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Emerging therapeutic frontiers in cancer: e
insights into posttranslational modifications
of PD-1/PD-L1 and regulatory pathways
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Abstract

The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor
cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of
tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the
PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-
L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments,
given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of
this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist
in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently,
identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing
judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This
review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification
regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research
landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies
to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
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Introduction

Programmed cell death 1 (PD-1) and its ligand PD-L1
have become pivotal in advancing tumor treatment by
effectively modulating immune responses [1]. PD-L1 is
expressed across various tumors, while PD-1 is primar-
ily expressed on T cells within tumor tissues [2]. PD-L1
engages with PD-1, creating a molecular barrier that
inhibits the cytotoxic actions of immune cells [3]. Over-
coming this inhibition is possible through blocking anti-
bodies or recombinant proteins that target signaling
pathways, reactivating immune responses. Monoclonal
antibodies against PD-1 and PD-L1 have demonstrated
significant therapeutic success, indicating that immune
checkpoint blockade therapy is a potent antitumor
treatment. However, its current use mainly as a second-
line treatment for advanced tumors and the emergence
of drug resistance highlight ongoing challenges [4].
These factors underscore the necessity for continued
research to potentially expand its use earlier in treatment
protocols.

Exploring new biomarkers and developing combina-
tion drug therapies are essential for combating these
challenges. Research has shown that PD-1 transcription
can be increased by activating B-cell CLL/lymphoma
6 (BCL6), and various elements, such as cytokines,
hypoxia, bromodomain-containing protein 4 (BRD4),
and noncoding RNA, can elevate PD-L1 expression by
influencing transcription [5, 6]. With advancements
in detection technologies, numerous posttranslational
modifications (PTMs) have been identified that play criti-
cal roles in human diseases and offer avenues for new
treatments. Recent studies have focused on PTMs that
impact PD-1/PD-L1 protein expression and their roles in
immunosuppression. PD-1/PD-L1 is negatively regulated
by mechanisms such as phosphorylation, ubiquitination,
ubiquitin-like modification and methylation. Conversely,
positive regulation occurs through processes such as
deubiquitination, glycosylation, palmitoylation, adenos-
ine diphosphate (ADP) ribosylation, and deacetylation
[7]. A deeper understanding of these regulatory mecha-
nisms and identification of novel targets for PD-1/PD-L1
modification are vital for advancing tumor immunother-
apy toward precise treatments. Moreover, ongoing efforts
are needed to discover and test safe, effective drug com-
binations to improve therapeutic outcomes.

Structures of PD-1/PD-L1 and their potential sites
modulate PTMs

PD-1 (CD279), encoded by the PDCDI gene on chro-
mosome 2q37.3, is a type I transmembrane protein
from the immunoglobulin superfamily, specifically the
CD28 family. Unlike its family members, PD-1 uniquely
exists as a monomer expressed on activated T cells, B
cells, NK T cells, monocytes, and some dendritic cells
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(DCs) [8, 9]. It consists of 288 amino acids and features
an ectodomain with a signal peptide, an N-loop, an
IgV-like domain (with four N-linked glycosylation sites:
N49, N58, N74, and N116, and a polyubiquitination site
at K48), a transmembrane domain, and a cytoplasmic
region with the key signaling motifs ITIM and ITSM and
phosphorylation sites at Y223 and Y248 [10—14]. Recent
research has identified additional O-glycosylation sites
(T153, S157, S159, and T168) in the stalk region, indicat-
ing complex posttranslational modifications [15]. PD-1
interacts with two ligands, PD-L1 and PD-L2, from the
B7 family, with PD-L2 binding to PD-1 with over three
times the affinity of PD-L1 [16]. PD-L2 is distributed
primarily on activated DCs and some macrophages,
whereas PD-L1, which is more widely expressed on both
immune and tumor cells, plays a crucial role in tumor
immunity [17]. PD-L1 is a 40-kDa glycoprotein encoded
by the CD274 gene on chromosome 9p24.1. Its struc-
ture includes a signal peptide, extracellular IgV and IgC
domains, a transmembrane domain, and a cytoplasmic
region. The extracellular regions contain four glycosyl-
ation sites (N35, N192, N200, and N219) [18], while the
IgC domains have five phosphorylation sites (5176, T180,
$184, S195, and T210) [19, 20]. The cytoplasmic tail
includes an S-palmitoylation site at C272 [21], six meth-
ylation sites (K75, K89, K105, R113, K162, and R212) [22],
and an acetylation site at K263 [23]. Moreover, recent
studies have shown that the PD-L1 intracellular domain
functions as an RNA binding protein [24] (Fig. 1).

Preclinical study of PTMs inhibiting PD-L1
expression and function

PD-L1 phosphorylation inhibits PD-L1 protein expression
by mediating ubiquitination

The process of protein phosphorylation involves the
transfer of a phosphate group from ATP to amino acid
residues of the target protein catalyzed by a series of pro-
tein kinases. This modification primarily occurs on two
types of amino acids: serine (Ser or S) and threonine (Thr
or T), as well as tyrosine (Tyr or Y). Protein phosphory-
lation plays a crucial role in regulating the activity of
enzymes and other essential functional molecules, facili-
tating second messenger delivery and initiating enzy-
matic cascade reactions [25].

The nonglycosylated PD-L1 protein exhibits extreme
instability, with a half-life of approximately 4 h. Serine/
threonine phosphorylation of nonglycosylated PD-L1
mediates its ubiquitination and subsequent degradation.
The interleukin 6 (IL-6)/Janus kinase 1 (JAK1) pathway
phosphorylates PD-L1 at Y112, facilitating its binding to
the N-glycosyltransferase STT3A, thus preventing PD-L1
ubiquitination and degradation [26]. Glycogen synthase
kinase 3 (GSK3p), a serine/threonine protein kinase, ini-
tiates the phosphorylation of PD-L1 at sites S176, T180,
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Fig. 1 Schematic of PD-1/PD-L1 proteins highlighting potential PTM sites on PD-1/PD-L1. a The full-length PD-1 protein is divided into three segments:
the ectodomain, transmembrane (TM), and a cytoplasmic region (CR). The ectodomain comprises the signal peptide (SP), N-loop, IgV domain, and stalk
region, with amino acid positions denoted by numbers. Potential N-glycosylation sites at N49, N58, N74, and N116 are marked with blue arrowheads.
Yellow arrowheads indicate potential tyrosine phosphorylation sites at Y223 and Y248. The poly-ubiquitination site at K48 is denoted by pink arrowheads.
O-glycosylation sites at T153,5157, 5159, and T168 are indicated with red arrows. b Full-length PD-L1 is divided into an ectodomain, transmembrane, and
cytoplasmic region. The ectodomain comprises the signal peptide, IgV, and IgC domains, with amino acid positions indicated by numbers. Potential N-
glycosylation sites at N35, N192, N200, and N219 are marked with blue arrowheads. Serine/threonine phosphorylation sites, located at S176,T180, S184,
$195,and T210, are denoted by orange arrowheads. The S-palmitoylation site at C272 is indicated with a purple arrowhead. The mono/multiubiquitina-
tion motif is situated in the IgV domain, while the polyubiquitination site is in the cytoplasmic region of PD-L1. The acetylation site K263 is highlighted
with a red arrow. Methylation sites at K75, K89, K105, R113, K162, and R212 are indicated with yellow arrowheads

and S184. This phosphorylation triggers the interaction
with the E3 ligase B-TrCP, which targets proteins for
proteasome degradation [27]. Additionally, D-mannose
activates AMP-activated protein kinase (AMPK), leading
to further phosphorylation of PD-L1 at S195 and protea-
some degradation [28]. (Fig. 2).

The expression of PD-L1 is negatively regulated by
ubiquitination

Ubiquitination is the process of covalently attaching
ubiquitin to a target protein under the catalysis of a series
of enzymes. In monoubiquitination, a target protein
binds to a single ubiquitin molecule. Multiubiquitination
is the process by which a single ubiquitin molecule labels

multiple lysine residues of a target protein. Polyubiqui-
tination, on the other hand, occurs when multiple ubiq-
uitin molecules label a single lysine residue of the target
protein [29-31]. The E3 ligase plays a crucial and specific
role in this process by regulating the activity of the ubiq-
uitination system in these enzymatic cascades [29].

