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Abstract 

Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma 
is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate 
of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent 
nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes 
underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple 
regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferrop-
tosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferrop-
tosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. 
In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize 
recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point 
out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these 
challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
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Introduction
Sarcoma is a type of malignant tumor originating from 
mesenchymal tissue and is broadly categorized into two 
primary groups: bone sarcomas and soft tissue sarco-
mas. Osteosarcoma, a bone sarcoma, is the most preva-
lent sarcoma among children and adolescents, with a 
5-year survival rate ranging from 60 to 70%. Remark-
ably, this rate has seen little improvement over the past 
three decades [1, 2]. On the other hand, soft tissue sar-
comas are complex malignancies that include at least 100 

different histological and molecular subtypes [3]. The 
overall 5-year survival rate for soft tissue sarcomas stands 
at approximately 50% [4]. While local surgical resection 
coupled with chemotherapy and radiotherapy has dem-
onstrated effectiveness in treating both types of sarcoma, 
its overall efficacy remains limited, and advancements in 
novel treatments have been sluggish [5].

Ferroptosis represents a distinctive type of cell demise 
induced by erastin, which is a kind of oncogenic RAS-
selective lethal small molecule (RSL). It is hallmarked 
by the intracellular accumulation of free iron and lipid 
peroxides and stands apart from apoptosis, necrosis, 
and autophagy in terms of morphology, biochemistry, 
and genetics [6]. Although the term "ferroptosis" was 
not formally introduced until 2012, with the discovery 
of the small-molecule inhibitor ferrostatin-1 by Dixon 
et al. [6], the characteristics of this mode of cell death 
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had been described in earlier research and have contin-
ued to evolve since the coining of the term [7]. (Fig. 1). 
In normal conditions, cells manage stress associated 
with ferroptosis through the regulation of various anti-
oxidant systems, which can, in turn, serve as targets for 
interventions aimed at inducing ferroptosis in cells.

Ferroptosis has the potential to be a new and highly 
effective treatment for sarcoma. Recent research has 
unveiled a profound connection between ferroptosis 
and the pathophysiological mechanisms underlying a 
diverse spectrum of diseases, including cancer, neuro-
logical disorders, ischemia–reperfusion injury, kidney 
damage, and hematological disorders [8]. Notably, fer-
roptosis is emerging as a novel drug target, offering ave-
nues to overcome chemotherapy resistance and predict 
disease prognosis in the context of sarcoma treatment 
[9–11]. Therefore, it is of great importance to study the 
mechanism underlying ferroptosis and its potential as a 
sarcoma treatment.

This comprehensive review meticulously delineates 
the molecular mechanisms that underlie ferroptosis. It 
distills and deliberates upon recent breakthroughs and 
advancements in ferroptosis research as a prospective 
strategy for the prevention and treatment of sarcoma. 
Furthermore, the review offers a visionary perspective 
on the clinical applications of ferroptosis, while can-
didly addressing the limitations and challenges inher-
ent in these findings, providing a roadmap for future 
research directions.

In summary, ferroptosis stands at the forefront of inno-
vative approaches to sarcoma therapy. Understanding the 

intricacies of this distinctive form of cell death not only 
holds the promise of more effective treatments but also 
the potential to prognosticate disease outcomes, thereby 
benefiting sarcoma patients and advancing the broader 
landscape of cancer research.

Molecular mechanisms underlying ferroptosis
Ferroptosis, a relatively recent discovery in the realm of 
cell biology, represents a unique form of regulated cell 
death. This process hinges on a distinct chemical cascade 
ignited by the iron-dependent buildup of lipid perox-
ides. Ferroptosis, in essence, is orchestrated by an intri-
cate interplay of various redox-active enzymes, each with 
roles in the generation or elimination of free radicals and 
lipid oxidation products. These molecular actors collec-
tively orchestrate an intracellular redox imbalance, cul-
minating in the cell’s demise. This tightly regulated cell 
death mechanism operates at multiple hierarchical levels, 
spanning epigenetic, transcriptional, posttranscriptional, 
and posttranslational tiers of control. In this orchestrated 
dance of molecular players, ferroptosis unveils itself as a 
multifaceted and carefully governed phenomenon in the 
intricate tapestry of cell biology [12]. (Fig. 2).

Abnormal iron metabolism initiates ferroptosis
Iron is an essential trace element for cell growth and 
metabolism and is a component of the catalytic site of 
many important redox enzymes. However, too much iron 
can be extremely hazardous to cells and cause oxidative 
DNA damage [13]. Intracellular iron is stored in a met-
abolically active pool called the “labile iron pool” (LIP). 

Fig. 1 Landmark events related to the development of ferroptosis
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The LIP can store, export, or consume iron, and most of 
the iron (> 80%) in cells is available in ferrous form [14, 
15].

When dysregulation of intracellular iron leads to 
abnormal accumulation of free iron, excessive amounts 
of lipid peroxide are produced, triggering ferroptosis. A 
study showed that iron chelation therapy attenuated fer-
roptosis in a rodent model of cerebral ischemia‒reperfu-
sion injury [16]. Intracellular free iron is involved in two 
main pathways of ferroptosis, the nonenzymatic pathway 
and the enzymatic pathway. In the nonenzymatic path-
way, excess iron generates hydroxyl radicals through the 
Fenton reaction, and these products enriches the intra-
cellular reactive oxygen species (ROS) pool and promotes 
the oxidation of polyunsaturated fatty acids (PUFAs, such 
as arachidonic acid and linoleic acid) to generate lipid 
peroxides and hydroperoxides, which then attack adja-
cent PUFAs and trigger chain reactions [17, 18]. When 
the pathways that inhibit lipid peroxidation in a cell fail, 
the chain reaction eventually reaches cell membrane 

lipids, causing structural and functional damage and 
leading to ferroptosis [19].

Furthermore, iron-dependent lipoxygenase (LOX) 
serves as a catalyst in the enzymatic pathway, facilitat-
ing the production of lipid peroxides, thereby increasing 
the sensitivity of cells to ferroptosis. Notably, inhibition 
or knockdown of LOXs can inhibit ferroptosis in specific 
cell types, which further proves their importance to fer-
roptosis [20]. Remarkably, a specific lipoxygenase sub-
type, 12/15-LOX, has been identified as a key player in 
the oxidation of PUFAs linked to ferroptosis [21]. This 
observation hints at a potential pivotal role for 12/15-
LOX in the regulation of ferroptosis, although further 
research is needed to solidify this connection [22]. In the 
context of iron overload, substances like hemoglobin and 
ferrous ammonium sulfate can also trigger ferroptosis. 
The mechanisms responsible for their effects involve the 
activation of distinct LOX protein subtypes, underscor-
ing the diverse roles these enzymes play in driving ferrop-
totic cell death [23]. Additionally, other iron-dependent 
enzymes, notably cytochrome P450 oxidoreductase 

Fig. 2 Molecular mechanism of the occurrence and regulation of ferroptosis. PUFAs are modified into PL-PUFAs, which produce lipid peroxides 
through the Fenton reaction involving  Fe2+ or catalyzed by iron-dependent lipoxygenases (red), then attack cells to cause ferroptosis. The 
intracellular iron metabolism (green), three major regulatory pathways (system Xc(−)-GSH-GPX4 pathway, NADPH-FSP1-CoQ10 pathway 
and GCH1-BH4 pathway. blue) and mitochondrial involvement (orange) together regulate the process of ferroptosis. Three common ferroptosis 
inducers: erastin, RSL3, and p53 are exemplified (gray). (Created with BioRender.com.)
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(POR), have been recognized as instigators of lipid per-
oxidation and ferroptosis under specific conditions [24], 
further illustrating the intricate network of molecular 
interactions governing this unique form of programmed 
cell death.

Hence, the development of ferroptosis can be influ-
enced by interventions at various stages of cellular iron 
metabolism. Transferrin (TF) and transferrin receptor 
(TFRC) play crucial roles in this process. TF, binding 
to nearly all forms of circulating iron under physiologi-
cal conditions, facilitates the entry of iron ions into cells 
by recognizing and binding to TFRC. In the SKBR3 and 
MDA-MB-231 cancer cell lines, ferroptosis induced by 
compounds like lapatinib and siramesine was observed 
to be mitigated when TF was knocked down [25]. Simi-
larly, the deletion of TFRC prevented ferroptosis induced 
by erastin or cystine deficiency [26, 27]. These findings 
underscore the regulatory influence of TF and TFRC on 
iron uptake, subsequently affecting the sensitivity of cells 
to ferroptosis.

The mechanism governing the storage of iron within 
cells holds significant importance in the context of fer-
roptosis. Ferritin plays a key role in this process by stor-
ing intracellular iron in an inert form, primarily as  Fe3+. 
Decreasing the LIP and elevating ferritin levels can be 
instrumental in preventing ferroptosis [28]. Moreover, 
in the cytoplasm, the overexpression of ferritin within 
mitochondria has been observed to thwart ferroptosis 
induced by compounds like erastin in neural cells [29]. 
Conversely, ferritin-targeted autophagy, also known as 
ferritin autophagy (chapter " The ferroptosis propaga-
tion”), has the opposite effect, increasing cell suscepti-
bility to ferroptosis [30, 31]. Furthermore, research has 
revealed that prominin 2 mediates the release of ferritin 
and iron from cells via exosomes as a protective mecha-
nism against ferroptosis [32]. This suggests that intracel-
lular pathways governing iron degradation and secretion 
collectively regulate the LIP level, exerting a substantial 
influence on a cell’s susceptibility to ferroptosis.

Solute carrier family 40 member 1 (SLC40A1), also 
known as ferroportin (FPN), stands as the sole recog-
nized iron transporter protein residing on mammalian 
cell membranes, primarily responsible for facilitating iron 
efflux. The modulation of SLC40A1 plays a pivotal role in 
the regulation of ferroptosis. Notably, when SLC40A1 
is knocked down, it heightens the ferroptotic process. 
Conversely, the overexpression of SLC40A1 has been 
observed to decelerate the rate of ferroptosis [25, 33]. 
Thus, by regulating the outflow of cellular iron, SLC40A1 
plays a crucial regulatory role in ferroptosis.

