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Abstract 

Chromosomal translocations are the main etiological factor of hematologic malignancies. These translocations are 
generally the consequence of aberrant DNA double-strand break (DSB) repair. DSBs arise either exogenously or 
endogenously in cells and are repaired by major pathways, including non-homologous end-joining (NHEJ), homolo-
gous recombination (HR), and other minor pathways such as alternative end-joining (A-EJ). Therefore, defective NHEJ, 
HR, or A-EJ pathways force hematopoietic cells toward tumorigenesis. As some components of these repair pathways 
are overactivated in various tumor entities, targeting these pathways in cancer cells can sensitize them, especially 
resistant clones, to radiation or chemotherapy agents. However, targeted therapy-based studies are currently under-
way in this area, and furtherly there are some biological pitfalls, clinical issues, and limitations related to these targeted 
therapies, which need to be considered. This review aimed to investigate the alteration of DNA repair elements of 
C-NHEJ and A-EJ in hematologic malignancies and evaluate the potential targeted therapies against these pathways.

Keywords: Double-strand break, Double-strand break repair, Non-homologous end-joining, Alternative end-joining 
pathways, Hematologic malignancies, Targeted therapy

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
There are different types of DNA damage including Bulky 
adducts/intrastrand crosslinks, single-strand break, DNA 
double-strand break (DSB), and base mismatch (Fig.  1). 
DSBs are the most destructive genomic damages [1, 2], 
that may arise either exogenously or endogenously. While 
the exogenous sources of DSBs include ionizing radiation 
and DNA damaging agents (clastogens), the endogenous 
sources commonly result from damages during replica-
tion, which, if unrepaired, can stimulate genomic insta-
bility [3, 4]. Some mechanisms involved in endogenous 

DSB formation include V(D)J recombination in progeni-
tors of lymphocytes, class-switch recombination (CSR) in 
lymphocytes, and meiosis followed by gametogenesis [5].

On the other hand, DSB genotoxicity can be compen-
sated by two major pathways: (1) homologous recom-
bination (HR); and (2) non-homologous end-joining 
(NHEJ), including classical non-homologous end-joining 
(C-NHEJ) and alternative non-homologous end-joining 
(A-NHEJ or A-EJ) pathways [5]. The NHEJ pathways 
rejoin two broken DNA ends and repair DSBs in G1 or 
G0 phase of the cell cycle. While recognition of DNA 
ends by C-NHEJ pathways is dependent on XRCC5, 
XRCC6, DNA-PKcs, and ligation by DNA ligase IV (Lig 
IV)/XRCC4, the A-EJ pathways are independent of Lig 
IV and can recognize DNA ends by a diverse set of fac-
tors, including different DNA polymerases (δ and θ), 
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DNA nucleases (ERCC1-XPF), and ligases (Lig I and Lig 
III/XRCC1) [6].

Aberrant repair of DSBs can result in miss-joining of 
DNA repair components with DNA ends and cause dele-
tions, inversions, or complex rearrangements of chro-
mosomes. These changes all lead to genomic instability, 
tumor susceptibility, immunodeficiency, and a wide range 
of human cancers, including hematologic malignancies 
[6–8]. Genomic instability due to the aberrant activity 
of NHEJ pathways can also increase the ratio of acquired 
mutations or translocations, including recurrent translo-
cations in hematologic malignancies, such as BCR-ABL 
and MLL translocations, as the most important ones 
[9–11].

Several studies have shown that chemo- or radio-
resistant leukemic cells have altered levels of C-NHEJ 

and A-EJ activities, compared to their sensitive counter-
parts. Considering the development and progression of 
hematologic malignancies via DNA damage and repair 
response abnormalities, it seems that use of DSB induc-
ers, in combination with DSB repair (DSBR) inhibitors, 
may be a promising strategy to eradicate malignant cells 
and provide a novel therapeutic approach. Therefore, this 
study aimed to investigate the role of C-NHEJ and A-EJ 
pathways in the progression of hematologic malignancies 
and to evaluate targeting of these pathways for reducing 
the mortality of patients.

Mechanisms of C‑NHEJ and A‑EJ pathways in DSBR
In human cells, C-NHEJ is a rapid, high-capacity path-
way that mediates the direct religation of the broken 
DNA molecule with minimal reference to the DNA 

Fig. 1 Overview on common causes of DNA damage and the related repair pathways



Page 3 of 26Valikhani et al. Exp Hematol Oncol           (2021) 10:51  

sequence. In contrast to HR, C-NHEJ does not require 
an extensive homologous template; therefore, it is more 
error-prone and theoretically is not restricted to a cer-
tain cell cycle phase [12]. The mechanism of C-NHEJ 
can be broken down into several sequential steps. The 
initial step is the recognition and binding of the Ku70–
Ku80 (also known as XRCC6–XRCC5) heterodimer 
to the DSB. Ku heterodimer serves as a ‘tool belt’ or a 
scaffold that directly or indirectly recruits other NHEJ 
proteins [13]. As an essential event, Ku70/80 directly 
recruits DNA-dependent protein kinase catalytic sub-
unit (DNA-PKcs) to the DNA ends. DNA-PKcs has 
a strong affinity for Ku–DNA ends and, together with 
Ku, form the DNA-PK complex. Following the binding 

of DNA-PKcs to the DNA-Ku complex, the Ku heter-
odimer translocates inward on the dsDNA strand and 
eventually results in serine/threonine protein kinase 
activation of the DNA-PKcs [14]. DNA-PKcs undergoes 
autophosphorylation and activates Artemis, the main 
nuclease in NHEJ, which then gains the ability to trim 
overhangs to expose complementary regions. The trim-
ming of different end structures such as DNA loops, 
flaps, or gaps by Artemis makes them suitable for the 
ligation of the XRCC4–LIG IV complex (Fig. 2) [13, 15].

For more complex ends, other factors (e.g., PNKP, 
APTX, APLF, and PALF) and polymerases (pol μ and 
pol λ) are required [16, 17]. To ligate the broken ends, 
the Ku-DNA complex anchors PAXX, XRCC4, XLF 

Fig. 2 C-NHEJ in V(D)J recombination process. A RAG proteins bind to the V(D)J sequence at DNA, leading to DNA cleavage, creating DSB. 
Afterward, Ku70/80 heterodimers locate and bind to the DSB end. B Ku70/80 directly recruits DNA-PKcs. Following DNA-PKcs autophosphorylation, 
it activates the main nuclease in c-NHEJ, Artemis. C After trimming of DNA ends by Artemis, DNA polymerases reconstruct the DNA. Consequently, 
the Ku-DNA complex anchors PAXX, XRCC4, XLF, and Lig IV to rejoin the DNA ends. D Fully functional recombined DNA is ready to be translated
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(NHEJ1 or Cernunnos), and Lig IV, rejoining the DNA 
ends [18].

A‑EJ components and mechanisms
In mammalian cells, the repair of DSBs by A-EJ is more 
evident in the absence of a functional C-NHEJ pathway 
[19, 20]. There is an increasing interest in A-EJ pathways 
in malignant cells, as they create large deletions, trans-
locations, and genomic rearrangements [21–23]. There-
fore, they might serve as promising therapeutic targets 
in tumor cells with deficiencies in main DSB repair path-
ways. These pathways are Ku-independent and require 
DNA end resection, similar to HR. Since the broken 
ends can be rejoined without using a homologous tem-
plate, this process also shares similarities with NHEJ [24]. 
Based on the amount of DNA sequence homology used 
to align DNA ends, the A-EJ mechanisms are mediated 
by two minor pathways: single-strand annealing (SSA) 
and microhomology-mediated end-joining (MMEJ) [25]. 
While SSA comprises complementary repeat sequences 
greater than 25 nucleotides, MMEJ involves microho-
mologies which are shorter tracts of sequence homology 
(2–20 nucleotides) [26].

Several studies have shown that PARP1 binds to single-
strand DNA and is essential for the initial phase of A-EJ 
(recognition and tethering). First, it catalyzes the poly-
ADP-ribosylation of proteins at DNA damage sites [27]. 
Next, it contributes to the initial assembling of the MRN 
complex (including MRE11, RAD50, and NBS1) on DSBs, 
leading to the activation of ataxia telangiectasia mutated 
(ATM) and RAD3-related (ATR) kinases [28]. This com-
plex causes DNA end resection, which involves two 
major steps. In the first step, the combination of MRN 
and C-terminal interacting protein (CtIP) creates short 
single-stranded DNA (ssDNA), and then exonuclease 1 
(EXO1) or Bloom’s helicase (BLM)/DNA2 endonuclease 
complex causes an extensive end resection [29]. EXO1 is 
loaded on ssDNA by Metnase (or SETMAR), a chimeric 
fusion protein consisting of a transposase domain and 
a histone methylase domain; the former is MAR, and 
the latter is called SET [30].  Metnase enhances DSBR 
through the C-NHEJ pathway by interacting with DNA 
Lig IV [31]. Also, Metnase and Artemis nucleases deter-
mine the fidelity of end-joining repair in mammalian cells 
(Fig. 2) [32].

The second step of DNA end resection is dispensable 
for MMEJ [26]. Polymerases, flap endonucleases, heli-
cases, and polynucleotide kinases prepare the DNA ends 
for ligation [5]. Pol θ fills the gap in MMEJ, whereas the 
gap-filling component of SSA is unidentified [26]. Finally, 
Lig III ligates the DNA ends, although other components, 
such as XRCC1, as a scaffolding protein, are needed [33]. 
It should be noted that interlinking issues are one of the 

important factors in the repair process and selection of a 
pathway, as well as targeted therapy. Overall, neddylation, 
ubiquitination, and interference of non-coding RNAs are 
the most common interlinking issues in DSBR [34–36]. 
Moreover, the mechanism of the A-EJ pathway is shown 
in Fig. 3.