The degradation of PD-L1 is intricately regulated by
various ubiquitination-dependent proteasome pathways.
Previous research has demonstrated that EGF can pro-
mote the expression of PD-L1 [32]. Horita et al. revealed
that epidermal growth factor (EGF) induced PD-L1
monoubiquitination and polyubiquitination prior to EGF-
mediated PD-L1 protein expression. Treatment of skin
squamous carcinoma cells with gefitinib and SCH772984,
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Fig. 2 (See legend on next page.)
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Fig. 2 Regulatory pathways governing PD-L1 via phosphorylation and ubiquitination. a In combination with JAKT, GSK3(3, AMPK, EGF, STT3A, and IL-6
collaboratively facilitate serine/threonine phosphorylation of PD-L1, leading to subsequent ubiquitination. b B-TrCP, C-Cbl, Cbl-b, and DHA contribute to
the increase in PD-L1 ubiquitination. Conversely, IFITT impedes PD-L1 ubiquitination. CDK4/6 enhances PD-L1 ubiquitination via SPOP. The E3 ubiquitin
ligase HUWET, in conjunction with PD-L1, facilitates PD-L1 ubiquitination. STUB1 stimulates PD-L1 ubiquitination, leading to subsequent degradation,
while CMTM6/4 impedes the binding of PD-L1 to STUBT, thereby downregulating PD-L1 ubiquitination. Casp8 promotes PD-L1 ubiquitination by up-
regulating TNFAIP3. USP2 modulates the stability of VPRBP and facilitates PD-L1 ubiquitination. MIB2 catalyzes PD-L1 ubiquitination, mediating the traf-
ficking of PD-L1 from the trans-Golgi network to the membrane through RABS8. Circular RNA-0000512 promotes PD-L1 ubiquitination by suppressing
CMTM6 expression, while circular RNA-0067842 inhibits PD-L1 ubiquitination by upregulating CMTMé. The black arrows indicate positive regulation, and

the red arrows indicate negative regulation

chemical inhibitors of the EGF receptor (EGFR) pathway,
inhibited the monoubiquitination and polyubiquitination
of PD-L1 [33]. The chemical inhibitor PYR41 was also
found to prevent the EGF-mediated increase in PD-L1
protein levels by inhibiting E1 ubiquitinase [33]. The E3
ubiquitinases Cbl-b and c-Cbl were shown to be involved
in the downregulation of PD-L1 in EGER wild-type non-
small cell lung cancer (NSCLC) [34]. Cyclin-dependent
kinase 4 (CDK4) and Cullin 3- speckle-type POZ protein
(SPOP), an E3 ligase bound to Cullin3, can regulate the
protein level of PD-L1 through the classical proteasome-
mediated degradation pathway [35]. As mentioned in the
PD-L1 phosphorylation section above, resveratrol can
promote the GSK3B-B-TrCP-mediated degradation of
polyubiquitinated PD-L1 [27]. Sun et al. proposed that
leucine-rich repeat kinase 2 (LRRK2) inhibits ubiquitin-
proteasome degradation through the phosphorylation
of PD-L1 [20]. Gao et al. reported that Fusobacterium
nucleatum, which is enriched in colorectal cancer tissues,
upregulates the expression of PD-L1 by reducing the
ubiquitination-mediated degradation of PD-L1 through
IFIT1 [36]. RIG-I can compete with SPOP for binding to
PD-L1, leading to reduced polyubiquitination and pro-
teasome degradation of PD-L1 [37]. Ring finger protein
125 (RNF125) promotes ubiquitin-mediated degradation
of PD-L1 and downregulates PD-L1 in oral squamous
cell carcinoma (OSCC) TSCCA cells [38]. Transmem-
brane and ubiquitin-like domain-containing protein 1
(TMUBL) inhibits PD-L1 K281 polyubiquitination in the
endoplasmic reticulum (ER) by interacting with PD-L1
and competing with HECT, UBA, and WWE domain pro-
tein 1 (HUWEL), an E3 ubiquitin ligase [39]. Research-
ers have designed and synthesized PTPR, a peptide that
competes with PD-L1 and weakens the regulatory role
of TMUBI at the cellular level [39]. As a substrate rec-
ognition subunit of the Cullin-4 (CUL4)-damage-specific
DNA binding protein 1 (DDB1) ubiquitin E3 ligase com-
plex, VPRBP directly induces ubiquitin-mediated PD-L1
degradation, and the stability of VPRBP is controlled
by USP2 [40]. Docosahexaenoic acid (DHA) promotes
PD-L1 degradation through the ubiquitin-proteasome
pathway, leading to decreased PD-L1 expression. This,
in turn, reduces the PD-L1 and PD-1 interaction, revers-
ing PD-L1-mediated immunosuppression and further
promoting tumor growth inhibition [41]. Furthermore,

the interaction between PD-L1 and Cullin-4 A facilitates
the ubiquitination of PD-L1 [42]. Casp8 induces PD-L1
ubiquitination and promotes its degradation by upregu-
lating TNFAIP3 (A20) expression in murine melanoma,
suggesting that reduced Casp8 expression may serve as a
potential biomarker for predicting sensitivity to anti-PD-
L1 immunotherapies [43, 44]. (Fig. 2)

The ubiquitination of PD-L1 is not confined to the ER
and Golgi apparatus but also involves the promotion of
lysosomal degradation by endosomes. Mezzadra et al.
demonstrated that CKLF-like MARVEL transmembrane
domain-containing protein (CMTM)6 and CMTM4
bind to the ectodomain of PD-L1, preventing lysine resi-
dues in the cytoplasmic tail from interacting with the E3
ubiquitin ligase STUB1 [45]. This interference disrupts
polyubiquitination, extending the half-life of the PD-L1
protein. Subsequently, CMTM6 enhances PD-L1 expres-
sion and inhibits the killing effect of tumor-specific T
cells in mouse melanoma models [45]. Additionally, Burr
et al. reported that CMTMS6 can mediate PD-L1 ubiquiti-
nation-dependent proteolysis and lysosomal degradation
simultaneously [46]. Wang et al’s research also supported
the idea that CMTMB6 and Huntingtin-interacting protein
1-related protein (HIP1R) participate in the lysosomal
degradation of PD-L1. Overall, CMTMS6 is a promising
target for immunotherapy, as indicated by these findings
[47]. (Fig. 2)

The ubiquitination of PD-L1 is also associated with
its trafficking. Ding’s team found that sodium-glucose
cotransporter 2 (SGLT2) colocalizes with PD-L1 in the
cell membrane and circulating endosomes, preventing
proteasome-mediated PD-L1 degradation [48]. Yu et al.
discovered that MIB E3 ubiquitin protein ligase 2 (MIB2)
catalyzes the nonproteolytic K63-linked polyubiquitina-
tion of PD-L1, facilitating its transport of PD-L1 from the
trans-Golgi network (TGN) to the membrane through
RAS-associated binding 8-mediated (RAB8-mediated)
exocytosis [49]. (Fig. 2)

Noncoding RNAs significantly contribute to the
ubiquitination of PD-L1. Knockdown of circ-0000512
enhances PD-L1 ubiquitination in triple-negative breast
cancer (TNBC) cells by inhibiting CMTM6 [50]. The
circular RNA hsa_circ_0067842 interacts with HuR,
improving the stability of CMTMBS6 by influencing nuclear
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translocation. CMTMS, in turn, regulates the ubiquitina-
tion of PD-L1 and inhibits its degradation [51]. (Fig. 2)

Other PTMs inhibiting PD-L1 expression and function
Ectodomain shedding is a posttranslational modifica-
tion involving the degradation of extracellular matrix
components. Matrix metalloproteinases (MMPs) and
disintegrin and metalloproteinases (ADAMs) convert
transmembrane molecules into soluble forms in this pro-
cess [52, 53]. The proteolytic cleavage of PD-L1 is attrib-
uted to the release of MMP-13 from fibroblasts. MMP-9
and MMP-13 have been identified as enzymes capable
of cleaving the PD-1 binding domain of PD-L1, conse-
quently inhibiting T-cell apoptosis [54]. Hira-Miyazawa
et al. further confirmed that purified PD-L1 can undergo
degradation by MMP-13 and MMP-7. A specific inhibi-
tor of MMP-13 (CL82198) significantly restored the
expression of PD-L1, providing additional evidence for
the pivotal role of MMP-13 in the shedding/cleavage of
PD-L1 [55]. Known as an effective inhibitor of MMPs,
HE4 was investigated by Rowswell-Turner RB et al., who
revealed its ability to inhibit MMP2, 9, and 13. This inhi-
bition resulted in a significant increase in PD-L1 expres-
sion in both tumors and macrophages, and this effect was
observed posttranscriptionally [56]. (Fig. 3a)

Protein methylation is a prevalent modification that
can occur on both histone and nonhistone proteins and
typically affects arginine and lysine residues. Arginine
methylation, a common posttranslational modifica-
tion, involves the addition of methyl groups to arginine
residues, altering the protein’s interactions with binding
partners or regulating its activity [57]. Nonhistone meth-
ylation often participates in signal transduction, with
many instances linked to cancer progression [58]. In a
study by Huang et al.,, six monomethylation sites (K75,
K89, K105, R113, K162, and R212) were identified on
PD-L1 through mass spectrometry (MS) analysis. Inter-
estingly, the K162R variant was the only variant dem-
onstrated to enhance the engagement of PD-1/PD-L1.
PD-L1 methylation at K162 restricted the interaction
between PD-L1 and PD-1 [22]. SET domain containing
lysine methyltransferase 7 (SETD7) catalyzes the meth-
ylation of PD-L1 at the K162 site, and this modification
can be reversed by LSD2. Therefore, hypermethylation of
PD-L1 has been identified as a key mechanism of resis-
tance to PD-L1 therapy [22]. (Fig. 3b)

PD-L1 is also targeted by ubiquitin-fold modifier 1
(UFM1) modification (UFMylation) [59]. UFM1 is ini-
tially synthesized in its precursor form. Upon cleavage
by UESP1 or UFSP2, UFM1-G83 is activated. This acti-
vated form is processed by the specific E1-like activating
enzyme UBA5 and then transferred to the E2-like bind-
ing enzyme UFC1. The final step involves the collabora-
tion of UFC1 with the E3-like ligase UFL1 [60]. Silencing
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either UFL1 or UFMI1 to suppress the UFMylation of
PD-L1 can lead to its stabilization in various human and
mouse cancer cells, which in turn disrupts anticancer
immunity both in vitro and in mice [59]. (Fig. 3¢)