In conclusion, intracellular iron is involved in the for-
mation of lipid peroxides and free radicals through 
the Fenton reaction or functions at the active sites of 

enzymes. Through these two functions, intracellular iron 
is related to ferroptosis. Moreover, modulation of mul-
tiple targets in the iron metabolism pathway can pro-
mote or prevent ferroptosis by affecting the amount and 
availability of intracellular iron, and many of the targets 
affected by iron metabolism have been demonstrated via 
experiments [34]. These discoveries open up numerous 
possibilities for leveraging ferroptosis as a therapeutic 
approach in the treatment of various diseases.

Lipid peroxidation provides materials essential 
for ferroptosis
Ferroptosis is characterized by the accumulation of intra-
cellular lipid peroxides and their damaging effects on 
the cell membrane. Lipids, as the fundamental building 
blocks of cellular membranes, play a vital role in main-
taining normal physiological processes. However, the 
excessive buildup of lipid peroxides can result in a range 
of structural and functional impairments within cells, a 
phenomenon frequently observed in the cells of diseased 
tissues [19].

When subjected to enzymatic processes or attacked 
by free radicals, PUFAs give rise to the production of 
lipid peroxides. For example, during a ROS assault, ara-
chidonic and linoleic acids generate lipid peroxidation 
products, which trigger ferroptosis [35, 36]. Conversely, it 
was found that whether the fatty acid β-oxidation (FAO) 
in mitochondria consumes fatty acids, the formation of 
lipid droplets isolates PUFAs and protects them [34], or 
the competitive inhibition of PUFAs by monounsatu-
rated fatty acids [37–39], they can all effectively prevent 
cells from ferroptosis by reducing the peroxidation of 
PUFAs. Moreover, PUFAs require modification before 
they can actively contribute to peroxidation reactions. 
Lysophosphatidylcholine acyltransferase-3 (LPCAT3) 
and acyl-CoA synthetase long-chain family member 4 
(ACSL4) are recognized as significant regulators of fer-
roptosis [40–42]. They facilitate the conversion of PUFAs 
into phospholipid-bound polyunsaturated fatty acids 
(PL-PUFAs), which can directly participate in lipid per-
oxidation. Research indicates that phosphatidylcholine 
and phosphatidylethanolamine containing epinephrine 
or arachidonic acid (AA) are key phospholipids involved 
in the induction of ferroptosis [21]. Additionally, other 
members of the ACSL family might substitute for ACSL4, 
playing a role similar to that of ACSL4 in mediating fer-
roptosis [43].

In summary, lipid peroxides are generated from intra-
cellular polyunsaturated fatty acids as the foundational 
substrates. This occurs through a combination of enzy-
matic modifications and iron-mediated mechanisms. 
These lipid peroxides subsequently attack the cell 
membrane, resulting in ferroptosis. Lipid peroxidation 
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constitutes a fundamental process in ferroptosis and rep-
resents a potential target for clinical intervention.

Regulatory pathway of ferroptosis
In usual circumstances, cells possess intricate regulatory 
mechanisms to efficiently neutralize surplus peroxides 
and prevent ferroptosis-related reactions. Manipulation 
of these regulatory pathways can exert control over the 
onset of ferroptosis, holding promise for disease treat-
ment. Consequently, ferroptosis regulation has emerged 
as a prominent research area in recent years. Among the 
identified ferroptosis-regulating mechanisms, the three 
primary pathways include the system Xc(−)-glutathione 
(GSH)-glutathione peroxidase 4 (GPX4) pathway, the 
nicotinamide adenine dinucleotide phosphate (NADPH)-
ferroptosis suppressor protein 1 (FSP1)-coenzyme 
Q10 (CoQ10) pathway, and the GTP cyclohydrolase 1 
(GCH1)-tetrahydrobiopterin (BH4) pathway. These path-
ways collectively orchestrate the cellular defense against 
ferroptosis [44].

The system Xc(−)‑GSH‑GPX4 pathway
The first regulatory pathway discovered and harnessed 
for inducing ferroptosis is the system Xc(−)-GSH-GPX4 
pathway. This pathway relies on the catalytic activity of 
GPX4 and its cofactor GSH, which work in tandem to 
reduce lipid peroxides into harmless alcohols [45]. This 
enzymatic process is a crucial antioxidant mechanism 
within cells. Cysteine, the fundamental building block 
for GSH synthesis, is primarily supplied through the 
action of the system Xc- transporter protein on the cell 
membrane. System Xc- is a heterodimeric protein com-
plex composed of solute carrier family 7 member 11 
(SLC7A11/xCT) and solute carrier family 3 member 2 
(SLC3A2). It facilitates the transport of cystine into the 
cell in a 1:1 ratio, which is then rapidly converted back 
into cysteine. Conducted by Dixon et al. in 2012, it was 
demonstrated that a small compound named erastin 
induced a unique form of cell death, subsequently termed 
ferroptosis [6]. Erastin’s mode of action centered on 
inhibiting the system Xc- transporter, thereby disrupting 
the cell’s ability to scavenge peroxides by reducing cellu-
lar cystine uptake. It was further observed that the tumor 
suppressor protein p53 downregulated the expression of 
SLC7A11, leading to ferroptosis via a similar mechanism 
[46, 47]. Additionally, the deletion of SLC7A11 selectively 
induced ferroptosis in pancreatic ductal adenocarcinoma 
cells driven by the KRAS proto-oncogene, effectively 
impeding tumor growth [48]. These findings illuminated 
the critical role of the system Xc- in ferroptosis regula-
tion and its potential as a therapeutic target.

The synthesis of GSH plays a critical role in cellular 
ferroptosis. Activation of GSH synthase inhibitors can 
lead to ferroptosis [49–51]. Glutamate-cysteine ligase 
(GCL) is responsible for catalyzing the connection of 
cysteine to glutamate, a crucial step in the rate-limit-
ing process of glutathione synthesis. The nuclear factor 
erythroid 2-related factor 2 (Nrf2) acts as a counter-
balance to ferroptosis by promoting the expression of 
the GCL gene [52, 53]. Moreover, the expression of the 
multidrug resistance pump P-glycoprotein makes cells 
more susceptible to ferroptosis by pumping glutathione 
out of the cells [54]. This discovery reasonably explains 
why traditional drug resistance and ferroptosis sen-
sitivity often appear at the same time and presents a 
novel approach for targeting drug-resistant bacteria or 
cancer cells. On the other hand, cells have alternative 
mechanisms to acquire cysteine, rendering them resist-
ant to ferroptosis induced by compounds like erastin. 
Some cells can biosynthesize cysteine from methio-
nine via the transsulfuration pathway. By blocking the 
transsulfuration pathway, cysteinyl-tRNA synthetase 
1 (CARS1/CARS) facilitates erastin-induced ferropto-
sis [55]. In conclusion, reducing the cellular GSH con-
centration and diminishing the antioxidant capacity of 
cells, through means such as inhibiting system Xc- and 
other approaches, can induce ferroptosis.

Different from the effects of erastin, RSL3-induced 
ferroptosis doesn’t significantly alter intracellular GSH 
levels. However, it leads to a significant production 
of intracellular lipid peroxides. This difference indi-
cates that RSL3 targets a protein, distinct from eras-
tin, to modulate the accumulation of peroxides. In a 
proteomic study based on an erastin experiment, it 
was discovered that RSL3 skips the upstream system 
Xc- and covalently binds to GPX4, reducing its func-
tionality [56]. This effect was further confirmed when 
researchers overexpressed GPX4 in colorectal cancer 
cells, resulting in the inhibition of ferroptosis induced 
by RSL3 [57]. GPX4 emerges as a pivotal factor in the 
regulation of ferroptosis. It’s important to note that 
GPX4 is a selenoprotein, with selenocysteine serving 
as its active component. Selenium has been shown to 
decrease the rate of ferroptosis when added to cells or 
administered to animals, including mouse models of 
brain hemorrhage. Consequently, selenium may influ-
ence the sensitivity of cells to ferroptosis [58–60]. 
Furthermore, apart from GPX4, other selenoproteins 
might also play a role in ferroptosis [34]. In conclusion, 
in the system Xc(−)-GSH-GPX4 pathway, ferroptosis 
can be induced by inhibiting the system Xc- or GPX4. 
This dual mechanism provides a potential therapeutic 
approach for related diseases by targeting ferroptosis.
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The NADPH‑FSP1‑CoQ10 pathway
In 2016, Shimada K et  al. identified FIN56 during an 
investigation of fifty-six caspase-independent lethal com-
pounds. Their experiments revealed that FIN56 induces 
ferroptosis through a dual mechanism involving the 
depletion of GPX4 and CoQ10. This discovery unveiled 
a novel pathway for regulating ferroptosis [61]. CoQ10 
plays a vital role as an antioxidant in vivo, capturing free 
radical intermediates and preventing lipid peroxidation. 
Consequently, the depletion of CoQ10 heightens cellular 
susceptibility to ferroptosis. Experimental evidence has 
shown that statins, which inhibit 3-hydroxy-3-methyl-
glutaryl-coenzyme A (HMG-CoA) reductase activity, can 
also increase the rate of ferroptosis by depleting cellular 
CoQ10 [61]. Researchers investigating how cells prevent 
ferroptosis in the absence of GPX4 discovered the flavo-
protein apoptosis-inducing factor mitochondria-asso-
ciated 2 (AIFM2), subsequently renamed FSP1. Further 
research revealed that FSP1 counteracts lipid peroxides 
by catalyzing the regeneration of reduced-state CoQ10 
using NAD(P)H. This finding suggests that FSP1 regu-
lates ferroptosis through a distinct pathway running par-
allel to the system Xc(−)-GSH-GPX4 pathway, known as 
the NADPH-FSP1-CoQ10 pathway [62–64].

