Skip to main content
Fig. 1 | Experimental Hematology & Oncology

Fig. 1

From: Targeting metabolic reprogramming in chronic lymphocytic leukemia

Fig. 1

Metabolic reprogramming in chronic lymphocytic leukemia (CLL). In CLL cells, aerobic glycolysis, lipid synthesis, reductive carboxylation, beta-oxidation of fatty acids, and the consumption of glutamine are upregulated. These changes benefit CLL cells as they satisfy their demands of proliferation. CLL chronic lymphocytic leukemia, GLUT glucose transporter, G6P glucose 6-phosphate, TIGAR TP53-induced glycolysis and apoptosis regulator, TCA tricarboxylic acid, TG triglyceride, LPL lipoprotein lipase, LCFA-CoAs long-chain fatty acyl coenzyme A, HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A, HMGCR 3-hydroxy-3-methylglutaryl coenzyme A reductase, FFA free fatty acid, ApoA apolipoprotein A, CPT carnitine palmitoyl transferases, α-KG α-ketoglutarate, CAT-1 cationic amino acid transporter-1, STIM1 stromal interaction molecule 1, ROS reactive oxygen species

Back to article page