Interferon-stimulating gene 15 (ISG15) modification
(ISGylation) is a process similar to ubiquitination. During
ISGylation, the target protein binds to ISG15, modify-
ing the target protein. Subsequently, the modified target
protein and ISG15 are separated by ISG15 depolymer-
ase, and the separated ISG15 can be recycled [61]. ISG15
induces ISG modification and PD-L1 protein instability,
thereby improving targeted immunotherapy targeting
PD-L1 and inhibiting the growth of lung adenocarcinoma
in vivo. Additionally, ISG15 enhances K48-linked ubiqui-
tin modification of PD-L1, ultimately promoting the deg-
radation of glycosylated PD-L1 through the proteasome
pathway [62]. (Fig. 3d)

Neural precursor cell-expressed developmentally
downregulated 8 (NEDD8) modification (NEDDylation),
a process similar to ubiquitination, involves the coupling
of the active ubiquitin-like protein NEDD8 with the scaf-
fold Cullin protein by the E3 Cullin-RING ligase (CRL)
[63]. Pevonedistat (MLN4924, TAK924) is a small mol-
ecule inhibitor of NEDD8. Pevonedistat blocks the degra-
dation of the PD-L1 protein by inhibiting Cullin3 activity
[64, 65], increasing the levels of PD-L1 mRNA and pro-
tein in a dose- and time-dependent manner [66]. (Fig. 3e)

S-glutathionylation is a common form of cysteine (Cys
or C) modification that involves the reversible forma-
tion of mixed disulfide bonds with glutathione (GSH).
According to Byun JK et al,, inhibiting glutamine utiliza-
tion increases PD-L1 levels in cancer cells, thereby inac-
tivating cocultured T cells [67]. Restricting glutamine
metabolism in cancer cells can impair sarcoplasmic/
endoplasmic reticulum calcium ATPase (SERCA) activity
by reducing S-glutathionylation due to low glutathione
levels. This activates the calcium/NF-«B signaling cas-
cade, ultimately leading to the transcriptional activation
of PD-L1 [67]. (Fig. 3f)

Autophagy serves as the primary intracellular degrada-
tion system, ushering cytoplasmic substances into lyso-
somes for breakdown and generating new components
and energy for cellular homeostasis [68]. Gou et al. dem-
onstrated that growth inhibitory factor 4 (ING4) induces
autophagic degradation of PD-L1, suppressing immune
escape in NSCLC cells by enhancing T-cell activity. Addi-
tionally, casein kinase 2 (CK2) phosphorylates ING4 at
$150, promoting its ubiquitination and degradation via
the JFK ubiquitin ligase. Conversely, CK2 gene knockout
strengthens ING4 protein stability and augments T-cell
activity [69]. (Fig. 3g)
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Preclinical study of PTMs promoting PD-L1
expression and function

Deubiquitination of PD-L1 upregulates its expression by
enhancing protein stability

Deubiquitination is a process catalyzed by deubiquitina-
tion enzymes (DUBs), which reverse ubiquitination by
removing ubiquitin molecules from ubiquitinated pro-
teins [70, 71]. In contrast to ubiquitination, the deubiqui-
tination of PD-L1 can enhance the stability of the protein.
COP?9 signaling body 5 (CSN5) plays a crucial role in the
CSN complex, contributing to tumor immune escape by
inducing the deubiquitination of PD-L1 [72]. Lim et al.
reported that TNF-a secreted by macrophages in breast
cancer (BC) impacts PD-L1 expression at the transla-
tional level. TNF-a induces the expression of CSN5 and
CSN2 by activating p65 of NF-kB [73]. Subsequently,
CSN5 binds to the C-terminus of PD-L1 and deubiqui-
tinates it, thereby enhancing its stability. Although the
MPN domain of CSN5 does not interact with PD-L1, dis-
ruption of the MPN domain affects the CSN5-mediated
deubiquitination of PD-L1 and protein stability [73]. Pro-
tein disulfide isomerase A (PDIA)6 might upregulate the
expression of CSN5 by regulating the formation of disul-
fide bonds in CSN5, increasing the stability of PD-L1
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through deubiquitination in pancreatic cancer cells [74,
75]. (Fig. 4)

USPs have been identified as novel deubiquitinases of
PD-L1 in multiple cancers. USP22 specifically targets
the C-terminus of PD-L1, leading to its deubiquitination
and stabilization in liver cancer cells [76]. Additionally,
USP22 enhances the stability of CSN5 both by deubiqui-
tination and by directly regulating PD-L1 deubiquitina-
tion in NSCLC. This process enhances PD-L1 stability by
removing the K6, K11, K27, K29, and K33 residues that
bind to PD-L1 [77]. USP9X binds to PD-L1, inducing its
deubiquitination and stabilizing protein expression in
OSCC [78]. Thr288, Arg292, and Asp293 on USP2 regu-
late its binding to PD-L1, uncoupling the K48-linked resi-
due on lysine 270 of PD-L1 to increase PD-L1 abundance.
Deletion of USP2 leads to the degradation of ER-related
PD-L1, which weakens the binding of PD-L1 to PD-1 and
renders cancer cells susceptible to T-cell-mediated cyto-
toxicity [79]. USP51 enhances the stability of the PD-L1
protein by removing polyubiquitination, promoting che-
motherapy resistance in NSCLC cells [80]. In pancre-
atic cancer, USP8 inhibits the ubiquitination-regulated
proteasome degradation pathway by positively inter-
acting with PD-L1 and upregulating its expression [81].
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Fig. 4 Regulatory pathways of PD-L1 via deubiquitination. The deubiquitination of PD-L1 involves a family of ubiquitin-specific proteases (USPs), namely,
USP2, USP5, USP7, USP8, USP9X, USP20, USP22, USP28, and USP51, along with CSN5, UCHL1T, OTUB1, and microRNAs (miR-199a-5p and miR-328-3p). Posi-

tive regulatory interactions are denoted by black arrows
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USP7 mediates the ubiquitination of PD-L1 and inhib-
its its degradation [82]. Additionally, UCHL1 promotes
PD-L1 deubiquitination and upregulates its expression
in NSCLC [83]. OTUBI interacts with and removes
K48-linked ubiquitin strands in the PD-L1 cytoplasmic
domain via a process mediated by deubiquitinase activity,
preventing PD-L1 degradation through the ER-associated
degradation (ERAD) pathway [84]. (Fig. 4)

Noncoding RNAs are also known to be involved in
regulating PD-L1 deubiquitination. The long noncod-
ing RNA TINCR functions as a sponge of miR-199a-5p,
enhancing the stability of USP20 mRNA through a com-
petitive endogenous RNA mechanism. This causes PD-L1
to become ubiquitinated and increases its protein abun-
dance [85]. . Zheng’s team found that the smoking-related
IncRNA BCCE4 mutation rs62483508 G>A can disrupt
the binding site of miR-328-3p, reducing the expression
of USP18 and weakening the interaction between PD-L1/
PD-1 to strengthen antitumor immune responsiveness in
bladder tumors [86]. (Fig. 4)

Small ubiquitin-like modifier (SUMO) modification
(SUMOylation) is correlated with deubiquitination [87].
Ma X et al. discovered that the E3 SUMO ligase tripartite
motif-containing protein 28 (TRIM28) can stabilize the
PD-L1 protein by inhibiting PD-L1 ubiquitination and
promoting its SUMOylation in gastric cancer cells [88].

Glycosylation of PD-L1 promotes its protein expression
and function

Glycosylation is a crucial modification that can signifi-
cantly impact protein formation, function, and interac-
tions with other proteins. The process of glycosylation
involves the formation of glycoproteins with specific
oligosaccharide chains in the ER, facilitated by vari-
ous glycosyltransferases and glycosidases. Subsequently,
glycoproteins move from the Cis surface to the Golgi
body, where they undergo a series of ordered processing
and modifications. N-linked glycosylation and O-linked
glycosylation. N-linked glycosylation attaches a sugar
chain to the -NH2 group of an asparagine residue, while
O-linked glycosylation links a sugar chain to the oxygen
of -OH groups in serine, threonine, or hydroxylysine resi-
dues of a polypeptide [89]. Hypoxia and abnormal glu-
cose metabolism are known to alter protein glycosylation
patterns in the tumor microenvironment. Notably, PD-L1
is highly glycosylated in most cells expressing it, while the
unglycosylated form tends to have lower expression lev-
els [18].