The GCH1‑BH4 pathway
GCH1 serves as the rate-limiting enzyme in the synthe-
sis of BH4, a crucial coenzyme involved in phenylalanine 
metabolism. BH4 also contributes to the production of 
CoQ10 in its reduced state, bolstering the cell’s capac-
ity to neutralize lipid peroxides and inhibit ferroptosis. 
Furthermore, BH4 directly reduces the ferroptosis rate 
by blocking the peroxidation of specific lipids [65]. Con-
sequently, modulation of the GCH1-BH4 pathway can 
independently intervene in the process of ferroptosis.

The role of mitochondria in ferroptosis
A complex regulatory network involving multiple orga-
nelles collaborates to orchestrate ferroptosis, with mito-
chondria assuming particularly vital roles in this process. 
Experimental evidence has indicated a substantial 
increase in nonheme iron accumulation and lipid per-
oxidation specifically within mitochondria, rather than 
in the cytoplasm, during myocardial ferroptosis induced 
by Adriamycin [66]. While this outcome underscores the 
critical involvement of mitochondria in ferroptosis, the 
precise nature of their role remains unclear and warrants 
further investigation [51].

Research has shown that the depletion of mitochondria 
through parkin-mediated mitophagy effectively prevents 
ferroptosis induced by cysteine deprivation but doesn’t 
impact ferroptosis induced by GPX4 inhibition [67]. This 
observation suggests that mitochondria may promote 

ferroptosis when cysteine levels are deficient by influenc-
ing GSH metabolism. Further studies have highlighted 
the importance of mitochondrial glutamine degrada-
tion in initiating ferroptosis [26]. Two primary metabolic 
pathways of glutamine are the tricarboxylic acid (TCA) 
cycle and glutaminolysis [68]. The byproduct of glu-
tamine catabolism, α-ketoglutarate (α-KG), and its down-
stream products within the TCA cycle are essential for 
the start of ferroptosis [26]. Moreover, in the absence of 
cysteine, glutamine catabolism enhances mitochondrial 
respiration and depletes GSH through GPX4, thereby 
promoting ferroptosis. Conversely, the prevention of fer-
roptosis induced by cysteine deficiency becomes possi-
ble when glutamine catabolism is suppressed [67]. This 
underscores the intricate relationship between mito-
chondrial function and ferroptosis regulation.

Mitochondrial lipids also play a significant role in 
inducing lipid peroxidation and subsequently ferrop-
tosis. Knockdown of acyl CoA synthetase family mem-
ber 2 (ACSF2) and citrate synthase (CS), both essential 
for mitochondrial lipid metabolism, has been shown to 
reverse erastin-induced ferroptosis [6]. Erastin targets the 
mitochondrial resident voltage-dependent anion channel 
2/3 (VDAC2/3) located on the mitochondrial membrane. 
The interaction between VDAC2/3 and erastin impedes 
the entry of endogenous substrates and reduces the rate 
of NADH oxidation, leading to mitochondrial dysfunc-
tion and the release of oxidants, ultimately triggering cel-
lular ferroptosis. Consequently, reducing the expression 
of VDAC2/3 can prevent ferroptosis induced by erastin 
[69, 70]. These findings underscore the close association 
between mitochondria and ferroptosis, making mito-
chondria a viable target for modulating ferroptosis.

The ferroptosis propagation
In addition to killing individual cells, it has been discov-
ered that ferroptosis initiates a cascade of ferroptosis 
triggers among cell populations in a wave-like fashion. 
This results in a distinctive spatiotemporal pattern of cell 
death, which has been seen in cells exposed to C’dots 
nanoparticles, which induce ferroptosis, as well as in the 
kidney tubules of mice treated with erastin [71, 72]. How-
ever, this wave-like action is mediated by specific ferrop-
tosis subtypes that depend on the continual presence of 
iron and lipid peroxides. In various circumstances, the 
existence of non-random spatiotemporal patterns of fer-
roptosis has been statistically demonstrated by Riegman 
M et al. [73]. Ferroptosis induced by GPX4 inhibition is 
described as "single cell ferroptosis" and does not trig-
ger a propagation among neighboring cells. In contrast, 
ferroptosis caused by glutathione inhibition (such as 
BSO and erastin) or cellular iron overload (like C’dots 
and FAC) can initiate ferroptosis in multiple cells and is 
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characterized as "multiple cell ferroptosis." [73]. The fail-
ure of ferroptosis propagation following GPX4 inhibi-
tion may be associated with factors related to glutathione 
function or iron activity rather than GPX4 itself [54]. This 
distinction highlights the complexity of ferroptosis regu-
lation and propagation within cell populations.

The complete process of ferroptosis, including cell lysis, 
might be necessary for its propagation. But in recent 
years, it has been found that it can also propagate in the 
cell population without cell rupture [73]. Ferroptotic cells 
undergo swelling and rounding before eventually ruptur-
ing. This swelling and rounding are caused by the forma-
tion of pores in the plasma membrane, which allow the 
influx of water molecules and ions from the external 
environment [74, 75]. What’s intriguing is that lipid per-
oxidation, a key aspect of ferroptosis, can alter the shape 
of lipid domains and sections of the plasma membrane 
[76, 77]. This suggests the possibility that lipids them-
selves, rather than pore-forming proteins, mediate the 
formation of plasma membrane pores. Cells can propa-
gate ferroptosis before they rupture by releasing factors 
through these plasma membrane pores, and this process 
can be effectively prevented by osmoprotectants [75]. 
However, research has shown that when cells undergo 
complete lysis (rupture), ferroptosis propagation is accel-
erated [73]. This acceleration is likely due to the release 
of more diffusible components from the ruptured cells. 
Furthermore, arachidonic acid, a ferroptosis inducer, 
has been shown to cause significant cellular deformation 

in zebrafish larvae, indicating that ferroptosis can also 
propagate in  vivo and lead to substantial tissue damage 
[78]. Therefore, further investigation into the cascade of 
events in ferroptosis propagation could have significant 
clinical implications. The mechanism of intercellular fer-
roptosis propagation is shown by a picture (Fig. 3).

The role of ferroptosis in cancer
As a death mode first discovered in cancer [6], ferroptosis 
is closely related to the pathological process, metabolic 
state and microenvironment regulation of cancer. There-
fore, we are here to elaborate the molecular mechanism 
related to ferroptosis in cancer.

Ferroptosis is involved in the formation and regulation 
of cancer
Studies have found that some classic cancer-related fac-
tors and pathways can affect the formation and regula-
tion of cancer by inducing or inhibiting ferroptosis [79], 
indicating that ferroptosis is widely involved in the path-
ological process of cancer.

TP53
TP53 gene encodes an important tumor suppressor P53, 
which is mutated or inactivated in about 50% of cancers 
[80], leading to the development of cancer. The typi-
cal and well-known anticancer effect of P53 is achieved 
by inducing cell cycle arrest, senescence or apoptosis of 
tumor cells [81–83]. However, in recent years, it has been 

Fig. 3 Mechanism of ferroptosis propagation between cells. This figure shows the inducers, conditions, processes, and changes in cell morphology 
and contents for the intercellular spread of ferroptosis, including single cell ferroptosis and multiple cell ferroptosis. (Created with BioRender.com.)
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found that P53 can also affect tumor growth by induc-
ing ferroptosis, which is called atypical effect. P53 3KR, 
a mutant product of TP53 gene, has lost the ability to 
induce cell cycle arrest, senescence and apoptosis, but it 
can enhance the susceptibility of cells to ferroptosis [47, 
84]. The P53 3KR knockin mice will not form spontane-
ous tumors, which proves the existence of ferroptosis-
induced anti-tumor pathway of p53 [47]. As mentioned 
above, under cellular stress, P53 affects the ability of cells 
to remove excess lipid peroxides and promotes ferropto-
sis of tumor cells mainly by mediating the transcriptional 
inhibition of SLC7A11. For example, the activation of p53 
by nutlin-3 will trigger ferroptosis of osteosarcoma U2OS 
cells [47]. P53 R273H and P53 R175H, two mutants of 
P53, cannot bind to DNA, but can still inhibit the expres-
sion of SLC7A11 by inhibiting the activity of other tran-
scription factors, which indicates that p53 participates 
in an integrated transcription factor network to regu-
late ferroptosis [85]. In addition, P53 can also indirectly 
mediate ferroptosis through metabolic target genes such 
as SAT1 [86], FDXR [87] and GLS2 [26].

However, under basal or low ROS stress, P53 may 
in turn inhibit ferroptosis, indicating its bidirectional 
effect [88]. For example, the complex formed by dipep-
tidyl peptidase-4 (DPP4) and NOX1 can mediate plasma 
membrane lipid peroxidation. By binding and blocking 
the activity of DPP4, P53 can inhibit ferroptosis induced 
by erastin in human colorectal cancer cells [89]. Moreo-
ver, in fibrosarcoma cells, P53 can limit ferroptosis by 
inducing CDKN1A expression [90].

To sum up, TP53, as an important regulatory gene of 
both ferroptosis and tumor, usually promotes ferropto-
sis and inhibits tumor growth, and may has the opposite 
effect in specific cases. Eprenetapopt and coti-2, both 
aimed at reactivating p53, are currently being tested in 
clinical trials involving patients with acute myeloid leuke-
mia (AML; NCT03931291) and various solid malignant 
tumors (NCT04383938 and NCT02433626).

RAS
RAS genes, such as HRAS, NRAS and KRAS, are the 
most commonly mutated oncogenes in cancer [91], and 
closely related to ferroptosis. As mentioned above, eras-
tin and RSL3 can significantly induce ferroptosis in RAS 
mutant cancer cells [6, 57, 92]. This is because the mutant 
RAS signal may increase the concentration of intracellu-
lar free iron by regulating the expression of iron metab-
olism-related genes (such as FTH1 and TFRC), which 
in turn increase the sensitivity of cells to ferroptosis [27, 
93]. Therefore, in recent years, anti-tumor drugs target-
ing RAS to induce ferroptosis have been developed one 
after another. For example, sotorasib and adagrasib, the 
inhibitors against KRAS-G12C mutant protein have been 

proved to have good activity in patients with non-small-
cell lung cancer (NSCLC) and other solid tumors [94, 95]. 
However, the RAS mutation of tumor may also inhibit 
ferroptosis under certain circumstances. Ectopic expres-
sion of oncogenic RAS mutants (NRAS12V, KRAS12V 
and HRAS12V) was found to enhance the resistance of 
rhabdomyosarcoma RMS13 cells to oxidative stress and 
ferroptosis [96]. In addition, a sensitivity analysis of 177 
cancer cell lines to common ferroptosis-induced small 
molecules showed that the mechanism of ferroptosis can 
be RAS-dependent or independent, indicating that RAS 
mutation is not a necessary condition for ferroptosis in 
tumors [97]. In a word, RAS shows its potential as an 
ferroptosis inducing target to resist tumors. Its different 
mutation characteristics have different responses to fer-
roptosis, which needs further exploration.