C‑NHEJ and A‑EJ alterations in hematologic malignancies
Hematologic malignancies have been at the forefront of 
cancers in terms of using genetic analyses for diagnosis, 
classification, prognosis, and clinical therapeutic man-
agement of patients. Genomic analysis has dramatically 
influenced the clinical evaluation of nearly every form 
of hematologic malignancy. DNA repair has a critical 
role in protecting cells against endogenous or exogenous 
insults that can cause varying degrees of DNA damage. 
Any deficiency in DNA repair pathways results in vari-
ous genomic changes that ultimately may give rise to 
tumorigenesis and the development of hematological 
malignancy [37]. Here, alterations in C-NHEJ and A-EJ 
components are separately discussed in four catego-
ries: leukemia, lymphoma, myelodysplastic syndromes 
(MDS), and multiple myeloma (MM).

Leukemia
Genomic instability is one of the key drivers of hemato-
logical malignancy and is responsible for leukemia pro-
gression [38]. Genomic instability, including mutations 
in DNA sequences, chromosomal aneuploidy, transloca-
tions, and gene amplifications, are frequently found in 
leukemia cells suggesting that the DSB response may be 
altered. A growing body of evidence showed that dysreg-
ulation of DSB repair pathways could predispose patients 
to different leukemia. Deficiencies in DNA repair path-
ways are causal factors for many solid cancers, but they 
are only just beginning to be explored in leukemia. Here, 
changes in the DSB repair pathway in leukemia, includ-
ing acute lymphoblastic leukemia (ALL), acute myeloid 
leukemia (AML), chronic lymphocytic leukemia (CLL), 
and chronic myeloid leukemia (CML) are described in 
detail.

CLL
Pathogenesis of CLL is characterized by specific genetic 
abnormalities and changes in cellular signaling path-
ways. In particular, a disrupted DDR plays the main role 
in increasing CLL cell survival. Many studies assessed 
the expression of genes involved in the repair pathway to 
test how the DSB-repair deregulations are involved in the 
initiation and progression of the CLL. The elevated levels 
of MMEJ factors have been observed in B-CLL cells and 
it was concluded that CLL-specific increased expression 
levels of the MMEJ factors Lig I and XRCC1 associated 



Page 5 of 26Valikhani et al. Exp Hematol Oncol           (2021) 10:51  

with an increased chance of gaining chromosomal aber-
rations throughout DSBR [6]. Klein et  al. assessed the 
associations between the expression levels of proteins 
regulating apoptosis (BCL-XL and BCL-2) and DNA 
repair in B-CLL cells and normal B cells. They found a 
close relationship between Bcl-xL and Bcl-2 expression 
and Ku80 levels suggesting that in B-CLL cells, modula-
tors of the apoptosis and DNA repair are regulated in a 
coordinated manner [39]. In another study, CLL cells 
demonstrated a significantly lower frequency of cells 
staining positive for DNA-PKcs and Ku86, but not for 
Ku70, in comparison with ALL cells. Surprisingly, MM 
samples were reported to express significantly higher 
DNA-PKcs, Ku86, and Ku70 protein levels compared to 

CLL. Therefore it was suggested that DNA-PK expression 
coincides with the degree of lymphoid malignant cells 
maturity [40]. DNA-PKcs was also shown to be over-
expressed in CLL patients with del(17p) and del(11q), 
indicating that DNA-PK may contribute to disease pro-
gression. Moreover, these data support the hypothesis of 
targeting DNA-PKcs in poor-risk CLL and demonstrate a 
validation for the use of a DNA-PK inhibitor [41].

Analysis of DNA-binding activity of the Ku70/80 het-
erodimer showed an increased DNA-binding activity in 
the resistant B-CLL cells compared to the sensitive cells 
(before and after irradiation treatment). Elevated lev-
els of DNA end-binding by the Ku70/Ku80 heterodimer 
up-regulate DNA-PKcs and NHEJ activity and facilitate 

Fig. 3 Alternative non-homologues end joining pathway. A PARP1 binds to single-strand DNA for the recognition of damages. It catalyzes the 
poly-ADP-ribosylation of proteins at DNA damage sites. Also, it contributes to the initial assembling of the MRN complex on DSBs, leading to the 
activation of ATM and ATR kinases. B In SSA, the combination of MRN and CtIP creates short ssDNA, and then, EXO1 or BLM/DNA2 endonuclease 
complex causes an extensive end resection. EXO1 is loaded on ssDNA by Metnase. C RAD52 binds to the RPA-coated single strand annealing the 
complementary regions. ERCC1/XPF complex removes the tails. This step of DNA end resection is dispensable for MMEJ. D Then, polymerases, flap 
endonucleases, helicases, and polynucleotide kinases prepare the DNA ends for ligation (the gap-filling component of SSA is unidentified). E Finally, 
Lig III ligates the DNA ends with the help of XRCC1 as a scaffolding protein
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the escape of resistant B-CLL cells from apoptosis even 
in the presence of irradiation-induced DNA damage [42].

Accumulation of DNA damages and error-prone DNA 
repair  are critical features of genetic instability that are 
believed to be involved in the pathogenesis of CLL [43]. 
Although the role of ATM in signaling to repair proteins 
is associated with a function that could result in resist-
ance mechanism against the alkylating agents, unexpect-
edly, the loss of ATM protein is consistent with a poor 
prognosis and aggressive disease in CLL. Austen et  al. 
analyzed 155 CLL cases for ATM mutations, and they 
found that two-thirds of the medically treated patients 
with ATM mutations were clinically refractory to DNA 
damaging chemotherapeutic drugs. A hypothesis sug-
gests that, as ATM can act upstream of p53 in response 
to DSB to stimulate cell cycle arrest and apoptosis, loss of 
ATM mitigates the p53-dependent cell death, resulting in 
a chemo-refractive phenotype [44].

Moreover, telomere length is a prognostic indicator in 
CLL patients. Short-dysfunctional telomeres can cause 
illegitimate end-to-end telomeric fusions of chromo-
somes, leading to genomic instability and disease pro-
gression in CLL. A recent study has elucidated the role 
of C-NHEJ and A-EJ in mediating telomere fusions and 
suggested that therapeutic agents targeting these DNA 
repair pathway factors may efficiently sensitize CLL 
B-cell clones with telomere dysfunction to improve out-
comes in patients [45].

ALL
ALL is the most common childhood leukemia and the 
foremost cause of childhood tumor deaths. During recent 
decades the occurrence rate of ALL has grown around 
30%, whereas the age-standardized incidence rate has 
stayed almost unchanged. Among all risk factors, smok-
ing has been found to be the chief factor contributing to 
mortality of ALL cases, therefore, avoiding exposure to 
carcinogens is of a great importance. Moreover, the high 
body mass index is another critical factor role-playing in 
ALL patients’ death [46]. Although most pediatric ALL 
patients respond well to chemotherapy, the outcome 
becomes less favorable when patients relapse. Cytoge-
netic alterations are common, and some molecular mark-
ers have been recognized to predict the prognosis [47, 
48]. Researches revealed that chromosomal transloca-
tions that appear prenatally are the primary event in mul-
tistage leukemia development. These translocations give 
rise to gene fusions, such as BCR-ABL and TEL-AML1, 
which generate altered proteins. Alterations of DNA 
repair pathways have also been examined in ALL. Using a 
sensitive approach that is based on automated enumera-
tion of DSB co-localizing proteins γH2AX and 53BP1, a 
higher γH2AX/53BP1 foci were detected in ALL patients 

harboring BCR-ABL or TEL-AML1 than patients with-
out gene fusions, suggesting that BCR-ABL/TEL-AML1 
induces DNA instability through facilitating further 
genetic alterations which drive leukemogenesis [49].

AT is a cancer-predisposing disease that individuals are 
born with two mutated copies of the ATM gene. Patients 
develop mostly, leukemia and lymphoma. A higher 
prevalence of chromothripsis (several clustered chromo-
somal rearrangements in one or few chromosomes) was 
reported in the genomic landscape of ALL arising in indi-
viduals with AT, probably due to the related deficiency in 
ATM mutation [50]. Similar to AT syndrome, Nijmegen 
breakage syndrome (NBS) is a cancer-predisposing dis-
ease of childhood, resulting from mutations in the NBS1 
protein of the MRN complex. Children with NBS usually 
have concomitant hematologic malignancies, including 
ALL, T-cell prolymphocytic leukemia (T-PLL), and non-
Hodgkin lymphoma (NHL) [51–54]. Mutations in Lig IV, 
which was associated with reduced and less proficient 
NHEJ, have also been reported in ALL patients [55]. In 
both murine and human T-ALL cells, the incidence of 
KRAS mutations associate with the increased expres-
sion of A-EJ factors, including DNA Lig IIIa, PARP1, and 
XRCC1 [56].

Some studies report a correlation between upregulated 
DNA repair and the stage of the disease in ALL. Using 
Real-time PCR, Chiou et  al. assessed the mRNA tran-
script of some NHEJ members, including Ku70, Ku80, 
DNA-PK, Artemis, XRCC4, Lig IV, and Cernunnos/
XLF in pediatric ALL patients at different phases of the 
disease. Compared to thalassemia patients, which were 
considered control samples in this study, the mRNA 
expressions of all NHEJ factors were elevated in untreated 
fresh ALL. After the therapy and once patients achieve 
complete remission, overexpressed NHEJ mRNAs were 
downregulated. However, mRNA expressions of Ku80, 
DNA-PK, Artemis, XRCC4, and DNA ligase IV were 
raised again in relapsed cases [57]. In another study, only 
22% of adult ALL patients with high Ku80 expression 
achieved durable complete remission compared with 62% 
of low expresses, suggesting that Ku80 might contribute 
to poor prognoses in adults with ALL [58].