N-glycosylation of PD-L1 positively regulates its protein
stability and interaction with PD-1

Glycosylation of PD-L1 plays a crucial role in promot-
ing its protein stability. Specifically, the N192, N200, and
N219 sites on the PD-L1 protein hinder the interaction
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between GSK3[ and PD-L1 [90]. The inhibition of GSK3p
facilitates the glycosylation of PD-L1 in breast cancer,
preventing its degradation by the 26 S proteasome [91].
Sigmal has been implicated in regulating the glycosyl-
ation of newly synthesized PD-L1 in the ER and Golgi
compartments to promote the expression of PD-L1 [91].
FK506 binding protein 51 s (FKBP51 s), which are spe-
cifically expressed in glioblastoma, promote the glycosyl-
ation of PD-L1 in the ER and upregulate its expression
on cell membranes [92]. Glycosyltransferase 1 domain 1
(GLT1D1) enhances the stability of PD-L1 through N-gly-
cosylation, promoting immunosuppression and tumor
growth [93]. The GDP-fucose transporter (GFT) is a criti-
cal molecule involved in fucosylation of PD-L1. Knockout
of the GFT gene SLC35C1 significantly decreases PD-L1
fucosylation, leading to increased ubiquitination of
PD-L1 [94]. Beta-1,4-galactosyltransferase 1 (B4GALT1)
directly mediates the N-glycosylation of PD-L1, prevent-
ing its degradation. Inhibition of B4GALT1 increases
the abundance and activity of CD8* T cells, enhancing
antitumor immunity against PD-1 therapy in vivo [95].
In breast cancer tumor stem cells, the enrichment of
PD-L1 is considered crucial for tumor stem cell immune
escape. The mechanism involves p-catenin inducing
the transcription of the N-glycosyltransferase STT3 to
promote the oligoglycosylation of PD-L1 in the ER and
upregulate PD-L1 expression [96]. PD-L1 enhances its
stability by activating the N-glycosyltransferases STT3A
and STT3B through PAR2 [97]. Additionally, TMUBI1
enhances the N-glycosylation and stability of PD-L1
by recruiting STT3A, which promotes PD-L1 matura-
tion and facilitates tumor immune escape [39]. TGF-B1
activates the c-Jun/STT3A signaling pathway, promot-
ing the N-glycosylation of PD-L1 [98]. FAT atypical cad-
herin-4 (FAT4) overexpression not only reduces PD-L1
mRNA expression but also inhibits STT3A by promoting
B-catenin degradation. This triggers aberrant glycosyl-
ation of PD-L1, causing its accumulation in the ER and
degradation by ubiquitin-dependent pathways [99]. The
gene SEC61G, located adjacent to the EGFR chromo-
some, promotes the translocation of immune checkpoint
ligands (PD-L1, PVR, and PD-L2) to the ER, facilitating
their glycosylation, stability, and membrane presentation
[100]. Monocarboxylate transporter 4 (MCT4) has been
found to promote the glycosylation of PD-L1 through
the classical WNT pathway, stabilizing PD-L1. The high
coexpression of MCT4 and PD-L1 suggests a more effec-
tive target for treating TNBC, potentially improving the
immune checkpoint treatment of TNBC [101]. (Fig. 5)
PD-L1 glycosylation is essential for the interaction
of PD-L1 with PD-1. While the signaling of costimu-
latory molecules can function effectively without gly-
cosylation, the signaling of coinhibitory molecules,
including PD-L1, requires glycosylation, particularly
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Fig. 5 Regulatory pathways of PD-L1 through glycosylation. a Sigma1 promotes N-glycosylation in both the ER and Golgi, and FKBP51 s also augment
N-glycosylation of PD-L1 in the ER. EGF upregulates B3GNTS3, facilitating the glycosylation of PD-L1 in the Golgi apparatus. Conversely, GSK3 inhibits
PD-L1 glycosylation. GLT1D1, GFT, and B4GALT1 promote the N-glycosylation of PD-L1. 3-catenin induces N-glycosyltransferase STT3 transcription, sta-
bilizing the oligosaccharide chains of PD-L1 in the ER and upregulating PD-L1. PAR2 activates the N-glycosyltransferases STT3A and STT3B, enhancing
the glycosylation of PD-L1. TMUB1 enhances the N-glycosylation and stability of PD-L1 by recruiting STT3A. TGF-1 activates the c-Jun/STT3A signaling
pathway, promoting N-glycosylation of PD-L1. At the transcriptional level, FAT4 reduces PD-L1 mRNA expression and downregulates STT3A through
B-catenin, resulting in abnormal glycosylation of PD-L1. SEC61G induces PD-L1 translation and N-glycosylation. MCT4 stabilizes PD-L1 by promoting its
glycosylation through the classical WNT pathway. Notably, secreted PD-L1 splicing variants exist, with only those possessing N-linked glycosylation sites
exhibiting stable secretion. b GALNT2/14 and GFAT1 potentially increase the O-glycosylation of PD-L1. The black arrows denote positive regulation, while
the red arrows indicate negative regulation
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Fig. 6 Positive regulatory pathways of PD-L1 mediated by other posttranslational modifications. a PDIAS5 appears to exert a negative regulatory effect on
PD-L1, while ERO1-a enhances PD-L1 expression by facilitating the proper formation of disulfide bonds in PD-L1. ERO1-a additionally upregulates HIF-1a
protein, resulting in increased PD-L1 mRNA and protein levels. b S-palmitoylation occurs within the Golgi apparatus. ZDHHC9, DHHC3, DHHCS5, and FASN
have been identified as promoters of PD-L1 palmitoylation and thereby contribute to the stabilization of the PD-L1 protein. Conversely, DHA inhibits
FASN, thereby suppressing the palmitoylation of PD-L1. ¢ STATS, which promotes glycolysis, leads to lactic acid accumulation, subsequently facilitating
E3BP nuclear translocation and histone lactylation, culminating in the induction of PD-L1 transcription. d HDAC2 facilitates nuclear translocation through
PD-L1 deacetylation, whereas p300 promotes acetylation, enhancing its interaction with TRAPPC4 and facilitating PD-L1 recycling to the membrane. e
PDGF/ARF6/AMAP1 enhances the recycling of PD-L1 to the membrane by augmenting the ADP-ribosylation of PD-L1. The black arrows denote positive

regulation, while the red arrows signify negative regulation

N-linked glycosylation [90]. Furthermore, activation
of the EGF/EGEFR signaling pathway has been shown to
upregulate beta-1,3-N-acetylglucosaminyltransferase
3 (B3GNT3), promoting the glycosylation of poly-N-
acetyllactosamine at the N192 and N200 sites of PD-L1
in the Golgi apparatus. This enhanced glycosylation,
mediated by B3GNT3, increases the affinity of PD-L1 for
binding to PD-1 [90]. Molecular dynamics simulations of
the PD-L1/PD-1 interaction with N-glycans suggest that
N-glycosylation of the PD-L1 N219 site may influence the
interaction with PD-1 [18]. (Fig. 5)

The glycosylation of PD-L1 appears to be involved in
the promotion of tumor metastasis. Erlichman and his
team reported that PD-L1 activates STAT1 and STAT3 to
promote breast cancer cell metastasis both in vitro and
in vivo and that PD-L1 is required for N-glycosylation at
the N219 site [102]. In addition, the glycosylation sites
N192 and N200 (depending on cell type) contribute to
the autonomous cell migration function of PD-L1 in vitro
[102]. (Fig. 5)

The glycosylation of secreted PD-L1 variants has been
implicated in drug resistance to PD-L1 antibodies. Gong
et al. identified five secreted PD-L1 splicing variants in
patients resistant to anti-PD-L1 antibodies: PD-L1 v174,
PD-L1 v178, PD-L1 v229, PD-L1 v242, and PD-L1 v265.
Among these variants, PD-L1 v242 and PD-L1 v229 con-
tain three N-glycosylation sites (N192, N200, and N219),
which contribute to the stabilization of PD-L1, allowing it
to be stably secreted and induce resistance to anti-PD-L1
antibodies [103]. Conversely, PD-L1 v178 lacks N-glyco-
sylation sites, making it unstable and poorly secreted. As
a splicing variant of PD-L1, PD-L1-vInt4 functions as bait
in anti-PD-L1 antibody therapy, further contributing to
drug resistance [104]. This finding sheds light on a novel
mechanism of drug resistance against anti-PD-L1 anti-
bodies. (Fig. 5)

O-linked glycosylation of PD-L1 may be related to its
expression

GALNT2/14, which are polypeptide N-acetyl glucos-
aminyl transferase 2/14, play a role in initiating mucin
O-glycosylation in the Golgi apparatus. Research has
demonstrated a positive correlation between the expres-
sion of GALNT2/14 and that of PD-L1 [105]. However,
conflicting studies have suggested that the stability of

the PD-L1 protein might not be dependent on O-linked
glycosylation [106]. Chen et al. reported that although
inhibiting L-glutamine: D-fructose-6-phosphate ami-
notransferase 1 (GFAT1) reduces overall protein
O-GlcNAcylation, it does not seem to affect the stability
of PD-L1. The increase in PD-L1 protein degradation is
attributed to the decrease in N-linked glycosylation, even
though other mechanisms cannot be ruled out [106].
(Fig. 5)

Other PTMs inhibiting PD-L1 expression and function
Secreted and membrane proteins often contain numer-
ous disulfide bonds formed by the oxidation of two Cys
residues, which are crucial for their structural stabil-
ity and function. Incorrect disulfide bond formation
can cause protein misfolding in the ER, triggering the
unfolded protein response (UPR) to manage protein fold-
ing [107]. ERO1-q, an ER oxidase often overexpressed in
tumors, works with protein disulfide isomerase (PDI) to
form disulfide bonds. Studies by Tanaka et al. have shown
that ERO1-a enhances PD-L1 expression by facilitating
the folding of oxidized proteins in PD-L1 [108]. Chen et
al. reported that silencing PDIA5 in human glioma cells
upregulates PD-L1 expression, suggesting that PDIA5, by
modifying disulfide bonds and activating the UPR, may
influence PD-L1 expression, although the exact mecha-
nisms involved are unexplored [109]. (Fig. 6a)
Palmitoylation, a lipid modification, is essential for
regulating membrane proteins and includes S-palmi-
toylation, N-palmitoylation, and O-palmitoylation [110].
S-palmitoylation involves attaching a 16-carbon fatty acid
palmitate to Cys residues via an unstable covalent bond,
which is typically catalyzed by DHHC palmitoyl trans-
ferase [110, 111]. This is a pivotal modification in several
cancer-related proteins, including PD-L1, where C272
palmitoylation helps stabilize the protein, thus protecting
tumor cells from being eliminated by T cells. In breast
cancer, ZDHHC9 enhances PD-L1 stability through
palmitoylation [112, 113], and ZDHHC9 deficiency in
lung cancer prevents PD-L1 degradation, enhancing the
effectiveness of anti-PD-L1 immunotherapy [115]. Simi-
larly, ZDHHCS3 increases PD-L1 palmitoylation at C272
in colorectal and pancreatic cancer models, reducing its
degradation [116]. Shahid et al. reported that fatty acid
synthase (FASN) in cisplatin-resistant bladder cancer
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cells enhances PD-L1 expression by regulating palmitate
formation [117]. Moreover, DHA downregulates FASN,
inhibits DHHCS5, and promotes PD-L1 degradation [41].
Addressing PD-L1 palmitoylation may be an effective way
to counteract tumor immune evasion strategies. (Fig. 6b)