Other tumor‑related factors
The tumor suppressor BAP1 encodes a nuclear deubiq-
uitinating enzyme, which is in the form of a polycomb-
repressive deubiquitinase (PR-DUB) complex to reduce 
the ubiquitination of histone 2A (H2A) in nucleosomes, 
so as to perform epigenetic regulation gene expression 
[98, 99]. Studies have shown that the anti-tumor effect of 
BAP1 is partly due to the ubiquitination of H2A on the 
promoter of SLC7A11, thus inhibiting the expression 
of SLC7A11 and inducing ferroptosis [100]. However, 
the germline mutation of BAP1 is widely found in many 
cancers and makes tumor cells lose the vulnerability to 
ferroptosis, which is considered as an important suscep-
tibility factor of hereditary cancers [101–103].

As an important regulator of oxidative stress signal-
ing, NFE2L2 can promote the formation, progress and 
drug resistance of tumors [104, 105]. It has been found 
that NFE2L2 can help cells to resist oxidative stress of 
ferroptosis by activating protective genes involved in 
iron metabolism (including SLC40A1, MT1G, HMOX1 
and FTH1), GSH metabolism (including SLC7A11, 
GCLM and CHAC1) and ROS detoxification (including 
TXNRD1, AKNRD1, AKR1C1, etc.) [106].

Hypoxia promotes tumor development and drug resist-
ance [107]. The expression of HIF, the main regulator 
of hypoxia, can promote fatty acid uptake by increasing 
the expression of fatty acid binding proteins 3 and 7, so 
as to avoid ferroptosis caused by lipid peroxidation in 
HT-1080 fibrosarcoma cells [108]. On the contrary, the 
activation of HIF can also lead to ferroptosis vulnerability 
of clear-cell carcinomas [109]. This shows that HIF seems 
to have a dual role in the modulation of ferroptosis in 
cancer cells.

The epithelial-to-mesenchymal transition (EMT) is the 
process by which epithelial cells lose their junctions and 
apical-basal polarity, and then increase the mobility of 
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single cells and make the development of invasive phe-
notype possible [110]. It can lead to cancer spread and 
drug resistance [110]. Studies have shown that the high 
mesenchymal-like cell state in human cancer cell lines 
and organs is related to the selective vulnerability to fer-
roptosis [111]. Moreover, metadherin, a positive regula-
tor of EMT, can promote ferroptosis in many cancer cell 
lines by inhibiting the expression of GPX4 and SLC3A2 
[112]. In addition, EMT also destroys cadherin 1-medi-
ated cell–cell contact that can prevent ferroptosis [113–
115]. Therefore, it can be seen that the tumor-promoting 
effect of EMT is accompanied by ferroptosis susceptibil-
ity, which is expected to become a breakthrough in the 
treatment of tumors with EMT phenomenon.

The role of ferroptosis in tumor microenvironment (TME)
The tumor microenvironment (TME) is composed of 
many different cellular and non-cellular components, 
which jointly drive tumor growth, invasion, metasta-
sis and response to treatment. It makes cancer research 
change from a cancer-centered model to a model that 
regards TME as a whole [116, 117]. Immune cells, includ-
ing T cells, macrophages, NK cells and so on, play a very 
important role in TME [118]. Moreover, a large number 
of studies have found that immune cells in TME have 
many overlaps with tumor cells in growth signals and 
metabolic characteristics, which further shows that they 
are closely interacted [119–122]. Therefore, we’ll ask two 
questions: does ferroptosis also occur in immune cells 
in TME when it’s induced in cancer cells and what is the 
interaction between immune cells and ferroptotic cancer 
cells.

Sensitivity of immune cells in TME to ferroptosis
T cells play an important role in anti-tumor immunity 
[123]. However, it was found that T cells lacking GPX4 
will rapidly accumulate membrane lipid peroxides (LPO) 
after activation and lead to cell death, which will weaken 
their proliferation and anti-infection effects [124]. After 
that, this process was repeated in melanoma-related 
 CD8+ T cells with the help of a high-throughput in vitro 
pharmacologic screening platform, and overexpression 
of GPX4 can effectively restore the anti-tumor immune 
effect of T cells [125]. Combined with the fact that cancer 
cells can promote the accumulation of reactive oxygen 
species in TME [126], it is reasonable to think that  CD8+ 
T cells in TME are vulnerable to ferroptosis, and their 
susceptibility may be higher than that of T cells in physi-
ological environment. This study also found that  CD8+ T 
cells are even more sensitive to various ferroptosis induc-
ers than some cancer cells (melanoma B16 cells) [125]. 
In contrast, Tregs in TME show a lower number of LPO, 
and are less prone to ferroptosis [125]. This might be 

because Tregs can rapidly induce the expression of GPX4 
after being activated by TCR/CD28 co-stimulation [127]. 
However, targeted inhibition of GPX4 can still induce 
ferroptosis in Tregs to alleviate immunosuppression and 
exert antitumor effect [127].

In addition to T cells, other immune cells in TME will 
also respond to the induction of ferroptosis. It was found 
that M1 phenotype of tumor-associated macrophages 
(TAMs) is more resistant to ferroptosis caused by GPX4 
deletion than M2 phenotype [128]. This might be because 
the high level of NO radical in M1 cells easily reacts with 
active intermediates produced by lipid free radicals and 
lipid peroxidation, and then replaces GPX4 to prevent 
ferroptosis [128, 129]. In addition, dendritic cells (DCs) 
have been proved to reduce the antigen processing abil-
ity due to ferroptosis when the lipid level increases [130–
132]. Similarly, lipid peroxidation-associated oxidative 
stress caused by ferroptosis inhibits the glucose metab-
olism of NK cells to cause dysfunction, and the activa-
tion of Nrf2 antioxidant pathway may save them [133]. 
In short, not only tumor cells, but also immune cells in 
TME are susceptible to ferroptosis. The use of ferropto-
sis to treat tumors is a "double-edged sword", so efforts 
should be made to make the killing effect of tumors out-
weigh the damage to the immune system.

Interaction between ferroptotic cancer cells and immune cells 
in TME
Ferroptotic cancer cells and immune cells in TME can 
regulate each other. Firstly, ferroptosis can increase the 
immunogenicity of cancer cells. Studies have shown that 
cells undergoing early ferroptosis (within 1 h of treat-
ment with the ferroptosis inducer RSL3) can induce den-
dritic cells to mature in vitro to kill fibrosarcoma cells by 
releasing damage-related molecular patterns (DAMPs) 
[134, 135]. Recently, a membrane oxidized phospho-
lipid, 1-steaoryl-2–15-HpETE-sn-glycero-3-PE, has been 
found on the surface of ferroptotic cancer cells, which 
can guide macrophages to phagocytize [129]. But in some 
cases, ferroptotic cancer cells can also inhibit anti-tumor 
immunity. For example, the KRAS protein released from 
exosomes of ferroptotic tumor cells can be absorbed by 
TAMs. This, in turn, causes TAMs to switch to the M2 
phenotype, thereby promoting the proliferation of pan-
creatic tumor [136].

Secondly, immune cells can also directly kill tumor cells 
through ferroptosis. Research shows that immunother-
apy-activated  CD8+ T cells can enhance ferroptosis-spe-
cific lipid peroxidation in tumor cells by downregulating 
the expression of SLC3A2 and SLC7A11, via the release 
of IFN-γ [137].

To sum up, ferroptosis can affect the whole TME, not 
just tumor cells, and it can also serve as a bridge between 
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tumor cells and related immune cells. Therefore, ferrop-
tosis is both an internal factor and an external factor of 
TME regulation.

Progress of research on ferroptosis in sarcoma 
treatment
The importance of conducting further clinical research 
on sarcoma treatment cannot be overstated, primarily 
due to the high mortality rates among patients, the lim-
ited range of effective therapeutic options available, and 
the persistent challenge of drug resistance in treating this 
condition. Ferroptosis, a recently explored form of pro-
grammed cell death, has shown promise in effectively 
restraining tumor growth, invasion, and progression 
[28]. Consequently, there is a growing body of research 
focused on exploring the diverse strategies through 
which ferroptosis can be harnessed as a potential treat-
ment approach for sarcoma. (Fig. 4).

Research progress on ferroptosis applied to directly kill 
sarcoma cells
The current standard treatment for sarcoma, which 
involves surgery along with radiation and chemotherapy, 
has limitations in terms of its effectiveness, especially in 
cases of metastatic tumors, where the median survival 
rate is only 15–20 months [138, 139]. Consequently, there 
is a pressing need for novel and more potent systemic 
therapies for sarcoma patients [140]. Ferroptosis has 

emerged as a potentially transformative mechanism for 
targeting and eliminating sarcoma cells. What’s particu-
larly promising is that there is evidence to suggest that 
tumor cells, including sarcoma cells, may be more vulner-
able to ferroptosis than normal cells, thanks to the cor-
relation between the expression of cancer-related genes 
and ferroptosis-related genes (FRGs) [114, 141–143]. As 
a result, ferroptosis has garnered significant attention as 
a research focal point in the pursuit of more effective sar-
coma treatments. In Tables  1 and 2, we’ve summarized 
the mechanisms, effects, and the cell models used in 
some common ferroptosis inducers and inhibitors, both 
for sarcoma cell-targeted and non-sarcoma cell-targeted 
treatments.