Polymorphisms in DNA repair genes may  modify 
protein function and cell’s capability to repair dam-
aged DNA. There seems to be a correlation between 
childhood leukemia and a specific polymorphism in the 
XRCC6 promoter (T-991C). Previous studies have shown 
that patients harboring TC genotypes are predisposed 
to a higher risk of childhood leukemia compared to 
those harboring TT wild-type genotypes [59]. Similarly, 
XRCC1 (Arg194Trp) polymorphism increases the risk of 
leukemia. However, the outcomes are different in vari-
ous studies. For instance, an increased risk of childhood 
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ALL was reported in an Egyptian population, especially 
in females [60]. In contrast, no association was found 
between XRCC1 polymorphisms and increased risk of 
ALL in a Mexican pediatric population [61]. In patients 
who developed therapy-related-acute promyelocytic 
leukemia (t-APL) following mitoxantrone treatment of 
multiple sclerosis (MS), a marked linkage with 1572G > A 
polymorphism in XRCC5 gene has been observed [62]. It 
is noteworthy that homozygous variants of BRCA2 and 
XRCC5 are associated with a greater risk of secondary 
acute promyelocytic leukemia (APL). Likewise, some pol-
ymorphisms in both XRCC5 and XRCC6 genes increased 
the risk of leukemia in a Chinese population [63].

AML
AML is the most common adult acute leukemia with var-
iable prognosis, based on the cytogenetic features. The 
occurrence rate of AML exhibits an increasing pattern, 
in which males and elderly people are the most prob-
able cases to develop AML. Regarding age among AML 
patients, a comparison of developing and developed 
countries betokened a higher mortality rate in the latter 
[64]. AML is classified as a heterogeneous clonal neo-
plasm in which different translocations and mutations 
are involved. Moreover, recurrent mutations in genes 
such as FLT3, TP53, CEBPA, NPM1, RUNX1, IDH1/2, 
DNMT3A, KMT2A, and ASXL1 exacerbate the bur-
den of the disease [65]. Given the increased incidence of 
AML, targeted and effective therapeutic approaches are 
required to lower the burden of this disease.

Genetic and epigenetic changes can trigger aberrant 
DNA damage response in AML cells and induce disease 
progression and resistance to chemotherapy [66, 67]. 
Many research studies have correlated recurrent chro-
mosomal translocations distinctive of AML with DNA 
repair defects. As mentioned earlier, NBS1 mutations 
expose the genome to a series of risks. A case study has 
reported that treatment of T-cell NHL in a pediatric NBS 
patient with DNA topoisomerase II inhibitors has led to 
a secondary MLL-positive acute monocytic leukemia. 
This finding suggests that dysfunction of NBS1 may con-
tribute to NHEJ-mediated MLL alterations, especially 
in patients treated with DNA-damaging agents [68]. In 
addition, younger age and topoisomerase II inhibitors 
seem to be implicated in predisposition to t-AML with 
MLL rearrangements [69]. Oncogenic K-RAS mutations 
also direct DSB repair in AML cells towards the error-
prone A-EJ pathway, and blockage of this pathway could 
be a potential target in K-RAS mutated cells [56, 70].

Although germline mutations in DSB repair genes 
are infrequent, transcriptional deregulation and com-
mon polymorphisms can predict the patient’s risk to 
DNA damage and, therefore, the susceptibility to AML 

development [66]. Compared to mobilized peripheral 
blood CD34 + progenitor cells from healthy donors, 
myeloid leukemia cells display elevated activities of error-
prone NHEJ and A-EJ pathways [71]. The overexpres-
sion of both PARP1 and Lig III markedly favors two or 
more simultaneous translocations in AML, whereas the 
patients with one isolated translocation showed over-
expression of Lig III alone [72]. AML patients bear-
ing MLL translocations have an intermediate-to-poor 
prognosis (5-year disease-free survival of 30%-60%), and 
their leukemia cells are often resistant to conventional 
chemotherapies. It was shown that PARP1 contributes to 
the maintenance of MLL-AF9 leukemias. Interestingly, 
PARP1 inhibition enhances chemosensitivity toward 
DSB-inducing agents such as cytarabine and doxorubicin 
in MLL-AF9–positive AML cells [73]. As stated earlier, 
in FLT3/ITD-positive AML cells, the c-Myc expression 
is elevated, which in turn contributes to the augmented 
expression of A-EJ factors, especially PARP1 and Lig 
III [74]. Strikingly, in FLT3/ITD + cell lines and murine 
FLT3/ITD bone marrow mononuclear cells, the down-
regulation of Ku70/80 was coupled with the upregula-
tion of DNA Lig IIIα. Given that FLT3/ITD expression 
resulted in augmented A-EJ repair, these DNA repair 
modules constitute appealing targets for developing 
novel therapeutic approaches in combination with FLT3 
inhibitors [75]. SIRT1, a protein directly deacetylating 
and activating Ku proteins, is another mediator, respon-
sible for the upregulation of C-NHEJ components [76]. 
Ten-Eleven Translocation-2 (TET2), a member of the 
TET family of enzymes, has key roles in epigenetic regu-
lation and the occurrence of hematopoietic diseases. It 
was shown that TET2 overexpression might account for 
the increased mRNA expression of Lig IV in the HL60 
cell line [77, 78]. Likewise, both Lig IV and DNA-PKcs 
are elevated in daunorubicin (DNR)-resistant HL60 cells 
[79]. Overall, the upregulation of DSB repair genes facili-
tates the escape of AML cells from the DNA damage 
response (DDR) anticancer barrier and causes chemo-
therapy resistance.

Various polymorphisms in DSB repair genes have 
been associated with an increased risk of AML develop-
ment or disease relapse. XRCC1 Arg399Gln and XRCC1 
Arg194Trp are the two polymorphic variants of XRCC1 
reported in AML patients, associated with downgraded 
DNA damage repair function [80, 81]. A higher frequency 
of both XRCC1 polymorphic variants was reported in 
AML patients. Additionally, both of the variants were 
also contributed to better overall survival, suggesting 
that defects in DNA repair elements could influence the 
predisposition of leukemic cells to chemotherapy treat-
ment [80]. However, Seedhouse et  al. observed no cor-
relation between the XRCC1 Arg194Trp genotype and 
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AML/t-AML pathogenesis, and instead, they recognized 
that XRCC1 Arg399Gln was protecting for t-AML [82]. 
A meta-analysis study reported no association between 
XRCC1 polymorphisms and the chance of AML develop-
ment [83].

CML
The leukemic clone of CML originates from a hematopoi-
etic stem cell (HSC) by gaining the chromosomal translo-
cation t(9;22)(q34;q11) containing the BCR-ABL1 fusion 
gene. CML is characterized by a primary chronic phase 
that progresses to an accelerated phase and a lethal blast 
phase [84]. Throughout this course of progress, the acti-
vated BCR-ABL1 tyrosine kinase (TK) stimulates various 
oncogenic pathways (e.g., PI3K/AKT, JAK/STAT), driv-
ing malignant differentiation [85]. Therefore, BCR-ABL1 
kinase-mediated genetic instability apparently plays a key 
role in the blastic transformation of CML [86]. SIRT1, an 
overexpressed protein in CML patients, which can reg-
ulate the expression of Ku70 through NHEJ, has a close 
correlation with the acquisition of BCR-ABL mutations 
[87]. It was shown that the mechanism involved in the 
t(9:22) translocation resulting in BCR-ABL1 is frequently 
due to the SSA and NHEJ [88]. Also, BCR-ABL induces 
reactive oxygen species (ROS) formation. Subsequently, 
these species destabilize the genome through unfaithful 
HR and NHEJ-induced DSBs in proliferating cells [89]. 
Unfaithful NHEJ-mediated BCR-ABL repair, character-
ized by the decreased levels of Lig IV and Artemis, but 
not DNA-PKcs, is compensated by the upregulation of 
Lig III and WRN proteins [90]. Moreover, by overexpres-
sion of c-Myc in leukemic cells, BCR-ABL1 increases the 
expression of A-EJ factors, including Lig III and PARP1 
[74]. K562, a BCR-ABL-harboring cell, shows an increase 
in WRN and Lig III at the protein level. This overexpres-
sion has also been observed in P210MO7e cells, as well as 
CML patients [91]. Loss of ATM function (even mono-
allelic loss) was also accelerating the blast crisis in BCR-
ABL-expressing CML cells [92]. Overall, the Philadelphia 
chromosome arises from DSB misrepair through ineffec-
tive NHEJ [91, 93].

Lymphoma
Lymphomas are fundamentally divided into two main 
groups: Hodgkin lymphoma (HL) and NHL. B-cell NHL 
frequently exhibits recurrent reciprocal translocations, 
which commonly involve a juxtaposition of immuno-
globulin heavy chain (IgH) loci by a proto-oncogene 
(e.g., BCL2 and BCL6) [94]. Likewise, the development 
of HL is partially followed by adverse alleles in base exci-
sion repair (BER) and DSBR genes, such as XRCC1, the 
main factor of MMEJ [95]. Also, the rapid development 
of lymphoma in Lig  IV−/−p53−/−,  XRCC4−/−p53−/−, 

 Ku80−/−p53−/−, and DNA-PKcs−/−p53−/− mice supports 
the notion that lymphomagenesis is increased by NHEJ 
loss, especially if the p53 activity is impaired [96].

Oncogenes sometimes have a direct impact on DSBR 
or may be indirectly involved in DSBR by affecting the 
progression of the cell cycle and the production of ROS. 
Oncogenic expression of RAS and suppression of ATR 
synergistically increase genomic instability in AML 
caused by MLL-ENL [97], as well as c-Myc-driven lym-
phoma [98]. Myc plays a key role in increasing the A-EJ 
activity in TK-activated leukemia through transcriptional 
and post-transcriptional changes in Lig III and PARP1 
[99]. It is known that c-Myc exerts two paradoxical effects 
on cancer. First, it induces DDR to recognize and repair 
the damage through ATM/CHK2, leading to tumor sup-
pression. Second, it modulates replication stress through 
the ATR/CHK1 pathway and protects cancer cell viability 
[100].