Succinylation correlates with increased PD-L1 expres-
sion in prostate cancer, suggesting its significant role in
regulating PD-L1 levels [118-121]. Additionally, lactic
acid, a precursor of histone lysine modifications, is linked
to glycolytic gene activation by STAT5 in AML, leading
to increased PD-L1 transcription via enhanced histone
lactylation and nuclear translocation of E3BP [122, 123].
These modifications reveal intricate connections between
metabolic processes and immune regulation in cancer.
(Fig. 6¢)

Protein lysine acetylation, which is reversible via lysine
acetylases (KATs), influences protein stability and local-
ization [124, 125]. Recent findings have shown that
nuclear PD-L1, which is acetylated at K263 by p300 and
deacetylated by HDAC2, acts as a transcription factor
that alters gene expression related to antigen presenta-
tion and inflammatory pathways, affecting cytotoxic T
lymphocyte activity and tumor immune evasion [126].
Nuclear PD-L1 also upregulates other immune check-
point genes and angiogenesis markers in breast can-
cer. EGF enhances PD-L1 acetylation [33], while VPA
increases PD-L1 recycling to the membrane, highlighting
complex regulatory mechanisms [127]. (Fig. 6d)

ADP-ribosylation is a dynamic, reversible posttrans-
lational modification that involves the attachment of an
ADP-ribose group to proteins, affecting their degradation
and vesicle transport between organelles [128—132]. This
modification is initiated by NAD" cleavage, leading to
either mono- or multi-ADP-ribosylation. Hashimoto et
al. reported that PDGF binding to its receptor, PDGERp,
activates ADP-ribosylation factors such as ARF6 and
AMAPI, promoting PD-L1 recycling to the cell mem-
brane; silencing these factors reduces PD-L1 surface
expression, illustrating the role of ADP-ribosylation in
vesicle transport [130, 131]. (Fig. 6e)

Preclinical study of PTMs regulating PD-1
expression and function

Phosphorylation of PD-1 affects its immunosuppressive
effect

Tyrosine phosphorylation within the PD-1 ITSM domain
is a pivotal step in the activation of downstream immu-
nosuppressive pathways. Upon interaction between
PD-1 and PD-L1, phosphorylation occurs at the PD-1
ITIM (Y223) and ITSM (Y248). The phosphorylation of
ITSM results in the recruitment of protein tyrosine phos-
phatase 2 (SHP2), which subsequently dephosphory-
lates the { chains and ( chain-related tyrosine kinase 70
(ZAP70) within CD28 and the T-cell receptor (TCR)/
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CD3 complex. This inhibition affects the downstream
PLCyl, PI3K/AKT, and ERK1/2 signaling pathways, lead-
ing to reduced IL-2 secretion and glucose metabolism.
Consequently, T-cell function is further inactivated, play-
ing a negative role in immune regulation [27]. Hui et al.
reported that CD28 and PD-1 cluster briefly and con-
centrically near the TCR when PD-1 on T cells binds to
PD-L1. The TCR phosphorylation kinase Lck effectively
phosphorylates PD-1, while SHP2 dephosphorylates
PD-1, rendering PD-1 unstable. In the absence of SHP2,
SHP1 can assume its role [133]. Similarly, upon binding
of PD-L1 to PD-1 on B cells, tyrosine in the PD-1 ITSM
domain undergoes phosphorylation [134]. Furthermore,
ERK can phosphorylate the T234 site of PD-1, subse-
quently promoting the interaction between PD-1 and
USP5, which results in deubiquitination and enhanced
stability of PD-1 [135]. (Fig. 7)

Ubiquitination of PD-1 mediates its degradation and
regulates the antitumor immunity of T cells

Factors within the tumor microenvironment can induce
high expression of the inhibitory receptor PD-1 on func-
tional T cells. However, there is limited understanding
of the degradation mechanism of PD-1. FBXO38 is rec-
ognized as the E3 ligase responsible for PD-1, directly
targeting the PD-1 cytoplasmic domain and mediat-
ing its K48-linked polyubiquitination, followed by pro-
teasome degradation [13]. IL-2 treatment significantly
enhances the transcription of F-box protein 38 (Fbx038),
reducing PD-1 levels and boosting anticancer activity
in mice [13]. Lv et al. elucidated that cytokine-inducible
SH2 domain-containing protein (CISH) promotes PD-1
expression by inhibiting FBXO38 expression, suggesting
novel strategies to enhance CAR-T-cell therapeutic effi-
cacy by inhibiting CISH [136]. The C-terminus of c-Cbl
interacts with the cytoplasmic tail of PD-1 and destabi-
lizes PD-1 through ubiquitination-proteasome degra-
dation in mouse colorectal cancer [137]. Additionally,
F-box and wd repeat domain containing 7 (FBW7) has
been shown to promote the ubiquitination of PD-1 and
subsequent proteasome hydrolysis [12]. Recently, Wu et
al. demonstrated that ubiquitination and breakdown of
PD-1 require elimination of N-linked glycosylation and
identified MDM2 as an E3 ligase for deglycosylation of
PD-1. These enzymes facilitate the interaction between
glycosylated PD-1 and N-glycanase 1 (NGLY1), leading
to further deglycosylation of PD-1 catalyzed by NGLY1
[138]. These preclinical studies suggest that the ubiquiti-
nation of PD-1 is expected to become a new focus in the
development of anticancer medications [139]. (Fig. 7)
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Fig. 7 Posttranslational modification of PD-1. As a transmembrane protein, PD-1 undergoes intricate posttranslational modifications. The primary site
of focus for PD-1 is within the Golgi apparatus. Fut8 plays a pivotal role in promoting the core structure of the PD-1 protein, thereby contributing to the
stabilization of PD-1. Upon binding to PD-L1, the intracellular domain of PD-1 undergoes phosphorylation, recruiting SHP2-2 and subsequently initiating
immunosuppressive signaling. Lck enhances the phosphorylation of PD-1, intensifying its downstream effects. IL-2 promotes the transcription of FBXO38,
which, in turn, binds to the cytoplasmic region of PD-1, facilitating polyubiquitination and subsequent proteasome-mediated degradation. MARCHS5,
c-Cbl,and FBW7 are also implicated in promoting PD-1 ubiquitination. MDM2 facilitates the interaction between NGLY1 and PD-1, leading to the deglyco-
sylation of PD-1. Furthermore, DHHC9 promoted the palmitoylation of PD-1 to enhance its interaction with Rab11. Inhibition of palmitoylation diminishes
the transport of PD-1 to the recycling endosome, promoting its degradation in the lysosome. This process is also associated with a notable enhancement
in the interaction between PD-1 and mTOR signal effector proteins (S6K and elF4E). The black arrows indicate positive regulatory pathways, while the red
arrows indicate negative regulatory pathways

N-glycosylation of PD-1 impacts its protein expression and
interaction with PD-L1

protein. Yao et al. reported that DHHC9 promotes the
palmitoylation of PD-1, leading to interaction with

The attachment of PD-1 to its ligands is dependent on
the N49, N58, N74, and N116 glycosylation sites located
in the PD-1 IgV domain [11]. Core fucosylation at N49
and N74 regulates PD-1 expression. The inhibition of
core fucosylation through the use of 2-fluoro-L-fucose
(2 F-Fuc), which targets the fucosyltransferase Fut8,
results in decreased PD-1 expression and T-cell activa-
tion [140]. (Fig. 7)

Palmitoylation of PD-1 upregulates its expression and
interaction with mTOR signaling effectors

Palmitoylation of PD-1 plays a crucial role in inhib-
iting lysosomal degradation, thereby stabilizing the

Rab11, which is a pivotal molecule facilitating the trans-
port of cargo proteins to recycled endosomes [141].
Blocking palmitoylation reduces PD-1 transport to recy-
cled endosomes and enhances lysosomal degradation.
Intriguingly, PD-1 palmitoylation significantly enhances
the interaction between PD-1 and mTOR signaling effec-
tors (S6K and elF4E), activating mTOR signaling and
promoting tumor growth [141]. (Fig. 7)
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Therapeutic prospects and clinical transformation
of PD-1/PD-L1 PTMs

Building on foundational research into PTMs of PD-1/
PD-L1 that regulate their expression and function,
researchers have developed targeted therapies tested in
cell and mouse models (Table 1; Fig. 8). Currently, these
promising results are moving toward clinical applica-
tions, with multiple treatment regimens involving PTM-
targeting drugs and immune checkpoint inhibitors
actively progressing through clinical trials. These efforts
aim to validate and expand the use of these innovative
therapies in clinical settings (Table 2).