Ferroptosis in the treatment of osteosarcoma
Certain drugs, such as bavachin [146], tirapazamine 
[160], and sulfasalazine [153, 185], have demonstrated 
the ability to induce ferroptosis in osteosarcoma cells by 
inhibiting the expression of the system Xc- component 
SLC7A11. In particular, bavachin has proven effective in 
inhibiting the growth of MG63 and HOS osteosarcoma 
cell lines. This inhibitory effect of bavachin on osteosar-
coma cell growth can be reversed by ferroptosis inhibi-
tors like ferrostatin-1 and liproxtin-1, iron chelators like 
desferrioxamine, and antioxidants like Vitamin E [146]. 
This suggests that bavachin induces cell death in osteo-
sarcoma cells through ferroptosis. Further investigation 

Fig. 4 Pathways of ferroptosis for sarcoma treatment. This figure shows three common ways in which ferroptosis is applied to sarcoma treatment, 
including predicting prognosis, killing sarcomas, and reducing drug resistance, with clarification of mechanisms and examples. (Created 
with BioRender.com.)
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Table 1 Ferroptosis inducers targeting sarcoma cells and other cells

Compound Mechanism Effect Cell models Refs.

① Ferroptosis inducers in sarcoma

 5-aminolevulinic acid (ALA) HMOX1 overexpression,
iron and lipid peroxides 
overload

Fe2+ ↑, GPX4 ↓, ROS ↑, MDA ↑ SW872 (liposarcoma), MG63 
(osteosarcoma)

[144]

 ACXT-3102 SLC7A11 inhibitor GSH ↓ SK-LMS-1, MG-63,
HTB-93, etc
(synovial sarcoma)

[145]

 Bavachin Transferrin receptor ↑,
divalent metal transporter-1 ↑,
ferritin light chain ↓,
ferritin heavy chain ↓,
p53 ↑, p-STAT3 ↓,
SLC7A11 ↓, GPX4 ↓

Fe2+ ↑, GSH ↓, GPX4 ↓, ROS ↑,
Malondialdehyde ↑,
mitochondrial morphology 
alteration

MG63, HOS (osteosarcoma) [146]

 Buthionine-sulfoximine (BSO) GCL inhibitor GSH ↓ S4MH, F21
(rhabdomyosarcoma)

[147, 148]

 β-Phenethyl isothiocyanate
(PEITC)

TfR1 ↑,
FPN, FTH1, DMT1 and IRP2 ↓, 
GSH/GSSG and GPX4 ↓

Fe2+ ↑, GSH ↓, GPX4 ↓, ROS ↑ MNNG/HOS, U-2 OS,
MG-63, 143B, K7M2 (osteosar-
coma)

[149, 150]

 EF24 HMOX1 overexpression Fe2+ ↑, GPX4 ↓, ROS ↑, MDA ↑ U2os, Saos-2 (osteosarcoma) [11]

 Erastin SLC7A11 and VDAC2/3 inhibitor GSH ↓, ROS ↑ HT1080; C2C12, RD, RH18, RH30, 
etc
(various sarcomas)

[6, 92, 151, 152]

 Ferric ammonium citrate 
(FAC)

Iron supplement Fe2+ ↑ K7M2
(murine osteosarcoma)

[153]

 Ferrous ammonium sulfate 
(FAS)

Iron supplement Fe2+ ↑ K7M2
(murine osteosarcoma)

[153]

 KDM4A H3K9me3 demethylation 
in the promoter region 
of SLC7A11

GSH ↓ 143 B, HOS
(osteosarcoma)

[154]

 MicroRNA-1287-5p Bound to the 3’-untranslated 
region of GPX4

GPX4 ↓ Human osteosarcoma cells [155]

 Pure Artemisinin/Artemisia 
annua L. hydroalcoholic 
extract

Ferritin autophagy Fe2+ ↑ D-17, OSCA-8, OSCA-40
(canine osteosarcoma)

[156, 157]

 RSL3 GPX4 inhibitor GPX4 ↓ BJ-TERT; HT1080; C2C12, RD, 
RH18, RH30, etc
(various sarcomas)

[92, 97, 152]

 Sorafenib SLC7A11 inhibitor GSH ↓ RH30, RD, RMS, etc. (rhabdo-
myosarcoma)

[147, 158]

 Sulfasalazine
(SAS)

SLC7A11 inhibitor GSH ↓ K7M2
(murine osteosarcoma)

[153]

 Theaflavin-3,3’-digallate (TF3) Down-regulating FTH 
and GPX4, GSH consumption

Fe2+ ↑, GSH ↓, GPX4 ↓
ROS ↑, MDA ↑

MG63. HOS, hFOB1.19 (osteo-
sarcoma)

[159]

 Tirapazamine
(under hypoxia)

SLC7A11 and GPX4 inhibitor;
up-regulating p53

Fe2+ ↑, GSH ↓, GPX4 ↓ 143B, U2OS, MNNG/Hos (osteo-
sarcoma)

[160]

 Ursolic acid Ferritin autophagy Fe2+ ↑ 143 B, HOS (osteosarcoma) [161]

 Zoledronic acid Up-regulating POR,
down-regulating CoQ10,
HMOX1 overexpression

ROS ↑,
lipid peroxides ↑

Human osteosarcoma cells [162, 163]

② Ferroptosis inducers in other cells

 BAY 11–7085 NFKBIA/IkBa inhibitor,
HMOX1 overexpression

Fe2+ ↑, GPX4 ↓, ROS ↑, MDA ↑ MDA-MB-231, MCF-7, MDA-
MB-468, SKBR3

[164]

 BAY 87–2243 Mitochondrial complex I 
inhibitor

Mitochondrial membrane 
potential ↓, ROS ↑

G361, SK-MEL-28 [165]

 Cyst(e)inase Cyst(e)ine consumption GSH ↓ AsPC-1, PANC-1, BxPC-3, S2-013;
PCa cells, FVB/N mice

[48, 166]

 FeCl2 Iron supplement Fe2+ ↑ OHSCs [167]
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into the mechanism revealed that bavachin increases 
the expression of transferrin receptor and divalent metal 
transporter-1 while decreasing the expression of ferri-
tin light chain and ferritin heavy chain in osteosarcoma 
cells. This leads to an increase in intracellular ferrous iron 
content, making the cells more susceptible to ferroptosis. 
Additionally, bavachin upregulates the expression of p53 
by downregulating phosphorylated signal transducer and 
activator of transcription 3 (p-STAT3). Then, p53 down-
regulates SLC7A11 and GPX4 expression, contributing 
to the accumulation of intracellular ROS and MDA. This 
finding highlights the importance of the STAT3/p53/
SLC7A11 axis as a key pathway involved in ferroptosis 
induced by bavachin [146]. Conversely, the histone dem-
ethylase KDM4A has been found to increase SLC7A11 
expression and inhibit ferroptosis in osteosarcoma cells 
by controlling the demethylation of H3K9me3 at the 
SLC7A11 promoter region [154]. Therefore, KDM4A 
is a potential therapeutic target for the treatment of 
osteosarcoma.

In addition to targeting the membrane receptor sys-
tem Xc-, increasing the intracellular iron concentration 
has also been explored as a strategy to induce ferroptosis 
in sarcoma cells for potential treatment. Several studies 
have investigated the effects of iron supplementation on 
sarcoma cells. For instance, iron supplementation with 
compounds like ferric ammonium citrate (FAC) or fer-
rous ammonium sulfate (FAS) has been found to exacer-
bate ferroptosis induced by treatments in sarcoma cells, 
such as intensifying SAS-induced ferroptosis in K7M2 
osteosarcoma cells [153]. This suggests that increasing 
intracellular iron levels can enhance ferroptosis in sar-
coma cells. Another intriguing finding is related to fer-
ritin autophagy, a process that involves the degradation 

of ferritin, which can increase the intracellular concen-
tration of unstable iron. This mechanism appears to be 
critical for inducing ferroptosis in canine osteosarcoma 
cell lines when treated with a hydroalcoholic Artemisia 
annua extract [156, 157]. Furthermore, compounds like 
phenethyl isothiocyanate (PEITC), derived from crucifer-
ous vegetables and available in plant extracts, have been 
shown to induce multiple forms of cell death, primarily 
ferroptosis, apoptosis, and autophagy, in osteosarcoma 
cells. This is achieved through mechanisms that include 
increasing active iron, depleting GSH, producing ROS, 
and activating the MAPK signaling pathway [149, 150]. 
However, it’s important to note that excessive PEITC 
intake can potentially affect normal cells due to expanded 
tissue distribution resulting from metabolic saturation 
[150, 186]. Additionally, EF24, a synthetic analog of cur-
cumin, triggers ferroptosis by upregulating heme oxyge-
nase 1 (HMOX1). This upregulation increases the  Fe2+ 
concentration by breaking down heme and inhibiting 
GPX4 expression. EF24 is considered a promising can-
didate for treating HMOX1-positive osteosarcoma [11]. 
These studies demonstrate the potential of Chinese pat-
ent medicines in inducing sarcoma ferroptosis.

In vitro cell experiments showed that high concentra-
tions of 5-aminolevulinic acid similarly induced ferrop-
tosis in human sarcoma cells by overexpressing HMOX1 
in the dark, suggesting new possibilities for the applica-
tion of this drug [144]. Furthermore, zoledronic acid has 
exhibited multifaceted effects in promoting ferroptosis in 
osteosarcoma cells. It not only upregulates HMOX1 pro-
tein expression but also significantly reduces the levels 
of the antioxidant CoQ10. Additionally, zoledronic acid 
increases the expression of POR, an enzyme required for 
lipid peroxidation [162, 163]. These combined actions 

Table 1 (continued)

Compound Mechanism Effect Cell models Refs.