In diffuse large B-cell lymphoma (DLBCL) cells, the 
expression of key MMEJ proteins, including Lig I, Lig 
III, PARP1, CtIP, and MRE11 elevates, while the level 
of C-NHEJ factors decreases [101]. SUDHL8, a cell line 
driven from a DLBCL patient, showed the increased 
expression of XRCC6 by four to five folds and the 
reduced expression of MRE11 by two folds, compared to 
benign reactive lymphocytes. This pattern not only can 
be seen in DLBCL but is also consistently observed in 
other mature B cell lymphomas, including follicular lym-
phoma (FL), mantle cell lymphoma (MCL), and marginal 
zone lymphoma (MZL) [102]. Epstein–Barr virus (EBV)-
driven NK/T lymphoma also has a profile of downregu-
lated Cernunnos (XLF) [103].

Mutations in DDR genes, including Artemis, DNA-
PKcs, Ku70, Ku80, CHK2, and PARP1, have also been 
reported in DLBCL [104]. Through inactivation of ARF 
and p53, two potent tumor suppressor proteins, mutated 
ATM contributes to tumorigenesis [105]. Besides quan-
titative mutations, qualitative or functional mutations 
are also observed in NHEJ factors, including Artemis, 
DNA-PKcs, XRCC5/Ku80, and XRCC6/Ku70, espe-
cially in DLBCL with translocations [104]. MCL, another 
NHL, refers to an aggressive hematologic malignancy 
with a poor prognosis. Statistical analysis revealed that 
26% of MCL cases had  p53  mutation/deletion, 56% 
showed  ATM  alterations, and 10% showed both altera-
tions. The p53 mutation status is correlated with the 
extent of cell response to PARP and ATM targeting [106, 
107]. Although ATM alteration is mostly observed in 
B-CLL, MCL, and T-PLL, it has also been infrequently 
identified in DLBCL, FL, and rarely, adult ALL [108]. 
Also, a particular subtype of MCL, leukemic non-nodal 
MCL, is associated with the deletion of PARP1 [109]. 
Finally, activation-induced cytidine deaminase (AID), 
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which is responsible for DSB generation in CSR, plays an 
important role in the generation of Ig-partnered chro-
mosome translocations in many B cell lymphomas and 
leukemias. Also, AID can be a source of secondary muta-
tions in some types of human cancers, such as ALL and 
CML, thereby contributing to tumor progression [110].

The presence of T-nucleotides at t(11;14)/CCND1-IgH 
junction in MCL suggests the involvement of an aber-
rant V(D)J recombination and NHEJ or A-EJ repair path-
ways in MCL. A similar finding has also been reported at 
t(14;18)/IgH-MALT1 in mucosa-associated lymphoid tis-
sue (MALT) lymphoma and at t(14;18)/IGH-BCL2 in FL 
[111]. Correspondingly, t(11;18)(q21;q21) translocation 
of MALT lymphoma may be the consequence of aberrant 
NHEJ following DSB [112].

MDS
Several studies have shown that MDS cases are at signifi-
cance risk of transforming into AML. Various predicting 
factors, such as mutations in NRAS, KRAS, PTPN11, 
FLT3-ITD, NPM1, WT1, and IDH2, as well as monosomy 
7, complex karyotype, and loss of 17p have been found 
to be related to MDS transformation into AML [113, 
114]. MDS refers to HSC diseases and is characterized by 
an elevated NHEJ activity [115]. De Laval et  al. showed 
that upon exposure to ionizing radiation, TPO pro-
motes C-NHEJ in stem and progenitor cell populations 
through binding to its receptor (MPL), thereby initiat-
ing MDS; however, this TPO/DNA-PK-mediated NHEJ 
repair pathway in HSC may be defective [116, 117]. It was 
shown that downregulation of some NHEJ factors, such 
as Lig IV, Ku70, and Ku80, are involved in primary MDS 
[118]. Besides, the expression level of PARP1, an A-EJ 
factor, has been newly approved as a prognostic factor 
of MDS. PARP1 mRNA expression was shown to be the 
only biomarker of response to hypomethylating agents 
(HMAs) 5-azacytidine in patients with MDS. Patients 
with higher PARP1 mRNA levels had a better response to 
5-azacytidine and longer median survival after treatment 
initiation, suggesting that PARP1 can potentially serve as 
a guide to therapeutic decisions [119]. However, it exhib-
its an inverse correlation with prognosis in AML [120]. 
Other factors, such as ATM, XRCC6, and Lig IV, are also 
overexpressed in MDS patients as a consequence of some 
functional polymorphisms in their germlines [121, 122].

MDS patients, especially patients with late refrac-
tory anemia with excess blasts (RAEB-1), exhibit a high 
expression of phosphorylated ATM, phosphorylated 
Chk2, and γH2AX, according to the immunostaining 
analysis [123, 124]. These patients and other high-risk 
MDS patients have mutations in CtIP and MRE11, which 
lead to microsatellite instability [125]. These findings not 
only disclose the role of genomic instability in MDS, but 

also propose some biomarkers for MDS, as they remark-
ably accord with γH2AX. The γH2AX level is generally 
considered a biomarker of DSB and is especially altered 
in therapy-related MDS (t-MDS). It is known that t-MDS 
is caused by DSB inducers, such as etoposide, and NHEJ 
acts as the main route for the repair of etoposide-induced 
DSB [126]. Collectively, γH2AX and 53BP1 localiza-
tion in MDS are considered useful biomarkers of the 
increased level of NHEJ [123].

MM
MM is a B cell neoplasm of the bone marrow character-
ized by various clinical presentations, including anemia, 
bone lesions, infection, hypercalcemia, and renal insuf-
ficiency [127]. Mutations in ATM, ATR, MRN complex, 
XRCC3, XRCC4, and BRCA1, as well as DDR ubiquitin 
ligase, RNF168, are continuously reported in MM [128, 
129]. Both NHEJ and HR mechanisms have shown to be 
aberrantly upregulated in myeloma cells. In this regard, 
Herrero et  al. observed the upregulation of DNA-PKcs, 
Artemis, and XRCC4 in MM. They also reported an 
upregulation of the A-EJ protein DNA ligase IIIα in 
plasma cells isolated from patients with MM [130]. Com-
pared to normal B cells, a compelling body of evidence 
shows that the expression of XRCC6 is downregulated in 
MM and other lymphoma cells. However, unlike XRCC6, 
there is an increase in the expression level of XRCC4 in 
MM patients, compared to mature B cell lymphomas, 
such as MCL, FCL, and DLBCL [102].

Moreover, the increased expression of XRCC4 and 
Lig IV has been observed in a melphalan-resistant cell 
line [131]. There is also an elevation in the expression 
of XRCC5 and Artemis genes in MM cells, compared 
to monoclonal gammopathy of unknown significance 
(MGUS) plasma cells [132]. The expression of other 
components, such as ERCC1, has recently attracted the 
researchers’ attention, considering its association with 
sensitivity to melphalan and cisplatin. Additionally, over-
activation of A-EJ components, especially Lig IIIa, has 
been frequently observed in MM cells [133]. Despite 
previous reports, knowledge in this field is still limited, 
and further studies are required. Table 1 summarizes the 
NHEJ alterations in hematologic malignancies.

Treatment of hematologic malignancies by targeting 
the components of DSBR:
Malignant cells, which are defective in one pathway, are 
dependent on other pathways; accordingly, many studies 
have applied a targeting strategy against these pathways. 
Several studies revealed that repair knockout mouse 
models display developmental deficiencies, suggesting 
that repair proteins have numerous functions. In this 
regard, it should be noticed that the chemical inhibition 
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Table 1 Alterations of NHEJ (classical or alternative) level in hematologic malignancies

Type of malignancy Subtype of malignancy Involved factor
↑ = Increase
↓ = Decrease

Highlights Ref

Leukemia FLT3/ITD-positive AML ↓ Ku70/80,
↑ PARP-1 and DNA Lig IIIα

Disease progression and Chemoresist-
ance

[75]

APL Homozygous variants of BRCA2 and 
XRCC5

Risk of secondary APL development [62]

MLL-rearranged AML ↑ PARP1 Maintenance of MLL-AF9 in Leukemia [73]

Coexistence of NBS1 and MLL muta-
tions

Increase chance of secondary 
malignancy after treatment with DNA 
topoisomerase II inhibitors

[68]

K562/DNR ↑ DNA-PKcs and Lig IV DNR resistant
More aggressive MDR phenotype

[79]

CML ↓ DNA-PK, Lig IV, and Artemis
↑ Lig III and WRN

Progression to blast crisis [91, 134]

K562 cells (BCR-ABL+) ↑ WRN and Lig III
↓ Artemis

Increased repair infidelity and survival 
of leukemic cells

[91, 93]

ALL Mutations in LIG IV, ATM, and NBS1 Development of disease [50, 51, 135]

↑ mRNA of Ku70, Ku80, DNA-PK, Arte-
mis, Lig IV XRCC4, and Cernunnos
↑ 53BP1/γH2AX foci

Unfaithful DSBR and increased genome 
instability
Causing BCR-ABL and TEL-AML fusions

[57, 70, 136]

Polymorphisms in XRCC6 and XRCC1 Ethnic-dependent increased risk of ALL [59, 60, 137]

KRAS-mutant T-ALL ↑ DNA Lig IIIα, PARP1, and XRCC1 Hyperactivation of more error-prone 
pathways (A-EJs)

[138]

T-ALL ↑ PI3K/mTOR pathway (ATM-ATR-DNA-
PK)

Poor prognosis and failure of treatment [139]

CLL ↑ MMEJ factor and DNA-PK Poor survival of patients [6, 42]

Mutation or deletion of ATM Chemoresistance [140]

↑ SSA Telomere fusion [45]

Lymphoma C-MYC-driven lymphoma ↑ ATM/CHK2
↑ ATR/CHK1

Paradoxical effects, including tumor 
suppression and protection of the 
viability of cancer cells

[100]

Mature B cell lymphoma (FL, 
MCL, DLBCL, MALT, and MZL)

