. 18.8%, P < 0.001) (Fig. 4B).

Validation of the predicted model in grade I to IV aGVHD
In total population, the 100-day cumulative incidence of 
grade I to IV aGVHD in the low-risk group and high-risk 
group was 51.5% (95% CI 46.0–57.0%) and 67.1% (95% CI 
59.5–74.7%), respectively (P = 0.001, Fig.  4C). The rates 
of grade I to IV skin, gut, and liver aGVHD in the low-
risk group were all significantly lower than those of high-
risk group (skin: 44.5% vs. 60.4%, P = 0.001; gut: 15.9% vs. 
30.2%, P < 0.001; liver: 1.9% vs. 5.4%, P = 0.038) (Fig. 4D).

Validation of the predicted model in other clinical 
outcomes after HSCT
In total population, the probabilities of relapse, NRM, 
LFS, and OS at 100 days after HID HSCT were all com-
parable between the low- and high-risk groups in the 
total population (Additional file 1: Fig. S4).

Discussion
In the present study, we established a predicted model 
for grade III to IV aGVHD including patient age, gender, 
donor/recipient relation, CD8+ T cell count, and CD3+/
CD14+ cells ratio in the graft in training cohort, which 
was verified in validation and total cohorts. To the best 
of our knowledge, we firstly established a comprehensive 
model which can effectively predict severe aGVHD in 
HID HSCT recipients with ATG for GVHD prophylaxis.

Although some studies reported several risk fac-
tors of aGVHD, most of them did not integrate these 

Fig. 3  The 100-day cumulative incidence of grade III to IV aGVHD in the low- and high-risk groups in total (A), training (B), and validation (C) cohort, 
and D the rates of grade III to IV aGVHD of each organ in the low- and high-risk group
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factors and single factor may not provide comprehen-
sive prediction for aGVHD. For example, Yahng et  al. 
[34] reported that CD8+ cell counts in G-PB were 
associated with the occurrence of severe aGVHD after 
haplo-HSCT, which was not supported by the study of 

Liu et al. [17] In addition, MDs showed a higher risk of 
aGVHD compared with other IRDs in patients receiv-
ing ATG [14] or PTCY [15] for GVHD prophylaxis. In 
addition, we observed that the risk of aGVHD in CRDs 
group was as high as that of MDs group [13]. However, 

Fig. 4  The association between predicted model and other GVHD endpoint in total population. A The 100-day cumulative incidence of grade 
II to IV aGVHD in the low- and high-risk groups; B The rate of grade II to IV aGVHD of each organ in the low- and high-risk groups; C The 100-day 
cumulative incidence of grade I–IV aGVHD in the low- and high-risk groups; D The rate of grade I to IV aGVHD of each organ in the low- and 
high-risk groups
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some authors reported that MDs did not increase the 
risk of aGVHD in patients using TCD protocol [35]. 
In the present study, the predictive model created by 
machine learning models is more accurate and reliable 
because it can eliminate the influence of selection bias 
in choosing variables. It also accounts for interaction 
and confounding factors, which cannot be completely 
adjusted for or eliminated using conventional statistics.

Compared with the traditional logistic regression 
model, the method proposed in this paper has several 
improvements. First, this method adds a feature selection 
step [26, 27]. We propose a backward feature selection 
strategy based on multi-factor analysis. This strategy is 
in a step-wise manner, which can ensure the stability of 
the feature selection process, and makes the model more 
generalizable. Second, in the model optimization process, 
we add a penalty function of the regularization term. It 
can reduce the risk of overfitting the training data, and 
further make the model more generalizable. Third, we 
consider the imbalance of positive and negative samples 
of the data when outputting the final prediction results. 
Hence, the traditional threshold of 0.5 is not directly 
used. Instead, we calculate the optimal threshold based 
on g-means index from the ROC curve [31, 32].

According to the theory of machine learning, adding 
more variables increases the capacity and performance 
upper bound of the predictive model [36, 37], but also 
increases the complexity of the predictive model. Addi-
tionally, many variables may make a model too difficult 
to clinically apply. Thus, obligate variables seem to be 
a balanced approach [38, 39]. Age and gender are the 
most common obligate variables because they are easy 
to acquire in the real world and adding them usually 
does not increase the clinical burden [40–42]. Hence, we 
extracted “age” and "gender" as the factors in our predic-
tive model of III to IV aGVHD.

We observed that our predict model was associated 
with grade III to IV and grade II to IV gut aGVHD after 
HID HSCT, which suggested that routine GVHD prophy-
laxis methods were not sufficient to prevent severe gut 
aGVHD in high-risk patients. Severe gut aGVHD is dif-
ficult to treat and is the greatest cause of GVHD-related 
mortality [43]. Thus, our predicted model could help 
to direct more intense prophylaxis for gut aGVHD in 
high-risk patients after HID HSCT with ATG for GVHD 
prophylaxis.

The present study had some limitations. First, the 
model was not associated with the development of grade 
III to IV liver aGVHD after HID HSCT, which might be 
due to the small sample of severe liver aGVHD in the 
present study. However, we observed that the rate of 
grade I to IV liver aGVHD in high-risk group was higher 

than that of low-risk group. Second, although we veri-
fied the model successfully in the validation cohort, this 
was a single-center study and the sample of validation 
cohort was relatively small. Third, ATG was administered 
to prevent GVHD in this research, but ATG is contained 
in 94 per cent of conditioning regimens for HID HSCT 
in China. Thus, the predicted value of our model should 
be further confirmed in patients receiving HID HSCT 
with PTCY for GVHD prophylaxis and in those receiv-
ing identical sibling or unrelated donor HSCT. Thus, 
the model should be further evaluated by independent 
cohorts in multicenter studies. Lastly, we did not monitor 
plasma cytokines (e.g., interleukin [IL]-2) and biomarkers 
(e.g., ST2, REG3α, TNFR1, and IL-2Rα) [44, 45], which 
may further improve the efficacy of our predicted model.

Conclusions
We established a comprehensive model which could pre-
dict the development of severe aGVHD in HID HSCT 
recipients. This was the first predicted model for severe 
aGVHD which can be popularized easily, can help to pro-
vide risk-stratification directed aGVHD prophylaxis, and 
may further decrease the risk of severe aGVHD in HID 
HSCT recipients. In future, prospective, multicenter 
studies can further confirm the efficacy of our predicted 
model.
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