PD-L1 phosphorylation-related therapeutic prospects and
clinical transformation

Therapeutic promotion and clinical transformation of drugs
that inhibit the EGFR pathway

Blocking the EGFR pathway is linked to an increase in
PD-L1 levels in tumor cells, leading to improved out-
comes from PD-1/PD-L1 blockade therapy in cancers
such as breast cancer and NSCLC [27, 142]. Clinical tri-
als are currently investigating combinations of EGFR
inhibitors with PD-1/PD-L1 blockade therapies and EGF
tumor vaccines (Table 2). However, the efficacy of these
combinations is under scrutiny due to serious treatment-
related toxicity, such as a 22% incidence of interstitial
lung disease in the TATTON study [143] and a 71.4% rate
of severe hepatotoxicity in another study involving pem-
brolizumab and gefitinib [144]. Despite these challenges,
studies such as KEYNOTE-021 reported manageable
toxicity and a 41.7% objective response rate (ORR) for
the combination of pembrolizumab and erlotinib [144].
Additionally, cetuximab is being evaluated in trials for its
potential to enhance immune checkpoint therapy in head
and neck squamous cell carcinoma (HNSCC), as it has
shown promising progression-free survival (PFS) rates
and a 45% ORR [145, 146]. Final results on the safety and
efficacy of these combination therapies are highly antici-
pated [147].

Therapeutic prospects and clinical transformation of PARP
inhibitors

Jiao et al. reported that the drug olaparib, a PARP1 inhib-
itor, increases PD-L1 levels in cancer cells by deactivating
GSK3p [148]. When olaparib was combined with anti-
PD-L1 therapy, it was more effective in treating cancer in
live models than when each drug was used alone [148].
As a result, many clinical trials are now testing combina-
tions of PARP1 inhibitors and anti-PD-1/PD-L1 thera-
pies (Table 2). Some of these trials have shown that these
combinations are superior to standard treatments. For
example, in a study involving patients with advanced kid-
ney, bile duct, and liver cancers, one combination ther-
apy resulted in a 23% ORR, which increased to 30% with
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a higher dose [149]. Common side effects included mild
to moderate fatigue, diarrhea, and nausea [149]. Another
trial showed that combining specific drugs for advanced
liver cancer achieved a 30% response rate, which was bet-
ter than the 13.3% response rate of the standard treat-
ment [150]. This trial also revealed high response rates in
patients with certain genetic markers, such as -catenin,
and even in those who did not express PD-L1, a target
of the treatment [150]. Other trials exploring different
combinations for breast and ovarian cancer have shown
promising results with good tolerability [151-157].

Therapeutic promise and clinical transformation of
metformin

Metformin activates AMPK, which phosphorylates
PD-L1, disrupting its normal assembly and leading to its
degradation. This interaction suggests that combining
metformin with immune therapies such as CTLA4 block-
ers could improve cancer treatment outcomes [158].
However, metformin shows limited effectiveness against
cancer under certain conditions where PD-L1 cannot be
phosphorylated [158]. Current clinical trials are testing
the effectiveness of combining metformin with anti-PD-1
therapy [159] (Table 2).

Therapeutic promise of LRRK2 inhibitors

LRRK?2 is an enzyme that modifies PD-L1 by adding a
phosphate group to it, which prevents PD-L1 from being
broken down in cells. Inhibiting LRRK2 enhances the
effects of PD-L1-targeted treatments in mice, increasing
the therapeutic response. Adenosine cobalamin, a form
of vitamin B12, effectively blocks LRRK2 and improves
the response to PD-L1 immunotherapy in mice with pan-
creatic cancer. This approach, in which PD-L1 blockade is
combined with LRRK?2 inhibition, appears promising as a
new treatment strategy for pancreatic cancer [20].

PD-1/PD-L1 ubiquitination treatment prospects and
clinical transformation

PROTACs targeting PD-1/PD-L1

The use of proteolysis-targeting chimeras (PROTACsS),
which target and degrade difficult-to-drug proteins, is
a new method for cancer treatment [160, 161]. Wang et
al. developed a PROTAC called 21a that breaks down
the PD-L1 protein in various cancers [162]. Another
PROTAC, P22, specifically disrupts the PD-1/PD-L1
interaction, enhancing therapeutic efficacy [163]. Cot-
ton et al. proposed the use of antibody-based PROT-
ACs (AbTACs), which use the E3 ligase RNF43 to target
PD-L1 for lysosomal destruction [164]. Su et al. intro-
duced carbon-based PROTACs (CDTACs), which also
target PD-L1 but for proteasome degradation, showing
promise in preclinical studies by inhibiting tumor growth
and boosting the immune response [165]. Sun et al.
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Target Posttranslational Regulator Therapy Preclinical tumor model  Ref.No
modifications
PD-L1 Serine/Threonine GSK33 Gefitinib +anti-PD-1 TNBC [27]
S176,1180,5184 phosphorylation Olaparib +anti—PD-1
PD-L1S195 Serine/Threonine AMPK Metformin +anti-CTLA4, BC, TNBC [28, 155]
phosphorylation D-mannose
PD-L1T210 Serine/Threonine LRRK2 Vitamin B12 PDAC [20]
phosphorylation
PD-L1 Tyrosine phosphorylation EGF \ CscC [32]
PD-L1 Mono/Multiubiquitination EGF Gefitinib+SCH772984, PYR-41 CSCC [33]
PD-L1 Poly-ubiquitination B-TrCP Resveratrol TNBC [27]
PD-L1 Poly-ubiquitination Cullin3-SPOP Palbociclib + anti—PD-1 BC, Colon cancer, CxCa [35]
PD-L1 Poly- ubiquitination STUB1 CMTM6 knockout, HTA Melanoma [45-47]
PD-L1 Ubiquitination Casp8 \ Melanoma [43, 44]
PD-L1 Ubiquitination \ IFIT1 CRC [36]
PD-L1 Poly- ubiquitination SPOP RIG-I knockout CRC [37]
PD-L1 Ubiquitination RNF125 \ 0scC [38]
PD-L1 K281 Poly- ubiquitination HUWET PTPR+aCTLA-4 BC [39]
PD-L1 Ubiquitination VPRBP USP2 knockout Osteosarcoma [40]
PD-L1 Ubiquitination \ DHA NSCLC, HCC [41]
PD-L1 Poly- ubiquitination Cullin3-SPOP Canagliflozin NSCLC [48]
PD-L1 Ubiquitination MIB2 \ Melanoma, CRC, NSCLC [49]
PD-L1 Ubiquitination \ PROTAC (21a, P22, AbTAC, CRC, HCC, BC, NSCLC, blad-  [156-162]
CDTAC, ROTAC) der cancer, melanoma
PD-L1 Deubiquitination CSN5 Curcumin+anti-CTLA4, PDIA6 TNBC, colon cancer, [73-75]
melanoma
PD-L1Ke,K11,K27, Deubiquitination USP22 USP22 inhibitor: Rottlerin and HCC, NSCLC [76,77]
K29, K33 Morusin
PD-L1 Deubiquitination USPOX \ 0OscC [78]
PD-L1 Deubiquitination UCHL1 \ NSCLC [83]
PD-L1 Deubiquitination OTUB1 \ BC [84]
PD-L1 K270 Deubiquitination USP2 USP2 knockout, USP2 inhibitor ~ CRC, PC [79]
PD-L1 Deubiquitination USP51 DHM NSCLC [80]
PD-L1 Deubiquitination uUspP8 USP8 inhibitor +anti-PD-L1 PCA [81]
PD-L1 Deubiquitination Usp7 A11+PD-L1 mAb BC, NSCLC, melanoma [82]
PD-L1 Deubiquitination USP20 \ BC [85]
PD-L1 Deubiquitination USP18 \ Bladder cancer [86]
PD-LT N192,N200  N-linked glycosylation B3GNT3 STM108,Gefitinib TNBC [90]
PD-L1 N-linked glycosylation Sigmal IPAG TNBC, PC [91]
PD-L1 N-linked glycosylation FKBP51's SAFit GBM [92]
PD-L1 N-linked glycosylation GLT1D1 \ BCL [93]
PD-L1 N-linked glycosylation SLC35CT \ LUAD [94]
PD-L1 N-linked glycosylation BAGALT1 \ LUAD [95]
PD-L1 N-linked glycosylation STT3 Etoposide +anti-Tim-3 BC, NPC, CxCa [39, 96-99]
PD-L1 N-linked glycosylation \ a-mangostin TNBC [188]
PD-L1 N-linked glycosylation SEC61G \ GBM [100]
PD-L1 N-linked glycosylation MCT4 \ TNBC [101]
PD-L1 O-linked glycosylation GALNT2/14 \ LUAD [105]
PD-L1 O-linked glycosylation GFAT1 \ Lung cancer [106]
PD-L1 Ectodomain shedding MMP9, 13 \ Mesenchymal stromal cells  [64]
PD-L1 Ectodomain shedding MMP7, 13 CL82198, Paclitaxel HNSCC [65]
PD-L1 Ectodomain shedding MMP2,9,13 HE4 oC [66]
PD-L1 Disulfide bond formation PDIAS \ HCC, GBM, PC [109]
PD-L1 Disulfide bond formation ERO1-a ERO1-a knockout TNBC [108]
PD-L1 S-palmitoylation PPT1 PPT1 inhibitor Melanoma, HCC [190, 191]
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Table 1 (continued)
Target Posttranslational Regulator Therapy Preclinical tumor model  Ref. No
modifications
PD-L1 C272 S-palmitoylation ZDHHC9 2-BP BC, Lung cancer [112-115]
PD-L1 C272 S-palmitoylation ZDHHC3 CPP-S1,2-BP, SP-PROTAC CRC [116, 196]
PD-L1 S-palmitoylation FASN DHA Bladder cancer [41,117]
PD-L1 S-palmitoylation DHHC5 DHA PCA [41]
PD-L1 ADP-Ribosylation ARF6 \ PCA [119,120]
PD-L1 Acetylation EGF \ cscc [33]
PD-L1 K263 Acetylation p300, HDAC2 HDAC2 inhibitor TNBC [125]
PD-L1 Acetylation VPA \ PCA [126]
PD-L1 Autophagic degradation ING4 CK2 inhibitor NSCLC [161]
PD-L1 SUMOylation TRIM28 \ GC [88]
PD-L1 ISGylation ISG15 \ LUAD [57]
PD-L1 UFMylation UFLT, UFM1 UFSP2 inhibitor TNBC, HCC [58]
PD-L1 K162 Methylation SETD7 \ NSCLC [22]
PD-1Y223,Y248 Tyrosine phosphorylation Lck Shp2 BL [133]
PD-1 K48 Poly-ubiquitination FBXO38 IL-2, CISH knockout CRC, NSCLC [13,136]
PD-1 Ubiquitination c-Chl \ CRC [137]
PD-1 K48 Poly-ubiquitination FBW?7 Oridonin NSCLC [12]
PD-1 Ubiquitination MDM2 \ Colon cancer [138]
PD-1 N49,N74 N-linked glycosylation Fut8 2 F-Fuc Melanoma [140]
PD-1 S-palmitoylation DHHC9 \ CRC [147]