↑ Lig I, Lig III, PARP1, CtIP, and MRE11
↓ C-NHEJ functional mutations in Arte-
mis, DNA-PKcs, XRCC5, and XRCC6

High level of DSB and aberrant DSBR [101, 102]

DLBCL Mutations in ATM Inactivation of ARF as a tumor suppres-
sor gene and P53

[141]

Leukemic non-nodal MCL Deletion of PARP1 Unfavourable outcome [109]

EBV-driven NK/T lymphoma ↓ Cernunnos (XLF) Genomic instability [103]

HL Adverse alleles of DSBR genes, includ-
ing XRCC1

Genomic chaos
Dicentric chromosomes resulting from 
telomere dysfunction and aberrant 
NHEJ

[142, 143]

MDS MDS ↑ Defective C-NHEJ
↑ A-EJ
↓ Lig IV, Ku70, and Ku80

A contingently ineffective increase in 
C-NHEJ

[118, 144]

MM MM ↑ DNA-PKcs, Artemis, XRCC4, and Lig 
IIIa
↓ XRCC6
↑ Lig IV and XRCC4
Mutations in ATM, ATR, MRN complex, 
XRCC3, and XRCC4

Ineffective increase of C-NHEJ pathway [77, 128–130]

ERCC1 Prediction of response to melphalan 
and cisplatin

[133]
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of repair protein components presents a totally different 
scenario compared to gene knockouts. Chemical inhibi-
tions are applied in shorter durations and localized man-
ner [145]. Here, we conducted an elaborated review of 
different inhibitors against NHEJ, which can be used as 
a treatment strategy for hematologic malignancies. Also, 
a thorough status of clinical trials of these inhibitors for 
blood malignancies has been listed in Table 2.

PARP1 inhibition
A-EJs are considered the main cause of translocation. 
PARP1 by initiating A-EJ seems to be associated with 
chromosomal translocations. PARP1 inhibition can hin-
der both ionizing radiation (IR)-generated and topoi-
somerase II inhibitor-generated translocations [146]. 
Since Pol θ depletion can increase sensitivity to PARP 
inhibition, it can serve as a biomarker, indicating the 
extent of cell response to PARP1 inhibitors [147, 148]. 
Both quiescent and proliferating leukemia cells are sensi-
tive to PARP1 inhibitors. Therefore, leukemia stem cells 
and progenitor cells involved in leukemia can be thera-
peutic targets [149].

The combination of FLT3 and PARP1 inhibitors elimi-
nates both quiescent and proliferating FLT3-ITD-pos-
itive AML cells [150]. Response to a PARP inhibitor, 
olaparib (AZD2281, MK-7339), has been evaluated in 
MCL cells deficient in both ATM and p53 and the cells 
lacking ATM function alone. The results showed that 
ATM- and p53-deficient cells are more sensitive than 
ATM-deficient cells to olaparib, indicating that p53 regu-
lates the response of ATM‐deficient MCL cells to Olapa-
rib [106]. In contrast, PARP1 inhibition by AG14361 in 
MCL cell lines shows potent cytotoxicity in combination 
with topotecan in a p53-independent manner [151].

Tobin et  al. demonstrated that the combination of 
PARP1 with Lig III inhibitors could reduce the survival 
of CML cells, with the effect being greater in imatinib-
resistant CML cells, which express higher levels of 
PARP1 and Lig III [152]. Moreover, given the remarkable 
effects of PARP1 inhibitors on the treatment of tumors 
with decreased levels of BRCA [153], it can be suggested 
that these inhibitors are beneficial in hematologic malig-
nancies with a reduced BRCA profile, such as CML 
(Fig. 4) [154].

While some adult T-cell leukemia (ATL) cells are sensi-
tive to PARP inhibitor PJ-34 due to caspase 3-dependent 
apoptosis, the MT-2 cells (an ATL cell line) are resist-
ant. Augmented expression of BRCA1 or p53-binding 
protein 1 (P53BP1) has been reported to associate with 
resistance to PARP inhibitors. However, expression lev-
els of p53BP1 or BRCA1 were not influenced in HTLV-I-
transformed MT-2 before or after PJ-34 treatment [155]. 
PJ-34 has also been shown to be effective in suppressing 

the proliferation of HL60, MOLT4, and K562 cell lines, 
but not U937 cells when used in combination with a his-
tone deacetylase inhibitor, vorinostat [156]. The PARP 
inhibitor also induces synthetic lethality in AML [157]. 
In a subgroup of AML patients, including those with 
AML1-ETO translocation, PARP1 inhibitors may be 
applicable. As mentioned earlier, maintenance of MLL-
rearranged AML cells can be a result of PARP1 function. 
Therefore, PARP1 inhibition by olaparib and talazoparib 
(BMN-673) in MLL-AF9 leukemia cells increases the 
number of DSBs, the rate of cell death, and treatment 
efficacy in combination with conventional therapies [73]. 
The results of an ex  vivo study showed that talazoparib 
induced a significant inhibitory effect on the proliferation 
of CLL cells, regardless of the ATM level [158].

Evidence suggests that ATM-deficient tumors are more 
sensitive to PARP inhibitors. Likewise, ATM-defective 
CLL cells have a hypersensitive pattern for PARP inhibi-
tors compared to the ATM-proficient counterparts [159]. 
However, according to some conflicting results, since 
acetylation inhibits DNA repair factors, and hypometh-
ylation is in favor of hyperacetylation, a combination 
of a hypomethylation agent with PARP inhibitors can 
induce apoptosis in human leukemia and lymphoma cells 
through acetylation of Ku70, Ku80, PARP1, ERCC1, and 
XPF [160]. Also, veliparib (ABT-888) is a PARP inhibitor 
with favorable effects against advanced lymphoma and 
MM when used in combination with bendamustine and 
rituximab [161].

The results of an in vitro study demonstrated that the 
combination of ABT-888 with a CDK inhibitor, dinaci-
clib, is effective in the induction of cell death in MM cells; 
however, this combined treatment did not exert any cyto-
toxic effects against normal CD19 + B cells [162]. Phase 
I trial of the PARP inhibitor veliparib and metronomic 
cyclophosphamide in patients with low-grade lymphoma 
showed promising results [163]. Several trials are test-
ing the effectiveness of veliparib in combination with 
chemotherapeutic drugs, including Phase I trial of ABT-
888 with cyclophosphamide and doxorubicin in NHL 
[ClinicalTrials.gov Identifier:  NCT00740805] and phase 
I trial of ABT-888 with bortezomib and dexamethasone 
in patients with relapsed refractory myeloma in [Clinical-
Trials.gov Identifier: NCT01495351]. On the other hand, 
a promising  response rate  to  veliparib in combination 
with topotecan and carboplatin was achieved in patients 
with aggressive myeloproliferative disorders [164].

Niraparib (MK4827), another PARP1 and PARP2 
inhibitor, is in the clinical trial phase for use in mono-
therapy against CLL and T-PLL [ClinicalTrials.gov 
Identifier: NCT00749502]. Since MCL is an aggressive 
malignancy, efforts have been made to find a suitable 
drug against this disease. CEP-9722 (paralog cep-8983) is 
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Table 2 Overview on clinical trials of hematological malignancies treated with DNA repair inhibitors

Target Conditions Compound Phases Participants Status NCT Number

PAPR Myelodysplastic Syndrome and Acute Myeloid 
Leukemia Related to PARP Inhibitors (MyeloRIB)

PARP Inhibitors – 178 Completed NCT04326023

Acute Lymphoblastic Leukemia
Acute Myeloid Leukemia

Veliparib (ABT-888)
Temozolomide

Phase 1 66 Active, not recruiting NCT01139970

Acute Myeloid Leukemia
Recurrent Myelodysplastic Syndrome

Olaparib Phase 2 94 Recruiting NCT03953898

Leukemia
Lymphoma

veliparib Phase 1 23 Completed NCT00387608

Chronic Lymphocytic Leukemia
T-cell-prolymphocytic Leukemia

Niraparib (MK4827) Phase 1 113 Completed NCT00749502

Acute Myeloid Leukemia
Myelodysplastic Syndrome
Chronic Lymphocytic Leukemia
Mantle Cell Lymphoma

BMN-673 (talazoparib) Phase 1 33 Completed NCT01399840

Leukemia BMN 673 Phase 1 12 Recruiting NCT03974217

Acute Myeloid Leukemia BMN 673
Decitabine

Phase 1
Phase 2

25 Active, not recruiting NCT02878785

B-cell Malignancy, Low-grade E7449 (dual PARP1/2 and 
TNKS1/2 inhibitor) alone
E7449 plus TMZ
E7449 plus carboplatin and 
paclitaxel

Phase 1
Phase 2

41 Completed NCT01618136

Adult Acute Megakaryoblastic Leukemia
Adult Acute Myeloid Leukemia
Chronic Myelomonocytic Leukemia
Essential Thrombocythemia
Myelodysplastic Syndrome
Philadelphia Chromosome Negative, BCR-ABL1 
Positive Chronic Myelogenous Leukemia
Polycythemia Vera
Recurrent Adult Acute Lymphoblastic Leuke-
mia

Veliparib
Topotecan-Hydrochloride
Carboplatin

Phase 1 12 Active, not recruiting NCT00588991

Acute Myeloid Leukemia
Atypical Chronic Myeloid Leukemia, BCR-ABL1 
Negative|
Chronic Myelomonocytic Leukemia|
Essential Thrombocythemia|
Myelodysplastic/Myeloproliferative Neoplasm|
Myelofibrosis|
Polycythemia Vera|

Veliparib
Topotecan-Hydrochloride
Carboplatin

Phase 2 60 Suspended NCT03289910

Leukemia|
Lymphoma|
Waldenstrom Macroglobulinemia|

Veliparib
Rituximab
Bendamustine-
Hydrochloride

Phase 1
Phase 2

43 Completed NCT01326702

Mantle Cell Lymphoma CEP-9722
Gemcitabine
Cisplatin

Phase 1 24 Completed NCT01345357



Page 13 of 26Valikhani et al. Exp Hematol Oncol           (2021) 10:51  

Table 2 (continued)