 FIN56 GPX4 consumption and deplet-
ing CoQ10 via the mevalonate 
pathway

GPX4 ↓, CoQ10 ↓,
ROS ↑

BJeLR, HT-1080, MEFs, PACN1 [61, 168]

 FINO2 Indirect inhibitor of GPX4 
and direct oxidant of iron

Fe2+ ↑, GPX4 ↓ HT-1080 [169]

 Glutamate SLC7A11 inhibitor GSH ↓ HT1080, PC12 [170]

 Hemin HMOX1 overexpression 
and iron supplement

Fe2+ ↑, GPX4 ↓, ROS ↑, MDA ↑ IMR-32, SK-N-SH;
male Swiss albino mice

[23, 171]

 Hemoglobin Iron supplement and
ROS production

Fe2+ ↑, ROS ↑, MDA ↑ OHSCs [167]

 (NH4)2Fe(SO4)2 Iron supplement Fe2+ ↑ IMR-32 [171]

 Piperazine erastin SLC7A11 inhibitor GSH ↓ HT-1080, BJeLR [6, 97]

 Statins (fluvastatin, lovastatin, 
simvastatin)

HMG-CoA reductase inhibitor 
and GPX4 biosynthesis sup-
pression

GPX4 ↓, CoQ10 ↓,
ROS ↑

HT-1080, HCC4006 [61, 111]
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Table 2 Ferroptosis inhibitors targeting sarcoma cells and other cells

Compound Mechanism Effect Cell model Refs.

① Ferroptosis inhibitors in sarcoma

 Bathophenanthrolined-
isulfonic acid (BPS)

Iron chelator Fe2+ ↓ C2C12, U57810 (rhabdomyo-
sarcoma)

[92]

 Bisindolylmaleimide I 
and Gö6976

Protein kinase C inhibitor Lipid peroxides ↓ RD, RH18, RH30 [151]

 Deferoxamine
(DFO)

Iron chelator Fe2+ ↓ MG63, HOS (Osteosarcoma); 
HT1080 (fibrosarcoma)

[6, 146]

 Diphenyleneiodonium chlo-
ride (DPI) and GKT137831

NOX inhibitor NOX-mediated lipid peroxida-
tion ↓, ROS ↓

RD, RH18, RH30 [151]

 Fanconi anemia com-
plementation group D2 
(FANCD2)

JAK2/STAT3 pathway inhibitor, 
FTH1 ↑, GPX4 ↑, COX2 ↓, LIP ↓

GPX4 ↑,  Fe2+ ↓, ROS ↓ MG-63, U2OS, hFOB1.19 
(Osteosarcoma)

[172]

 Ferrostatin-1 Radical-trapping antioxidants ROS ↓,
lipid peroxides ↓

HT1080, MG63, HOS, C2C12, 
RD, RH18, RH30, HEK-29, HT22, 
etc
(various sarcomas)

[6, 92, 146, 151, 173]

 Liproxstatin-1 Radical-trapping antioxidants ROS ↓,
lipid peroxides ↓

HT1080, MG63, HOS,
HEK-29, HT22
(various sarcomas)

[6, 146, 173]

 LncRNA- SNHG14 Down-regulating miR-206 GSH ↑ NR-SJSA1 (nutlin3a-resistant 
osteosarcoma)

[174]

 Mitochondrial 
NADP + -dependent isoci-
trate dehydrogenase (IDH2)

NADPH production GSH ↑ HT1080 (fibrosarcoma); 
Hepa1-6 (hepatoma)

[175]

 N-acetyl cysteine (NAC), 
Glutathione (GSH)

Antioxidant, GSH supplement GSH ↑, ROS ↓ HT1080, C2C12, U57810 (rhab-
domyosarcoma)

[6, 92, 97]

 Pifithrin-α p53 inhibitor GSH ↑ MG63, HOS
(Osteosarcoma)

[146]

 Vitamin E and tocopherols Antioxidant, LOX inhibitor ROS ↓,
lipid peroxides ↓

MG63, HOS (Osteosarcoma), 
Pfa1

[21, 146]

 ZnPPIX Down-regulating HMOX1 Fe2+ ↓, GPX4 ↑, ROS ↓, MDA ↓ SW872 (liposarcoma),
MG63 (osteosarcoma)

[144]

② Ferroptosis inhibitors in other cells

 1-methyl tryptophan Indoleamine 2, 3-dioxygenase 
(IDO) inhibitor,
up-regulating SLC7A11,
reduction of nitrative stress

GSH ↑ LO2 [176]

 AA-861 5-LOX inhibitor ROS ↓,
lipid peroxides ↓

HEK-293 T, G401 [177, 178]

 Baicalein 12/15-LOX inhibitor ROS ↓,
lipid peroxides ↓

PANC1, BxPc3;
Jurkat, Molt-4

[179, 180]

 Butylated hydroxyanisole 
and butylated hydroxy-
toluene

Antioxidant ROS ↓,
lipid peroxides ↓

HT1080;
male C57BL/6 J mice

[97, 181]

 β-mercaptoethanol (2ME) Reduction of cystine 
to cysteine

GSH ↑ BMDMΦ and
OT-1  CD8+ T cells

[6, 182]

 CoQ10, idebenone Antioxidant ROS ↓,
lipid peroxides ↓

U-2 OS, NCI-H460,
NCI-H2291, NCI-H1703, NCI-
H446, HT1080

[62, 63]

 Dopamine Improvement of stability 
of GPX4

GPX4 ↑ HEK293, PANC1, HEY, MEF [183]

 Selenium Active group of GPX4 GPX4 ↑ HT-1080, MEFs [58]

 Zileuton 5-LOX inhibitor ROS ↓,
lipid peroxides ↓

Pfa1, HT22 [21, 184]
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enhance the propensity for ferroptosis in osteosarcoma 
cells. Factors that can regulate ferroptosis in sarcoma 
cells by affecting both the  Fe2+ concentration and GPX4 
expression also include the fanconi anemia complemen-
tation group D2 (FANCD2) [172] and theaflavin-3,3′-
digallate [159].

The latest approach to cancer treatment in recent 
years can be combined with ferroptosis to increase treat-
ment efficacy. MicroRNAs (miRNAs) have emerged 
as promising candidates for personalized cancer treat-
ment and appear to be involved in ferroptosis [187–190]. 
For instance, miR-1287-5p, which is downregulated in 
human osteosarcoma, exhibits upregulation in response 
to ferroptotic stimulation [155]. Elevated miR-1287-5p 
levels directly target the 3′-untranslated region of GPX4, 
inhibiting its activity and promoting ferroptosis in osteo-
sarcoma cells. Additionally, miR-1287-5p mimics signifi-
cantly heighten the sensitivity of human osteosarcoma 
cells to cisplatin chemotherapy [155]. Exosome-mediated 
miR-144-3p is another microRNA with a role in inhibit-
ing osteosarcoma development. It regulates ZEB1 expres-
sion, thereby promoting ferroptosis [191]. Moreover, 
the long non-coding RNA (lncRNA) SNHG14 affects 
SLC7A11 activity and prevents ferroptosis by targeting 
and downregulating miR-206 expression in nutlin3a-
resistant osteosarcoma cell lines [174]. Photodynamic 
therapy (PDT), which is a promising approach for various 
cancers, has been investigated in human osteosarcoma 
cells [192, 193]. Specifically, pyropheophorbide-α methyl 
ester-mediated PDT (MPPa-PDT) induces apoptosis 
while increasing unphosphorylated Yes-associated pro-
tein (YAP) levels, which in turn initiate Hippo pathway to 
inhibit apoptosis [194–196]. YAP knockdown enhances 
the sensitivity of human osteosarcoma cells to MPPa-
PDT, increasing apoptosis rates and reducing drug resist-
ance when administered in combination with erastin, 
an inducer of ferroptosis [196]. When utilized alongside 
homologous-sequence-targeting nanoparticles, PDT can 
further enhance apoptosis and ferroptosis rates in osteo-
sarcoma cells [197].

Ferroptosis applied to the treatment of other sarcomas
Rhabdomyosarcoma (RMS) cells have been reported to 
be susceptible to oxidative stress, and the mechanism of 
increasing GSH to increase antioxidant defense makes 
these cells more vulnerable to GSH depletion [198]. As 
a result, ferroptosis may be applied as a new RMS treat-
ment, especially for refractory RMS. Recent studies have 
demonstrated that erastin and RSL3 induce ferroptosis in 
rapidly proliferating myogenic cells via the extracellular 
signal-regulated kinase (ERK) pathway. When combined 
with chemotherapeutic agents like adriamycin and actin-
omycin D, these compounds effectively inhibit all RMS 

cell lines [92]. Furthermore, sorafenib, which targets sys-
tem Xc-, and buthionine-sulfonylimine, an inhibitor of 
GSH biosynthesis, have demonstrated the ability to hin-
der RMS cell line growth [147, 148, 158]. Protein Kinase 
C (PKC) and NADPH Oxidase (NOX) are also involved 
in the regulation of ferroptosis in RMS cells [151].

Ewing sarcoma (ES) is one of the most common malig-
nant tumors in children, with a high degree of malig-
nancy and limited treatment options [199]. Therefore, it 
is extremely urgent to identify novel potential therapeutic 
targets for ES and put them into use in clinical settings. 
Studies have shown that aurora kinase A (AURKA) is 
significantly up-regulated in ES, and its expression level 
is significantly related to the short overall survival and 
event-free survival of patients with ES [200, 201]. AURKA 
inhibition can trigger the apoptosis and ferroptosis of ES 
cells through the NPM1/Yes1 associated transcriptional 
regulator (YAP1) axis. Subsequently, this study identi-
fied an AURKA inhibitor TCS7010, which has the killing 
effect on ES cells, through the high-throughput screening 
of a small molecular pharmacy library [201]. In addition, 
cytosolic carbonic anhydrase (CA) may also be a poten-
tial target for ES therapy, and CA inhibitors can induce 
ferroptosis through Inhibition of AKT/FTH1 signaling in 
ES Cells [202].

Expanding on the potential of ferroptosis as a treat-
ment strategy for various types of sarcomas, Kim H and 
colleagues found that the deletion of isocitrate dehydro-
genase (IDH) increased the sensitivity of human HT1080 
fibrosarcoma cells to ferroptosis induction when cultured 
in vitro [175]. In the context of synovial sarcoma, which 
is characterized by a deficiency in malic enzyme 1, these 
sarcoma cells exhibited heightened susceptibility to fer-
roptosis triggered by ACXT-3102 [145]. SHARPIN, an 
activator of NF-kappaB, can also induce the ferroptosis of 
synovial sarcoma cells, and the PGC1α/NRF2/SLC7A11 
axis and BNIP3L/NIX-mediated mitophagy is involved 
in its downstream regulation [203]. Moreover, in the case 
of uterine carcinosarcoma, knocking out the ferroptosis-
related gene named heat shock factor 1 (HSF1) increased 
the sensitivity of tumor cells to treatment with adriamy-
cin or gemcitabine, suggesting a potential combination 
therapy approach [204]. These findings underscore the 
versatility of ferroptosis-based treatments across differ-
ent types of sarcomas.