developed ROTACS, a type of PROTAC that targets and
degrades specific signaling molecules, using a chimera
called R2PD1 to efficiently degrade PD-L1 in melanoma
cells, outperforming existing treatments in activating
immune responses and inhibiting tumor growth [166].
These developments suggest that PROTACS could signifi-
cantly improve PD-1/PD-L1-targeted therapies for can-
cer [167].

Prospects and clinical translation of CDK4/CDK6 inhibitors

Research has revealed that CDK4/CDK®6 inhibitors, by
increasing CDH1 levels, promote the degradation of the
SPOP protein, which in turn increases PD-L1 expression
through a pathway involving cyclin D-CDK4. Using the
CDK4/6 inhibitor palbociclib and PD-1 immunotherapy
in a mouse colon cancer model resulted in significant
tumor shrinkage and extended survival, highlighting a
new regulatory mechanism involving cyclin kinase and
ubiquitin ligase for PD-L1 [35]. In another discovery,
Ding et al. reported that the diabetes drug canagliflozin
disrupts the interaction between SGLT2 and PD-L1,
allowing PD-L1 recognition and degradation by the
Cullin 3-spopoe3 ligase and enhancing T-cell attack
on tumor cells [48]. This finding illustrates a potential
strategy for using existing drugs to decrease PD-L1 and
boost immune responses against cancer. Additionally,
Lin’s team identified PIK-93, a compound that increases
the binding of PD-L1 to Cullin-4 A, thus improving the
effectiveness of anti-PD-L1 immunotherapy [42]. These
findings have propelled multiple clinical trials testing
combinations of CDK4/6 inhibitors with PD-1/PD-L1

therapies [168, 169]. A phase I trial on advanced non-
small cell lung cancer reported that 53% of patients
showed clinical improvement and tolerated the treatment
well, indicating a promising avenue for enhancing cancer
immunotherapy [168] (Table 2).

Prospects and clinical translation of targeting the
deubiquitination of PD-1/PD-L1

Zhang et al. discovered that the USP22 inhibitors Rot-
tlerin and Morusin promote the breakdown of PD-L1 and
Sirtl proteins, suggesting a new method for cancer ther-
apy [170]. In related research, combining a USP2 inhibi-
tor with an anti-PD1 antibody led to complete tumor
regression in models with functional p53, emphasizing
the therapeutic potential of targeting protein stability
[40]. Li et al. reported that the flavonoid dihydromyrice-
tin (DHM) acts as a USP51 inhibitor, enhancing lung can-
cer cell sensitivity to chemotherapy by promoting PD-L1
degradation [80]. Similarly, a study on a USP8 inhibitor
demonstrated its effectiveness in suppressing pancre-
atic tumor growth by activating killer T cells, especially
when combined with anti-PD-L1 therapy [81]. Addition-
ally, A11, an inhibitor of USP7, showed promising anti-
tumor effects by blocking PD-L1’s ability to help tumors
evade immune detection, and when combined with PD-1
antibody therapy, it showed enhanced antitumor activity
[82]. Additionally, the application of the CSN5 inhibitor
curcumin inhibited the ubiquitination of PD-L1, reduced
PD-L1 expression, and increased the sensitivity of tumor
cells to CTLA4 immunotherapy [73].



Wang et al. Experimental Hematology & Oncology (2024) 13:46 Page 18 of 30

Rottlerin and Morusin UsPkP22 Gefitinib+anti-PD-1

GSK3
B Olaparib+ anti—PD-1
DHM USP51
Deubiquitination ) .
AMPK Metformin+ anti—CTLA4
A11+PD-L1 mAb USP7 BHTET e
Curcumin+anti-CTLA4 CSN5 .
PDIA6 Phosphorylation Gefitinib
EGFR Erlotini
p rlotinib
BAY-876 GLUT1
LRRK2 Vitamin B12
IPAG Sigma1
_ Glycosylation CDK4/6  Palbociclib+Avelumab-+Axitinib
SAFit FKBP51s
Etoposide-+anti-Tim-3 STT3 PD-L1 EEel  Cefitinib+SCH772984
PYR-41
Gefitinib
STM108 B3GNT3 B-TrCP  Resveratrol
CL82198 MMP7, Cullin3-  Palbociclib+ anti-PD-1
Paclitaxel 13 Ublsuiiinsiion SPOP Canagliflozin
Ectodomain
HEY Mvpz,  Shedding STUB1 H1A
9,13
HUWE1 PTPR+aCTLA-4
p300
HDAC?2 inhibitor Acetylation
HDAC2 VPRBP PTPR+aCTLA-4
N UFEL1, : ; N
UFSP2 inhibitor Uems | UFMylation Q:;‘:gg:gc')cn ING4  CK2 inhibitor
2-BP
CPP-S1 ZDHHC3 FASN
SR-FROTAL S-palmitoylation DHA
2-BP ZDHHC9 DHHC5
Shp2 Lck Phosphorylation l{blqwtma’uon FBXW7 Ofidanin
PD-1
2F-Fuc Fut8 | Giycosylation FBXO38 IL-2
A VN 7

Fig. 8 Regulatory networks and corresponding therapeutic interventions targeting PD-1/PD-L1 posttranslational modifications. The figure illustrates
various therapies targeting PD-L1 and PD-1 post-translational modifications. The colored regions—purple, red, blue, green, brown, pink, gray, orange, and
yellow—correspond sequentially to deubiquitination, glycosylation, ectodomain shedding, acetylation, UFMylation, phosphorylation, ubiquitination,
autophagy degradation, and S-palmitoylation modifications. Adjacent to each colored region, the outer grids display the related molecules and potential
therapeutic drugs targeting these specific post-translational modifications
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Treatment prospects and clinical transformation
associated with PD-1/PD-L1 glycosylation

PD-1 glycosylation enhances the binding of PD-1 to
antibodies and reduces immune escape

The glycosylation of PD-1, particularly at the N58 site,
significantly influences its interaction with certain anti-
bodies. Glycosylation enhances the effectiveness of
camrelizumab by improving its binding to PD-1 [171],
whereas the interaction between cemiplimab and PD-1
mirrors that of camrelizumab [172-174]. Other antibod-
ies, such as nivolumab and toripalimab, do not depend on
glycosylation for their function [173, 175]. To address the
challenges posed by the large size of typical IgG antibod-
ies, researchers have developed smaller proteins, JYQ12
and JYQ12-2, from the extracellular domains of PD-1.
These proteins, which are only 14—17 kDa and contain
a single N-linked glycan chain, not only bind effectively
to PD-L1 and PD-L2 but also enhance the proliferation
of human T cells, showing promising potential for thera-
peutic and diagnostic applications in cancer immuno-
therapy [176].

Targeting the N-glycosylation site of PD-L1 blocks its
interaction with PD-1

The glycosylation of PD-L1 strengthens its interaction
with PD-1, suppressing immune responses and aid-
ing tumor escape. To counter this, new drugs have been
developed to target glycosylation sites. For example, the
antibody STM108 targets glycosylated PD-L1 at spe-
cific sites (N35, N192, and N200), effectively blocking
the PD-L1/PD-1 interaction. This finding demonstrates
the potential of using glycosylation-specific antibodies
in cancer therapy to prevent tumors from escaping the
immune system [90].

Glycosylation of PD-L1 affects clinical immunohistochemistry
The glycosylation of PD-L1 can interfere with its detec-
tion by immunohistochemical antibodies, potentially
causing false-negative results in tests that assess PD-L1
expression in cancer patients. This issue arises when gly-
cosyl structures on the PD-L1 protein prevent antibody
binding [90]. To address this issue, researchers have
developed a method of removing these sugars—called
deglycosylation—before testing. This technique signifi-
cantly improves the accuracy of PD-L1 detection and
correlates better with patients’ responses to anti-PD-1/
PD-L1 therapies [177], and it has been patented (UTSC.
P1325US. P1) due to its substantial clinical value.