Target Conditions Compound Phases Participants Status NCT Number

DNA-PK Chronic Lymphocytic Leukemia CC-115 Phase 1 118 Completed NCT01353625

Refractory/Recurrent Acute Myeloid Leukemia MSC2490484A (M3814)
Mitoxantrone
Etoposide
Cytarabine

Phase 1 48 Recruiting NCT03983824

Chronic Lymphocytic Leukemia MSC2490484A (M3814) Phase 1 31 Completed NCT02316197

Lymphoma, Non-Hodgkin CC-122 (Avadomide) Phase 1 15 Active, not recruiting NCT02509039

Large B-Cell, Diffuse Lymphoma, Non-Hodgkin CC-122
Obinutuzumab

Phase 1 75 Active, not recruiting NCT02417285

Diffuse B-Cell Lymphoma CC-122
RCHOP

Phase 1 35 Completed NCT03283202

Leukemia, Lymphocytic, Chronic, B-Cell CC-122
Ibrutinib
Obinutuzumab

Phase 1
Phase 2

47 Completed NCT02406742

Multiple Myeloma
Lymphoma, Large B-Cell, Diffuse

CC-122 Phase 1 271 Active, not recruiting NCT01421524

Lymphoma, Large B-Cell, Diffuse CC-122
CC-223
Rituximab
CC-292

Phase 1 174 Active, not recruiting NCT02031419

Lymphoma, Non-Hodgkin
Lymphoma, Large B-Cell, Diffuse
Lymphoma, Follicular

CC-122
JCAR017
Durvalumab
Ibrutinib
CC-220
Relatlimab
Nivolumab
CC-99282

Phase 1
Phase 2

77 Recruiting NCT03310619

Chronic Lymphoproliferative Diseases GRN163L (Imetelstat) Phase 1 48 Completed NCT00124189

Multiple Myeloma GRN163L Phase 1 40 Completed NCT00718601

Multiple Myeloma GRN163L Phase 1 20 Completed NCT00594126

Primary Myelofibrosis
Secondary Myelofibrosis
Myeloid Malignancies

GRN163L Phase 2 81 Completed NCT01731951

Myelofibrosis (JAK-Inhibitor Treatment resist-
ance)

GRN163L
Best Available Therapy (BAT)

Phase 3 320 Recruiting NCT04576156

Myelodysplastic Syndromes GRN163L
Placebo

Phase 2
Phase 3

225 Recruiting NCT02598661

Multiple Myeloma GRN163L
lenalidomide

Phase 2 13 Completed NCT01242930

Essential Thrombocythemia|
Polycythemia Vera

GRN163L Phase 2 20 Completed NCT01243073
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Table 2 (continued)

Target Conditions Compound Phases Participants Status NCT Number

ATR Lymphomas BAY1895344 Phase 1 241 Recruiting NCT03188965

11q-deleted Relapsed/Refractory Chronic 
Lymphocytic Leukaemia (CLL)|
Prolymphocytic Leukaemia (PLL)|
B Cell Lymphomas

AZD6738 (Ceralasertib) Phase 1 2 Completed NCT01955668

Leukemia|
Myelodysplastic Syndrome
CMML

AZD6738 Phase 1 52 Recruiting NCT03770429

Chronic Lymphocytic Leukemia AZD6738
Acalabrutinib

Phase 1
Phase 2

12 Active, not recruiting NCT03328273

Cancers AZD6738
Gemcitabine

Phase 1 55 Recruiting NCT03669601

Relapsed/refractory aggressive Non-Hodgkin’s 
Lymphoma

AZD6738
AZD9150
Acalabrutinib
Hu5F9-G4
Rituximab
AZD5153

Phase 1 30 Completed NCT03527147

Fig. 4 Cells with normal BRCA1/2 or with one normal allele can compensate for double-strand break repair in the presence of PARP inhibitors. On 
the other hand, using PARP inhibitors in tumor cells with double-negative BRCA1/2 accumulate DSB, which leads to cell death
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also a PARP inhibitor, which is currently in phase I clini-
cal trial for the treatment of MCL in combination with 
gemcitabine and cisplatin [ClinicalTrials.gov Identifier: 
NCT01345357]. Talazoparib (BMN-673) inhibits both 
PARP1 and PARP2 [165]. The effectiveness of talazoparib 
for the treatment of patients with AML and MDS that 
have a mutation in the cohesin complex is under inves-
tigation in phase I clinical trial [ClinicalTrials.gov Iden-
tifier: NCT03974217]. Also, preclinical studies on AML 
mouse models and primary patient samples revealed that 
the combination of talazoparib with DNA methyltrans-
ferase (DNMT) inhibitor decitabine resulted in enhanced 
cytotoxicity in AML cells [166].

As mentioned earlier, RNA interference is an interlink-
ing issue in DDR. The overexpression of MALAT1, a long 
non-coding RNA, plays an important role in DNA repair 
and cell death in MM cells, especially through interaction 
with PARP1. MALAT1 degradation by RNase H in MM 
cells results in poly-ADP-ribosylation of nuclear proteins 
and further stimulation of apoptotic pathways. Consid-
ering the anti-cancer effects of anti-MALAT1 therapy 
in MM cell lines, xenograft murine models and in  vivo 
models have suggested this agent as a novel therapeutic 
option against MM [167]. Finally, the novel PARP1 inhib-
itor, P10, has shown significant effects on the human 
leukemic cell line, Nalm6, where PARP1 and PARP2 are 
highly overexpressed [168]. Table  3 summarizes PARP1 
targeting in hematologic malignancies.

Ku inhibition
Due to the central position of Ku70/80 dimer in NHEJ 
repair pathways, targeting them seems rational for dis-
rupting the whole pathway. Considering the hyperactiva-
tion of the NHEJ pathway in HTLV-1 transformed cells, it 
looks that targeting Ku70 in these cells can be a suitable 
therapeutic approach [169]. Since SIRT1 promotes DSBR 
by deacetylating Ku70 in CML cells, the NHEJ pathway 
may be impaired through inhibition of SIRT1, which 
increases Ku70 acetylation [76]. Currently, no small mol-
ecule inhibitors against Ku proteins have been developed. 
However, depletion  of  Ku70  protein by  RNAi  technol-
ogy effectively sensitized the mammary cells to radiation 
[170–172].

Given the necessity of chromatin remodeling in Ku 
recruitment, it seems that targeting this process inhibits 
NHEJ and leads to radio sensitization [173]. The use of 
HDAC inhibitors, as chromatin remodeling inhibitors, 
has been approved for patients with refractory cutaneous 
T-cell lymphoma [174, 175]. In Jurkat T cell lymphoma 
cells, silencing of Ku70 results in DNA damage accumu-
lation, DDR impairment, reduction of cell proliferation, 
and induction of cell death; therefore, Ku70 can be a 
promising target in ATL cells [169].

DNA‑PK inhibition
Inhibition of DNA-PK seems an appealing approach to 
subside resistance to therapeutically induced DNA DSBs, 
and for this reason, relatively extensive research has been 
done in this area. Inhibition of DNA-dependent pro-
tein kinases enhances ultrasound-induced apoptosis in 
human leukemia cell lines U937 and Molt-4, regardless 
of p53 phenotype, suggesting DNA-PK as a promising 
target for ultrasound-aided therapy [176]. Critical signal-
ing pathways in CLL are hampered by dual mTOR/DNA-
PK inhibition, reducing cell survival and proliferation of 
chemoresistant CLL cells. CC-115, a dual inhibitor of 
DNA-PK and mTOR, inhibits proliferation and induces 
caspase-dependent apoptosis in primary CLL cells. Also, 
the clinical efficacy of CC-115 was demonstrated in 
relapsed/refractory CLL/small lymphocytic lymphoma 
patients harboring ATM deletions/mutations [177]. Also, 
the effect of CC-122, a DNA-PK inhibitor, in NHL and 
MM is under investigation, and favorable results have 
been reported in phase I clinical trial [ClinicalTrials.gov 
Identifier: NCT01421524] [178].

Deriano et  al. demonstrated that NHEJ DSB repair is 
overactivated in human B-CLL cells in the presence of 
irradiation-induced DNA damage. This allows the escape 
of B-CLL cells from apoptosis. Moreover, they showed 
that NU7026, a DNA-PK inhibitor, can sensitize resistant 
B-CLL cells to irradiation-induced apoptosis [42]. The 
growth of MOLT-4 leukemia cells has been reported to 
be hampered by combination therapy, using NU7026 and 
radiation [179]. In addition, NU7026 promotes the cyto-
toxicity of topoisomerase II inhibitors in K562 leukemia 
cells [180]. The promoting effect of DNA-PK inhibitors 
on radiation and topoisomerase II inhibitors has been 
demonstrated in several hematologic cancers, such as 
CLL, ALL, CML, AML, APL, and adult T-cell leukemia/
lymphoma [181]. Given the relationship between ATM 
deficiency and sensitivity to DNA-PKcs inhibitors, the 
effects of these inhibitors on lymphoma have been inves-
tigated [182].

Bleomycin and etoposide are DSB-inducing agents 
used against several cancers, especially HL and NHL. 
Also, IC86621, a selective DNA PK inhibitor, exerts sig-
nificant synergistic effects when used along with bleomy-
cin and etoposide [183]. Moreover, vanillin as a naturally 
occurring food component has been shown to have anti-
tumor effects, as it can sensitize lymphoblastic TK6 cells 
to cisplatin through inhibiting the activity of DNA-PK, a 
crucial NHEJ component [184]. M3814 (MSC2490484A) 
is another selective DNA-PK inhibitor, which can effec-
tively induce cell death in AML cells by increasing 
p53-dependent apoptosis [185]. Moreover, the combina-
tion of M3814 with Mylotarg (the first AML-targeting 
drug from a new generation of antibody drug conjugate 
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therapies) in two AML xenograft models, MV4-11 and 
HL-60, revealed increased efficacy and survival [186]. 
It should be noted that M3814 is in phase I of a clinical 
trial for the treatment of CLL patients [ClinicalTrials.gov 
Identifier: NCT02316197].