The utilization of ferroptosis as a means to eliminate 
tumor cells represents an innovative approach to sar-
coma treatment. Within this domain, the objectives 
moving forward encompass the discovery of novel fer-
roptosis-inducing agents and intervention targets. Fur-
thermore, efforts are aimed at enhancing the efficacy of 
tumor eradication and refining drug therapies through 
rigorous clinical trials. This promising avenue of research 
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holds the potential to revolutionize the treatment land-
scape for sarcomas.

Targeting ferroptosis in immunotherapy to indirectly resist 
sarcoma
Immunotherapy for sarcoma has been studied for many 
years and achieved good results, which is an important 
supplement to chemotherapy [205, 206]. As mentioned 
above, ferroptosis can affect can affect tumor-related 
immune effects in TME. (chapter " The role of ferroptosis 
in TME "). Therefore, it is hopeful to enhance the immu-
notherapy effect of sarcoma by inducing ferroptosis, 
which can be achieved by two ways: inducing ferroptosis 
in sarcoma cells to enhance its immunogenicity or regu-
lating ferroptosis in immune cells to enhance the anti-
sarcoma immune effect. Efimova I et  al. confirmed for 
the first time that ferroptosis is immunogenic in vivo and 
in vitro [135]. They found that early (rather than late) fer-
roptotic cells can promote the phenotypic maturation of 
bone marrow-derived dendritic cells (BMDCs) and elicit 
a vaccination-like effect in immune-competent mice but 
not in Rag-2-/-mice through the co-culture of ferrop-
totic mice fibrosarcoma MCA205 cells with immune cells 
in vitro and the preventive ferroptosis tumor vaccination 
inside the mice [135]. This indicates that the mechanism 
of ferroptosis-mediated immunogenicity is closely regu-
lated by the adaptive immune system and is time-depend-
ent. In theory, this method is expected to effectively 
reverse the treatment dilemma of patients with immune 
desert sarcoma. Some commonly used targeted thera-
pies (such as sorafenib), chemotherapy (such as cisplatin) 
and radiotherapy for sarcoma are also ferroptosis induc-
ers, which are helpful to enhance the immunogenicity of 
sarcoma cells [170, 207], reflecting the synergy between 
immunotherapy for sarcoma and other treatments.

Because immune cells are also vulnerable to ferrop-
tosis (chapter “The role of ferroptosis in TME”), tumor 
immunotherapy can be carried out by regulating fer-
roptosis of immune cells. Common ideas include that 
ferroptotic stress inducing TAMs to repolarize from M2 
type to M1 type [128, 208–210], inducing ferroptosis of 
Tregs to reduce negative immune effect [127], targeting 
system Xc- to alleviate cystine deprivation in TME medi-
ated by myeloid-derived suppressor cells (MDSCs) to 
promote T cell survival [211] and so on. Recently, Yu K 
et al. designed a biomimetic hybrid cell membrane cam-
ouflaged by poly (lactic-co-glycolic) acid (PLGA)-loaded 
 Fe3O4 and DHJS (a probe for ROS generation) to induce 
ferroptosis in osteosarcoma cells, and successfully medi-
ated macrophage M1 polarization as well as the infiltra-
tion of  CD8+ T cells and dendritic cells in tumors [212]. 
However, in sarcomas with different immunophenotypes, 
the effects of ferroptosis on tumor immunity may be 

different and different kinds of ferroptosis inducers will 
also have different effects on immune cells and tumor 
cells [121]. These factors determine the balance between 
tumor killing effect and immune system damage. There-
fore, selecting the appropriate ferroptosis inducer for 
specific sarcoma is the most critical step for curative 
effect, and it is also a gap to be further explored.

Ferroptosis reduces drug resistance of sarcoma cells 
to chemotherapeutic agents
Despite the progress made in increasing the 5-year sur-
vival rate of sarcoma patients through conventional 
surgical treatment and postoperative neoadjuvant chem-
otherapy, chemotherapy resistance remains a significant 
obstacle to improving patient outcomes [213–215]. Cis-
platin, a highly potent and commonly used chemothera-
peutic agent for solid tumors, exerts its anti-tumor effects 
by triggering both apoptosis and ferroptosis [216, 217]. 
Nevertheless, tumor cells can develop resistance to cis-
platin by engaging mechanisms that regulate autophagy 
and enhance the expression of antioxidant enzymes 
[218–220]. While previous studies have largely focused 
on reactivating proapoptotic pathways to enhance the 
sensitivity of sarcoma cells to cisplatin [221–223], this 
approach has not proven to be particularly effective.

Drug-resistant cancer cells, particularly those reliant 
on the GPX4 antioxidant system, are susceptible to fer-
roptosis induction [111, 224]. Consequently, combining 
ferroptosis inducers represents a novel approach to com-
bat sarcoma resistance to chemotherapeutic agents like 
cisplatin. For instance, the combination of the ferropto-
sis agonist erastin with cisplatin has demonstrated a sig-
nificant synergistic effect against A549/HCT116 tumor 
cells [10]. Additionally, both erastin and STAT3 inhibi-
tors have been effective in reactivating ferroptosis in 
drug-resistant tumor cells, rendering them more suscep-
tible to cisplatin [220]. Furthermore, research has high-
lighted the potential of the plant extract ursolic acid (UA) 
as an adjunct to cisplatin treatment for sarcoma [161]. 
UA promotes tumor cell apoptosis, inhibits metastasis 
[225], and, in the presence of cisplatin, activates ferritin 
autophagy and degradation. This leads to increased free 
iron levels, lipid peroxide accumulation, and ferroptosis 
induction, underlining the close relationship between 
autophagy and ferroptosis in cancer cell death [161, 226]. 
Moreover, with the assistance of nanomaterial technol-
ogy, anti-Her2 affibody-decorated arsenene nanosheets 
have proven effective in depleting intracellular GSH and 
inhibiting GPX4 activity, thus inducing ferroptosis and 
overcoming cisplatin resistance [227].

In conclusion, ferroptosis holds significant promise for 
overcoming the resistance of sarcoma cells to chemo-
therapeutic agents, particularly cisplatin. The synergistic 



Page 16 of 25Zeng et al. Experimental Hematology & Oncology           (2024) 13:31 

combination of ferroptosis inducers with conventional 
chemotherapeutic agents represents a potentially trans-
formative approach in the treatment of sarcoma.

Predictive value of ferroptosis‑related genes expression 
in sarcoma cells
Multiple molecular networks play critical roles in the 
regulation and understanding of ferroptosis. Exploring 
these molecular mechanisms can offer valuable insights 
into the potential clinical applications of ferroptosis in 
disease treatment. A growing body of research has iden-
tified and extensively studied ferroptosis-related genes 
(FRGs) across various fields [228, 229]. The expression of 
FRGs has been strongly associated with the development 
of several types of cancer, including hepatocellular car-
cinoma [230], glioma [231], esophageal adenocarcinoma 

[232], and lung adenocarcinoma [233]. Additionally, 
researchers have explored the use of FRGs in predicting 
the prognosis of sarcoma patients (Table 3).

The first prognostic model for soft tissue sarcoma 
(STS) based on FRGs was developed by Huang W and 
colleagues [234]. They utilized RNA sequencing pro-
file and employed various analytical techniques such as 
Cox regression analysis and LASSO analysis to identify 
12 FRGs that are closely linked to the prognosis of STS. 
These FRGs were then integrated with clinical variables 
to construct a nomogram, which serves as a predictive 
tool for assessing the prognosis of STS patients. Further-
more, the independence and validity of these prognostic 
signals, along with the expression levels of key prognostic 
genes, were thoroughly validated in their study [234].

Table 3 Summary of prognostic models for sarcomas based on FRGs

Time Target Screening method Hub genes for Prognostic 
model

Efficiency verification Refs.

2021 Soft tissue sarcoma Univariate Cox → LASSO → Multi-
variate Cox

MUC1, GSS, HELLS, RPL8, 
ALOX15B, NOX5, CD44, ISCU, 
NCOA4, RGS4, SETD1B, GCLM

① GEO database
② ROC curve
③ K-M survival analysis

[234]

2021 Osteosarcoma Univariate Cox
 → LASSO → Multivariate Cox

G6PD, PEBP1, PGD, DPP4,
SLC39A8, SOCS1, ATG7, MYC, 
ALOX15B, CBS, EGLN1, MUC1

① GEO database
② Time-dependent ROC

[9]

2022 Soft tissue sarcoma Log-rank
 → Wilcoxon rank sum → Univari-
ate Cox → Multivariate Cox

EPAS1, STMN1, CXCL2, NQO1, 
HELLS, IL6

① GEO database
② Time-dependent ROC

[235]

2022 Uterine carcinosarcoma Univariate Cox
 → LASSO

PGD, HSF1, ISCU, PLIN2, GPT2 ① GEO database
② ROC curve

[204]

2022 Sarcoma Univariate Cox → LASSO SLC7A11, FANCD2, CISD1, 
ATP3MC3

① ROC curve
② K-M survival analysis

[236]

2022 Osteosarcoma
and Chemotherapy resistance

Log-rank → Univariate 
Cox → Multivariate Cox

CBS, COCS1, EGFR ① GEO database
② Time-dependent ROC

[237]

2022 Osteosarcoma Univariate Cox → LASSO → Multi-
variate Cox

PGD, G6PD, ACSF2, MT1G, FADS2, 
CBS

① ROC curve
② K-M survival analysis

[238]

2022 Ewing Sarcoma Univariate Cox → Random 
survival forest algorithm → Multi-
variate Cox

AURKA, RGS4, RIPK1 ① GEO database
② ROC curve
③ K-M survival analysis

[239]