Antitumor activity of the PD-L1 glycosylation inhibitor

Glycosylation inhibitors of PD-L1 are promising antitu-
mor agents. In a phase I trial, the fucosylation inhibitor
SGN-2FF combined with pembrolizumab yielded prom-
ising results in patients with advanced solid tumors,
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including a complete response in an HNSCC patient and
significant tumor reduction in a TNBC patient (Table 2).
However, the trial was stopped due to thromboembo-
lism risks [178]. Newer inhibitors, such as A2F1P and
B2FF1P, have shown greater effectiveness than SGN-
2FF due to improved cellular retention and efficiency
[179, 180]. Other developments include IPAG and SAFit,
which inhibit PD-L1 glycosylation and degrade PD-L1 in
cells, enhancing the potential for cancer therapy [84, 85].
Additionally, drugs such as BAY-876 inhibit glycolysis in
TNBC, reducing PD-L1 glycosylation and enhancing the
efficacy of anti-PD-L1 therapies [181]. These advance-
ments demonstrate significant potential for developing
drugs that target the PD-1/PD-L1 pathway, although
safety and impact on normal tissues remain critical con-
siderations [182].

Etoposide can inhibit the enzyme STT3, which is
involved in N-glycosylation, through its anti-EMT
effects, reducing PD-L1 levels and increasing the effec-
tiveness of anti-Tim3 therapy [96]. Clinical trials of eto-
poside combined with anti-PD-1/PD-L1 immunotherapy
are currently underway [183-189] (Table 2). In a phase
III trial for extensive small cell lung cancer, compared
with placebo, pembrolizumab combined with etopo-
side and platinum significantly improved 12-month PFS
(13.6% vs. 3.1%, P=0.0023), enhancing patient quality of
life [183, 184]. Another study revealed that atezolizumab
combined with carboplatin and etoposide increased
overall survival (OS) to 12.3 months from 10.3 months
with chemotherapy alone (P=0.0154) and was well tol-
erated [185, 186]. Similarly, tislelizumab or serplulimab
with the same regimen in different trials extended OS
and PFS [188, 189].

Targeting the PD-L1 dimer inhibits PD-L1 function

PD-L1 can form homodimers and tetramers, and its
complex glycosylation is linked to the homodimeric
structure of its intracellular domain [190]. Natural com-
pounds such as capsaicin, 6-gingerol, and curcumin may
block the PD-1/PD-L1 interaction by targeting PD-L1
dimerization, enhancing anticancer immunity [191].
The small molecule BMS-202, with modified carbonyl
to hydroxyl groups, produces two enantiomers, MS and
MR, both of which disrupt PD-L1 function by targeting
its dimerization [192]. Furthermore, compounds such as
a-mangostin and ethanol extracts can inhibit PD-L1 gly-
cosylation and promote its degradation by binding within
the pocket of the PD-L1 dimer [193]. These findings from
preclinical studies highlight the potential of designing
inhibitors that target PD-L1 dimers to enhance immuno-
therapy efficacy.
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Treatment prospects and clinical transformation of PD-L1/
PD-1 palmitoylation

Palmitoylation of PD-L1 stabilizes the protein, and tar-
geting this modification enhances PD-L1 immunotherapy
efficacy. Porcupine, a membrane-bound o-acyltrans-
ferase, is targeted by inhibitors such as LGK974, ETC-
1,922,159, CGX1321, and RXC004 and is now in phase
I trials [194]. These inhibitors have also been tested in
combination with anti-PD-1/PD-L1 antibodies in clini-
cal trials (Table 2). Research shows that chloroquine
derivatives improve anti-PD-1 therapy in melanoma by
targeting palmitoyl protein thioesterase 1 (PPT1) [195].
Combining PPT1 inhibitors with anti-PD-1 antibodies
activates T cells, enhancing tumor immunity [196]. Inno-
vative therapies include HHAT and APT1/2 inhibitors
and 2-bromopalmitate (2-BP) in polymer-lipid hybrid
nanoparticles (2-BP/CPT-PLNs) that replace anti-PD-
L1 antibodies in immune checkpoint blockade, showing
potent antitumor effects and improved survival in mela-
noma models [197-199]. Additionally, a novel peptide
(CPP-S1) that inhibits PD-L1 palmitoylation and pro-
motes its degradation offers another strategy to enhance
immunotherapy efficacy [21].

Dai et al. demonstrated that targeting PD-L1 palmi-
toylation was more effective than direct targeting [200].
Additionally, Shi et al. created a PROTAC (SP-PROTAC)
using an anastomotic peptide targeting the palmitoyl
transferase ZDHHC3, which significantly reduced PD-L1
expression in a human cervical cancer cell line [201].

ZDHHC9 palmitoylates cGAS at Cys 404/405, enhanc-
ing its activation, while depalmitoylation byLYPLALI1
impairs cGAS function. TargetingLYPLALI-mediated
cGAS depalmitoylation could boost cGAS activation
and improve antitumor immunotherapy efficacy [202].
As ZDHHC9 also affects PD-L1 palmitoylation, inhib-
itingLYPLAL1 might enhance overall immunotherapy
outcomes.

Therapeutic promise of other PD-L1/PD-1 posttranslational
modifications

Several preclinical treatments targeting PD-1/PD-L1
posttranslational modifications are being developed.
HDAC?2 inhibitors combined with PD-1 antibodies have
been shown to significantly delay tumor growth and
improve survival in syngeneic MC38 mouse models [22].
JQ-1, which reduces PD-L1 expression through acetyla-
tion, shows potential for treating pancreatic cancer [127].
Pevonedistat, a NEDDylation inhibitor, is undergoing
clinical trials for various cancers and may upregulate
PD-L1 expression, although its effectiveness is still under
study [203, 204]. Zhou et al. discovered a UFSP2 inhibitor
that enhances UFMyation, decreases PD-L1 expression,
and supports PD-1 blockade [59]. CK2 inhibitors trigger
PD-L1 autophagic degradation and enhance antitumor
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immunotherapy when combined with PD-1 antibodies
[61]. Additionally, paclitaxel, which increases MMP-13
in certain cancer cells, shows promise for head and neck
cancer treatment when used with anti-PD-1 therapy [65].
These methods represent promising strategies for cancer
immunotherapy.

Summary and prospective

In this review, we summarize the PTMs of PD-1/
PD-L1 and their regulatory mechanisms and propose
new targets for biomarkers and combination therapies
to enhance PD-1/PD-L1 blockade in immunotherapy.
Despite these advances, many aspects of PD-1/PD-L1
PTMs remain elusive. For diagnosis, PD-L1 glycosylation
can obscure antibody binding sites, causing false nega-
tives [177]. Additionally, the degradation of the glycan
region of the PD-L1 epitope may lead to a loss of stain-
ing on immunohistochemistry [205]. The absolute and
effective glycosylation levels may also vary significantly
[206]. In treatment contexts, PD-L1 PTMs can contribute
to tumor progression. In addition to PD-1/PD-L1 block-
ade, PTMs are vital for antigen presentation, CAR-T-cell
therapy, and vaccine development [207]. Innovations
such as multifluorescence resonance energy transfer
(multi-FRET) are enhancing PTM research, offering new
avenues for advancing tumor immunotherapy [208].

Abbreviations

2F-Fuc 2-fluoro-L-fucose

ADCC Antibody-dependent cytotoxicity

ADPR ADP-ribose

ARF9 ADP-ribosylation factor-6

BC Breast cancer

BCL B-cell lymphoma

BL Burkitt lymphoma

CISH Cytokine-inducible SH2 domain-containing protein
CPT Camptothecin

CR Complete response

CRC Colorectal cancer

CSCC Cutaneous squamous cell carcinoma
CTLs Cytotoxic T lymphocytes

CxCa Cervical cancer

CysorC Cysteine

DHHC Aspartic acid-histidine-histidine-cysteine
DOR Duration of response

ESCC Esophageal squamous cell carcinoma
FASN Fatty acid synthase

GBM Glioblastoma

GC Gastric cancer

Gly Glycine

HCC Hepatocellular carcinoma

HNSCC Head and neck squamous cell carcinoma
HRD Hyperprogressive disease

ICB Immune checkpoint blockade

ICD Immunogenic cell death

KATs Lysine acetylases

LUAD Lung adenocarcinoma

MD Molecular dynamics

MHC Major histocompatibility complex
MULTI-FRET ~ Multifluorescence resonance energy transfer
NPC Nasopharyngeal carcinoma

NSCLC Non-small cell lung cancer

NSQ Nonsquamous
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OoC Ovarian cancer

ORR Objective response rate

(&) Overall survival

0scC Oral squamous cell carcinoma
PC Prostate cancer

PCA pancreatic cancer

PD-1 Programmed cell death protein 1
PD-L1 Programmed death-ligand 1
PDAC Pancreatic ductal adenocarcinoma
PFS Progression-free survival
PROTACs PROteolysis-Targeting Chimeras
PTM Posttranslational modification
SCLC Small cell lung cancer

SD Stable disease

Seror$S Seronine

SQ Squamous

TCR T-cell antigen receptor

ThrorT Threonine

TNBC Triple-negative breast cancer
TRAE Treatment-related adverse events
TyrorY Tyrosine

ZAP70 (chain-related tyrosine kinase 70
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