Wortmannin is a PI3-kinase inhibitor that also inhib-
its DNA-PK and thereby impedes DSBs repair [187]. It 
has been shown that DNA-PK inhibition by wortmannin 
sensitizes multidrug-resistant (MDR) human leukemia 
CEM cells (human T-ALL cell line) to chemotherapeutic 
agents [188]. Akt, a well-known component of the PI3-
kinase/Akt/mTOR signaling network, is also a therapeu-
tic target in acute myelogenous leukemia patients and 
seems to play a role in the phosphorylation of DNA-PK 

and improving the efficiency of repair [189]. Accordingly, 
it has been suggested that AKT inhibitors can suppress 
the phosphorylation of DNA-PK and its activity. Thus, 
SF-1126, a peptidic pro-drug inhibitor of pan-PI3K/
mTORC, has shown satisfactory results against CLL, 
MM, and NHL in phase I trials [190]. Moreover, PI3K/
mTOR overactivation is the cause of relapse in a subtype 
of pediatric T-ALL; therefore, PKI-587, a dual specific-
ity PI3K/mTOR inhibitor, can be used to inhibit T-ALL 
cell growth and delay tumor formation [139]. Another 
novel strategy is to use Dbait (DNA strand  break bait) 
molecules, which mimic DSBs and trap DNA-PK and 
PARP. Thereby, by generating a false DNA damage sig-
nal, they inhibit the recruitment of key repair proteins 

Table 3 Pre-clinical studies on PARP1 and DNA-PK inhibitors against hematologic malignancies

Target Inhibitors Type of malignancy Highlights Ref

PARP1 Olaparib (AZD2281, MK-7339) MCL and MLL-AF9 rearranged Leukemia cells Higher sensitivity of double-deficient ATM/p53 
MCL cells, compared to mono-deficient MCL 
cells in ATM

[106]

AG14361 MCL cells Enhanced topotecan-induced apoptosis inde-
pendent of TP53 status

[151]

PJ-34 Patient-derived ATLL cells p53-mediated caspase 3-dependent apoptosis [155]

HL60, MOLT4, and K562 human leukemia cell 
lines

Synergistic effect in combination with histone 
deacetylase inhibitor, vorinostat

[156]

BMN-673 (talazoparib) Patient-derived CLL samples Inhibited the proliferation of CLL cells indepen-
dently of p53/ATM function

[158]

Primary AML samples AML mouse models Enhanced apoptosis in combination with 
decitabine

[166]

Veliparib (ABT-888) Patients with relapsed/refractory lymphoma 
and MM

Enhances the cytotoxicity of bendamustine and 
rituximab

[161]

MM cells
MM xenografts in SCID mice

Combined treatment with CDK inhibitor dinaci-
clib resulted in synthetic lethality of MM cells

[162]

Acute leukemia, high-risk MPNs Promising results in Combined treatment with 
topotecan and carboplatin in phase I study

[164]

P10 Human leukemic cell line Nalm6 Induction of G2/M arrest and accumulation of 
DNA damage

[168]

DNA-PK Wortmannin Human leukemia cells Sonolisib (PX-866) is Irreversible wortman-
nin analogue
PWT-458 is PEGylated derivative of wortmannin

[193, 194]

NU7026 Primary CLL cells Synergistic effects with chlorambucil [195]

CC-115 CLL, NHL, and MM Phase I clinical trial
A dual inhibitor of DNA-PK and mTOR

[177, 196]

IC86621 NHL and HL Synergistic effects with bleomycin and etopo-
side

[183]

CC-122 (Avadomide) NHL and MM Phase I clinical trial [178, 197]

NU7441 Pre-B ALL cells Increase of chemosensitivity to doxorubicin [198]

OK-1035 L5178Y cells (lymphoma cell line) Preclinical testing [199]

Dbait (AsiDNA or DT01) Lymphoma and leukemia cells 32 bp double-stranded DNA fragment that 
mimics DNA lesion and traps DNA repair 
enzymes
A dual inhibitor of DNA-PK and PARP1

[191]

GRN163L (Imetelstat) CLL Imetelstat sensitizes primary CLL lymphocytes 
to fludarabine
A dual inhibitor of DNA-PK and telomerase

[192]
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at the damage site and ultimately prevent the repair of 
DNA damage. AsiDNA, a cholesterol form of Dbait, 
exerts synergistic effects in combination with etoposide, 
cyclophosphamide, and radiotherapy against lymphoma 
and leukemia cell lines without increasing their toxicity 
to normal blood cells [191]. GRN163L (Imetelstat; GRN), 
a 13-mer oligonucleotide complementary to the template 
of the TER component of telomerase, is a potent telom-
erase inhibitor. However, it also inhibits DNA-PK activity 
and repair of DNA damage. In a recent study by Shawi 
et al., imetelstat was shown to decrease the fludarabine-
induced DNA-PK phosphorylation in primary CLL cells 
[192]. Table 3 presents the potential targeting strategies 
against DNA-PK in hematologic malignancies.

ATM inhibition
ATR/ATM kinases are primarily the orchestrators of cel-
lular response to DSB and belong to apical phosphati-
dylinositol 3-kinase-related kinases (PIKKs). ATM and 
ATR are predominantly activated through their interac-
tions with NBS1- and RPA-bound single-stranded DNA 
(ssDNA), respectively [200]. It has been shown that 
inhibition of ATM and ATR activities promotes sur-
vival in xenograft models of AML-carrying MLL rear-
rangement [201]. KU-55933 was the first developed 
ATM inhibitor. Mechanistically, KU-55933 impairs the 
auto-phosphorylation of ATM and concurrently inhibits 
H2AX phosphorylation. ATM inhibition by KU-55933 
sensitized MV4-11 and Jurkat leukemic cells to DSB-
inducing agents [202, 203]. It has been shown that 
inhibition of ATM with two distinct pharmacological 
inhibitors (namely ATMI and KU55933) induces apopto-
sis in CD34 + positive leukemic blasts through suppres-
sion of constitutively activated NF-κB signaling pathway 
[204].

Lytic reactivation of EBV in latently infected cells 
induces an ATM-dependent DDR. Therefore, inhibition 
of ATM activity by KU-55933 during lytic activation of 
the virus impairs EBV replication in EBV-infected Burkitt 
lymphoma cells [205]. The cisplatin-resistant MCL cell 
line (JeKo-1/DDP) is also affected by KU-55933, caus-
ing an increase in cisplatin-induced DNA damage [206]. 
Finally, ATM inhibition by KU-55933 decreases cell via-
bility in hairy cell leukemia (HCL) cells via inhibiting the 
hyperactivated NF-κB pathway in these cells [207].

A novel class of ATM inhibitors, known as AZD0156, 
inhibits ATM kinase activity and exerts similar effects 
to KU-55933 [208]. This inhibitor produces satisfactory 
outcomes and shows robust efficacy in murine models of 
AML [209]. KU-60019 (KU-55933 analog) is a potent and 
selective inhibitor of ATM, which has been used in the 
treatment of solid tumors, as well as leukemia and lym-
phoma [210, 211]. In this regard, KU-60019 potentiates 

bendamustine activity on human B cell lymphoma 
cell lines (BALM3, SU-DHL-4, U698M, and SKW4), 
lymphoblastoid cell line (BALM1), and myeloma cells 
(RPMI8226) [212].

Caffein can inhibit both ATM and ATR and it induces 
G1/S checkpoint arrest, as well as a G2/M checkpoint 
delay in K562 erythroblastic leukemia cells [213]. Nev-
ertheless, similar to wortmannin, the broad nonspecific 
effects and high in  vivo  toxicity  at the concentrations 
required to inhibit ATM, prohibit their use in the clinic 
[214, 215].

ATR inhibitors
Similar to ATM, ATR inhibition in murine models 
of  MLL-rearranged AML can prevent tumor growth 
and also reduce the tumor burden. These outcomes have 
been detected in xenografts of a human AML-MLL cell 
line [201]. VE-821 is a selective ATR inhibitor, with more 
than 100-fold selectivity for ATR versus ATM [216]. In 
combination therapy using ATM inhibitor (KU55933), 
VE-821 showed an increased radiosensitizing effect in 
promyelocytic leukemia cell line (HL60) [217]. Simi-
larly, a combination therapy approach, using VE-821 and 
KU-55933, significantly decreases the survival of MM 
cells while inhibition of other NHEJ components (i.e., 
DNA-PK), does not exert any cytotoxic effects on the via-
bility of MM cells [218]. VE-822 (VX-970) is an improved 
analog of VE-821, which is more soluble, potent, and 
selective than VE-821 and has better pharmacodynamic 
properties [219]. In a murine AML model, VE-822 acts as 
a chemosensitizer in combination with gemcitabine and 
results in complete eradication of disseminated leukemia 
[220].