2022 Osteosarcoma Univariate Cox → LASSO TP53, HMOX1, SLC7A11, HRAS, 
VEGFA, TXNRD1, CBS, G6PD

① GEO database
② ROC curve

[240]

2022 Osteosarcoma Univariate Cox → LASSO → Multi-
variate Cox

LRRC1, ACO2, CTNNBIP1
(FRG subclusters)

① ROC curve
② K-M survival analysis
③ Calibration curves

[241]

2022 Osteosarcoma WGCNA
 → LASSO → Multivariate Cox

COL5A2, HOXB4, UNC5B ① GEO database
② ROC curve
③ K-M survival analysis

[242]

2022 Osteosarcoma Univariate Cox → LASSO → Multi-
variate Cox

ACSL4, HMOX1, GPX4, PRNP, ATG7 ① TARGET and GEO database
② K-M survival analysis

[243]

2023 Osteosarcoma Univariate Cox → LASSO → Multi-
variate Cox

ACSL5, ATF4, CBS, CDO1, SCD, 
SLC3A2

① GEO database
② ROC curve
③ Subgroup analysis

[244]

2023 Osteosarcoma Univariate Cox → LASSO MUC1, MAP3K5, LURAP1L, 
HMOX1, BNIP3

① GEO database
② ROC curve
③ Univariate and multivariate 
Cox

[245]
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Subsequent to these developments, more researchers 
have endeavored to create prognostic models for sarcoma 
based on FRGs. For example, Lei T and his collabora-
tors devised an innovative prognostic model specific 
to osteosarcoma [9]. Similarly, a prognostic model for 
Ewing sarcoma was successfully established, pinpointing 
three crucial genes, AURKA, RGS4, and RIPK1, that are 
intimately linked to disease prognosis [239]. As research 
efforts have expanded, an increasing number of key FRGs 
associated with sarcoma growth have been both identi-
fied and corroborated (Table  3 above). Furthermore, 
FRGs can serve as biomarkers to facilitate the screening 
of chemotherapeutic agents, thus aiding in the formula-
tion of personalized chemotherapy strategies tailored 
to individual sarcoma patients [236, 239]. This same 
research strategy can also be applied to forecast tumor 
prognosis using ferroptosis-associated lncRNA genes 
[246].

GO and KEGG enrichment analyses have uncov-
ered that FRGs are significantly enriched in pathways 
related to cancer and the immune system. Correlation 
analyses of key FRGs with immune checkpoint genes 
(ICGs) have revealed positive associations between the 
expression levels of CXCL2 and IL6, which are proteins 
encoded by FRGs, and the expression of immune fac-
tors [235]. RIPK1, a key FRG, has also been shown to be 
part of the same protein interaction network as immune 
checkpoints like PD-1 [239]. Furthermore, prognostic 
analyses based on FRGs have demonstrated that differ-
ent risk groups exhibit varying patterns of immune cell 
infiltration, and individuals with more active immune cell 
involvement tend to have a better prognosis [9, 235, 237]. 
These findings suggest that FRG-encoded proteins can 
influence tumor prognosis by modulating the immune 
system, and further support the relationship between fer-
roptosis and tumor immune system.

Challenges and prospects
Indeed, while the potential of ferroptosis as a therapeu-
tic approach in sarcoma treatment is promising, there are 
several critical issues that need to be addressed before its 
widespread clinical application.

Research perspectives on ferroptosis
Ferroptosis is a novel form of programmed cell death 
characterized by iron dependence and lipid peroxide 
accumulation, which differs from apoptosis, necrosis, 
and cellular autophagy. The activation of p53, a critical 
regulator of apoptosis, has been found to play a role in 
ferroptosis regulation. p53 can inhibit ferroptosis either 
by downregulating SLC7A11 expression or through the 
p53-p21 axis, indicating a connection between apopto-
sis and ferroptosis [46, 47, 90]. NCOA4-mediated ferritin 

autophagy can increase intracellular unstable iron levels, 
inducing cellular ferroptosis [30, 36, 247]. Interestingly, 
the ferroptosis inducer erastin can also promote ferritin 
autophagy, suggesting potential synergies between these 
two forms of cell death. Even whether ferroptosis is trig-
gered by autophagy is a topic of debate in the scientific 
community, and further research is needed to clarify 
the relationship between these cell death modalities. 
Additionally, given the close ties between ferroptosis, 
the immune system, and lncRNA, there is potential for 
integrating these factors into a comprehensive regulatory 
network to better modulate cellular states and identify 
therapeutic targets.

Ferroptosis’s reliance on intracellular free iron is a 
defining feature. However, recent findings have revealed 
that copper, another crucial transition metal, can induce 
redox metabolism changes in cells similar to those seen 
with erastin-induced ferroptosis, by depleting GSH [248, 
249]. Therefore, other metal ions, in addition to iron ions, 
have showed the potential to induce ferroptosis under 
specific conditions. This discovery raises questions about 
whether iron is necessary for ferroptosis and whether 
other metal ions or substances can disrupt intracellular 
redox balance and trigger ferroptosis. The emergence of 
cuproptosis underscores the potential for metal ions to 
influence cellular metabolism and cell death [250–253]. 
While cuproptosis and ferroptosis are currently under-
stood to operate through distinct mechanisms, future 
research may uncover synergistic effects between them.

There is still much to explore in understanding the 
underlying mechanisms of ferroptosis, and further refine-
ment of its description is necessary to support its clinical 
applications based on more comprehensive theories.

Clinical application and challenges of ferroptosis 
in the treatment of sarcoma
As previously mentioned, ferroptosis can currently be 
applied to sarcoma treatment through three primary 
approaches. The first and most common potential clini-
cal application involves directly inducing ferroptosis 
in sarcoma cells, leading to their demise. Several fer-
roptosis inducers have been identified that function by 
depleting intracellular GSH, inactivating GPX4, activat-
ing the mevalonate pathway, and increasing intracel-
lular lipid peroxidation and iron content [18, 171, 254]. 
In this context, FDA-approved drugs like sorafenib and 
octreotide have demonstrated their ability to induce fer-
roptosis in refractory cancers [18, 255]. Small-molecule 
drugs and proprietary Chinese medicines can also serve 
similar roles [11, 146, 160].The therapeutic significance 
of ferroptosis therapy is underscored by the observation 
that certain cancers inherently possess characteristics 
that make them sensitive to this form of cell death. For 
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instance, rhabdomyosarcoma cells are susceptible to oxi-
dative stress [151], while synovial sarcoma cells exhibit 
recurrent malic enzyme 1 expression deficiency [145], 
rendering them less tolerant to lipid peroxide accumula-
tion and ferroptosis. Nevertheless, it’s important to note 
that not all cancer cells respond to ferroptosis inducers, 
and even well-characterized RAS-mutant cancer cell 
lines may not exhibit susceptibility [10, 45, 97]. Conse-
quently, a key pending strategy is how to enhance tumor 
cell sensitivity to ferroptosis through epigenome editing, 
potentially paving the way for clinical applications of fer-
roptosis-based therapy. Alternatively, therapeutic effec-
tiveness can be increased by exploiting tumor-specific 
characteristics. For instance, osteosarcoma cells display 
high expression of HMOX1, so EF24, which promotes 
HMOX1 expression, can be employed to expedite ferrop-
tosis in these cells [11].

In addition to enhancing sensitivity, the targeting and 
absorption rate by cancer cells are factors that limit the 
clinical efficacy of ferroptosis-inducing treatments. Eras-
tin, as the first discovered ferroptosis inducer, exhibited 
limited efficacy in clinical trials, largely due to its inef-
ficient uptake by cancer cells [145, 256]. Combining 
sigma-2 ligands with demethylated erastin has proven to 
be a promising strategy as it significantly enhances drug 
targeting and uptake. This approach takes the sigma-2 
receptor, which is typically overexpressed in solid tumor 
cells, as the drug target [257–263]. Furthermore, the uti-
lization of nanocarriers can also improve the targeting of 
ferroptosis inducers while often presenting fewer toxic 
side effects compared to other administration methods 
[18, 197]. Moreover, it is essential to explore specific 
genetic markers or biomarkers associated with ferrop-
tosis induction in both preclinical and clinical cancer 
settings. This research can aid in the identification of 
potential side effects related to ferroptosis treatments 
and help develop strategies to manage and enhance treat-
ment safety.

Secondly, a promising strategy is the combination 
of ferroptosis inducers with other chemotherapeutic 
drugs, particularly for overcoming chemotherapy resist-
ance, which is frequently encountered in sarcoma treat-
ment, notably resistance to cisplatin. Additionally, the 
concurrent use of inducers targeting different cell death 
modalities, such as ferroptosis and apoptosis, holds the 
potential for enhanced antitumor effects. Consequently, 
it is crucial to carefully select suitable ferroptosis-induc-
ing drugs, explore their combination therapies to mediate 
better effects, and lay a solid theoretical foundation for 
their clinical application.

Lastly, it’s worth noting that FRGs hold promise in pre-
dicting sarcoma prognosis and refining clinical staging, 
providing a direction for the future research of molecular 

targeted therapy of sarcoma [9, 235]. However, the lack of 
research on FRGs, the data set from retrospective study 
and the limited clinical variable data have affected the 
accuracy and practicability of this technology. Further 
research and data collection are needed to enhance their 
precision and clinical relevance.

Conclusion
In summary, gaining a comprehensive understanding of 
the mechanisms underlying ferroptosis is crucial for its 
effective application in treating various diseases. Fer-
roptosis holds significant promise in sarcoma treatment 
by effectively targeting sarcoma cells, reducing chemo-
therapy resistance, and aiding in prognosis prediction. 
Future research directions include exploring additional 
drugs and targets for inducing ferroptosis and identi-
fying novel strategies to enhance sarcoma treatment. 
However, the field is currently hindered by the lack of 
well-established theoretical foundations and clinical tri-
als, presenting challenges to the clinical use of ferropto-
sis inducers. Despite these obstacles, the potential in this 
area is immense, and further exploration is warranted.
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