Another ATR inhibitor, AZD6738 (Ceralasertib), is 
under clinical development and has been approved for 
oral prescription. It was shown that AZD6738 was selec-
tively cytotoxic to both TP53- and ATM-deficient CLL 
cell lines and primary tumor samples. Reduction in the 
proportion of CLL cells was also confirmed in vivo using 
primary xenograft models of TP53- or ATM-defective 
CLL. Additionally, AZD6738 sensitized primary CLL 
cells with such defects to chemotherapy and ibrutinib, 
suggesting ATR as a promising therapeutic target for 
TP53- or ATM-defective CLL [221]. A profound synthetic 
lethal interaction was reported between ATR and the 
ATM-p53 tumor suppressor pathway in cells treated with 
DNA-damaging agents [222]. Likewise, inhibition of ATR 
kinase activity in MCL with ATM-loss of function results 
in synthetic lethality, which represents ATR inhibitor as 
a therapeutic approach in ATM-deficient tumors [223]. 
As a combination therapy, AZD6738 augments carbopl-
atin, bendamustine, and cyclophosphamide effects and 
reduces the tumor burden in an ATM-deficient DLBCL 
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mouse model [219]. A phase I clinical trial of AZD6738 
in combination with acalabrutinib is under evaluation 
in relapsed or refractory high-risk CLL patients [Clini-
calTrials.gov  Identifier  NCT03328273]. BAY 1895344 is 
also a novel selective ATR kinase inhibitor. In a panel of 
cancer cell lines harboring different mutations in DDR 
pathways, BAY 1895344 displayed potent antiprolifera-
tive activity, and MCL cell lines appeared to be the most 
sensitive cancer type. BAY 1895344 also exhibits a syner-
gistic activity in combination with chemotherapy agents 
and external beam radiotherapy [224]. At this time, BAY 
1895344 is under clinical investigation in patients with 
advanced solid tumors and lymphomas [ClinicalTrials.
gov Identifier: NCT03188965].

Oncogenic expression of Ras and suppression of ATR 
synergistically increase the genomic instability in MLL-
ENL-driven AML, highlighting ATR inhibition as a 
promising therapeutic strategy. This toxic interaction 
between ATR suppression and oncogenic stress occurred.

irrespective of status p53 [232]. Treatment with AZ20, 
another ATR-selective inhibitor, triggered proliferation 
inhibition in AML cell lines as well as primary patient 
samples. Moreover, AZ20 synergistically cooperates with 
cytarabine to generate DNA damage, induce apoptosis, 
and inhibit proliferation in AML cell lines and primary 
AML patient samples [233]. Palacin et  al. reported that 
inhibition of the kinase ATR with AZ20 could induce 
chromosomal breakage and death in a mouse model 
of MLL-rearranged AML, independently of p53 [201]. 
Table 4 summarizes ATR and ATM inhibitors in hemato-
logic malignancies.

Lig IV inhibition
SCR7 (an L189 derivative) was initially identified as a 
DNA ligase IV inhibitor. Srivastava et  al. used SCR7 in 
various cell lines, including human leukemia cells, and 
found that it could significantly inhibit tumor progres-
sion [234]. However, more recent work suggests that this 
inhibitor is neither a selective nor a potent inhibitor of 
human DNA ligase IV [235]. The RNA interference strat-
egy against Lig IV leads to significant radio sensitization 
in multiple cultured cell lines and murine models [172, 
236].

MRN complex inhibition
The MRN complex plays two general and determina-
tive roles in DSB repair: (1) DSB sensitivity by activation 
of ATM; and (2) determination of the pathway fate by 
MRE11 nuclease activity. Extended researches on MRE11 
resulted in a class of inhibitors that selectively prevent 
the nuclease activities of MRE11 [237]. This study dem-
onstrated that inhibition of endonuclease activity pushes 
the cell to NHEJ, and blockading the exonuclease activity 

causes a repair defect. These observations revealed the 
therapeutically potential impact of targeting the MRE11. 
Mirin is a molecule, which inhibits both MRN-dependent 
activation of ATM and MRE11 exonuclease activity [238]. 
In c-Myc-driven lymphoma, an increase in DNA dam-
age, reduction of cellular survival, and a sharp increase 
in the apoptosis rate were seen following the inhibition 
of MRE11 exonuclease activity. Also, in a murine model 
with IgH/Myc translocation and c-Myc or N-Myc over-
expression, pro-B lymphomagenesis was suppressed by 
mirin-induced inactivation of MRE11 exonuclease activ-
ity [239].

Conclusion and future prospects
Components of DSBR pathways are the guards of genome 
integrity. Defects of these components are causal fac-
tors for genomic instability, including translocations and 
DNA mutations which contribute to the development 
and progression of hematological malignancies. When 
cancer cells are deficient in certain DNA repair pathway, 
they are highly addicted to alternative repair pathways for 
their survival. As a result, identifying the components of 
these compensating pathways in different types of hema-
tologic malignancies may provide us with potential bio-
markers for predicting prognosis and guiding treatment 
choice. Unfaithful repair of DNA lesions coupled with 
the survival advantage of tumor cells may contribute to 
drug resistance in hematologic malignancies. Thus, the 
application of specific DNA repair targeted agents with 
DNA damage insult, such as chemotherapy or radiation 
is a more effective strategy for killing tumor cells.

DNA repair targeted agents are increasingly moving 
from lab to clinic, which positively affects the treatment 
opportunities in hematologic malignancies. However, 
the  long-term  effects of  treatment with DNA repair 
inhibitors should be evaluated with caution as DNA 
repair inhibition can compromise genomic integrity in 
normal cells and potentially may develop a malignant 
phenotype. Furthermore, resistance to DNA repair inhib-
itors may be an evolving challenge. Therefore, it is crucial 
to develop alternative DNA repair targets. On the other 
hand, the important role of some trace elements [240], 
cellular processes such as neddylation [241], chromatin 
remodeling factors [242], and tumor microenvironment 
[243] on the success of hampering DNA repair path-
ways is indispensable. For instance, lymphoblasts in ALL 
overexpress VLA-4, which binds to osteopontin (OPN) 
secreted by osteoblasts in the bone marrow niche. This 
interaction of VLA-4 with OPN provides an opportunity 
for leukemic cells to enter the dormancy phase, which 
decreases their sensitivity to DSB inducers [244].

Development of clinically validated biomarkers of 
response and resistance and standard biomarker assays 



Page 19 of 26Valikhani et al. Exp Hematol Oncol           (2021) 10:51  

are necessary for the optimization of the clinical appli-
cation of targeted DNA repair inhibitors. With the 
great advances made in cancer genomics, we gain bet-
ter insight into the tumor heterogeneity from patient to 
patient. Personalized cancer therapy based on a reper-
toire of DNA repair deficiencies in patients with hema-
tology malignancies can achieve tumor selective therapy 
and low-side effects. Molecular profiling of tumors will 
also help clinicians to adjust the dose of chemotherapy in 
combined-modality strategies in order to reduce the tox-
icity of current treatments for hematologic malignancies 
[245, 246].

In summary, this review indicates the potential oppor-
tunities to combine  C-NHEJ and A-EJ inhibitors 
with  chemoradiation treatment modalities for inducing 
synthetic lethal vulnerability in hematologic malignant 
cells with up-regulation of these pathways.
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end-joining pathways; AT: Ataxia-telangiectasia; DNA-PK: DNA-dependent 
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Table 4 Therapeutic approaches against ATR and ATM in hematologic malignancies

Targets Drugs Type of malignancy Highlights Ref

ATM KU-55933 Jurkat cells Impairment of the auto-phosphorylation of ATM and inhibition 
of H2AX phosphorylation

[203, 225]

MV4-11 cells (AML cell line) ATM inhibition radiosensitized MV4-11 leukemia cells [182]

P39 and MOLM-13 cell lines (MDS cell lines) ATM inhibition increase radiosensitization of MDS cells [182]

EBV-driven Burkitt lymphoma cells Inhibition of EBV replication through inhibition of KAP1 phos-
phorylation

[205]

Ramos cells Prevention of ATM auto-phosphorylation and potentiation of 
etoposide-induced apoptosis

[226]

Cisplatin-resistant MCL cell line (JeKo-1/DDP) Enhanced cisplatin-induced DNA damage [206]

HCL cell line MLMA Induction of apoptosis through inhibiting NF-κB pathway [207]

KU-59403 Jurkat cells Showing higher potency, tissue distribution, and efficacy over 
KU-55933

[225]

AZD0156 AML exhibits therapeutic potential in a mouse model of MLL-rear-
ranged AML

[227]

KU-60019 Human B cell lymphoma cell lines, lympho-
blastoid cell lines, and myeloma lines

KU-60019 potentiates bendamustine activity [212]

MCL cell lines KU60019 synergizes the antineoplastic effect of romidepsin [228]

Caffeine
(Inhibitor of 
both ATM and 
ATR)

K562 leukemia cells Caffeine sensitises the cells to
genotoxic modalities, particularly irradiation

[229]

Lymphoma patients Potentiated chemotherapy and induction of complete remis-
sion

[213]

ATR VE-821 APL cells Increase of radio sensitization [217, 218]

MM cells Significantly increased apoptosis of MM cells in combination 
with KU-55933

[218]

TP53-mutant MM cell lines As monotherapy alone and in combination with DNA damag-
ing agents, CX5461 or melphalan

[230]

VE-822 (VX-970) AML Increase antileukemic activity of hydroxyurea and gemcitabine 
in AML mouse model

[220]

AZD6738 CLL patients ATR inhibition induces synthetic lethality in TP53- or ATM-
defective CLL cells

[221]

ATM-deficient DLBCL model Combination therapy with carboplatin, bendamustine, and 
cyclophosphamide

[219]

Relapsed/refractory high-risk CLL patients A phase I clinical trial of AZD6738 in combination with acala-
brutinib
[Trial identifier: NCT03328273]

-

BAY1895344 MCL models Synergistic anti-tumor activity in combination with DNA 
damage-inducing chemotherapy or radiation therapy

[224]

AZ20 AML-MLL murine model Strong cytotoxic effects in vitro and in murine models, irrespec-
tive of p53 status

[231]

WO2010/073034 ATM-deficient MCL Promising results both in vitro and in vivo models [223]
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ATL: Adult T-cell leukemia; HBZ: Leucine zipper (bZIP) factor; FL: Follicular 
lymphoma; MCL: Mantle cell lymphoma; MZL: Marginal zone lymphoma; 
MALT: Mucosa-associated lymphoid tissue; FCL: Follicle center lymphoma; 
EBV: Epstein–Barr virus; AID: Activation-induced cytidine deaminase; HSC: 
Hematopoietic stem cell; RAEB-1: Refractory anemia with excess blasts; 
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