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Abstract 

Cancer immunotherapy has emerged as a promising strategy in the treatment of colorectal cancer, and relapse 
after tumor immunotherapy has attracted increasing attention. Cancer stem cells (CSCs), a small subset of tumor cells 
with self-renewal and differentiation capacities, are resistant to traditional therapies such as radiotherapy and chemo-
therapy. Recently, CSCs have been proven to be the cells driving tumor relapse after immunotherapy. However, 
the mutual interactions between CSCs and cancer niche immune cells are largely uncharacterized. In this review, we 
focus on colorectal CSCs, CSC-immune cell interactions and CSC-based immunotherapy. Colorectal CSCs are charac-
terized by robust expression of surface markers such as CD44, CD133 and Lgr5; hyperactivation of stemness-related 
signaling pathways, such as the Wnt/β-catenin, Hippo/Yap1, Jak/Stat and Notch pathways; and disordered epigenetic 
modifications, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA action. 
Moreover, colorectal CSCs express abnormal levels of immune-related genes such as MHC and immune checkpoint 
molecules and mutually interact with cancer niche cells in multiple tumorigenesis-related processes, including tumor 
initiation, maintenance, metastasis and drug resistance. To date, many therapies targeting CSCs have been evaluated, 
including monoclonal antibodies, antibody‒drug conjugates, bispecific antibodies, tumor vaccines adoptive cell 
therapy, and small molecule inhibitors. With the development of CSC-/niche-targeting technology, as well as the inte-
gration of multidisciplinary studies, novel therapies that eliminate CSCs and reverse their immunosuppressive micro-
environment are expected to be developed for the treatment of solid tumors, including colorectal cancer.
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Introduction
Colorectal cancer (CRC) is the third leading cause of can-
cer-induced death, with 1.85 million cases and 850 000 
deaths every year [1].Previously, The incidence of CRC 
was higher in developed countries than that in devel-
oping countries. However, with lifestyle changes, such 
as irregular sleeping,Westernized diets, and improve-
ments in living standards, the incidence and mortality 
rates of CRC patients are increasing in many developing 
countries [2]. Like many other types of tumors, CRC is 
characterized by heterogeneity, including intertumoral 
heterogeneity and intratumoral heterogeneity. Differ-
ent patients, and even different cells within the same 
tumor, respond differently to the same treatment, greatly 
increasing the difficulty of tumor therapy [3].Among dif-
ferent types of tumor cells, cancer stem cells (CSCs) have 
attracted increasing attention.

Cancer stem cells constitute small subset of tumo-
rigenic cells in tumors with the ability to self-renew and 
differentiate into heterogeneous tumor cells [4]. CSCs 
play important roles in tumor initiation, maintenance, 
metastasis and drug resistance and hence are closely 
related to patient survival. CSCs are generally in a dor-
mant state and express various drug pumps at high levels 
and thus are insensitive to chemotherapeutics, leading to 
drug resistance and disease relapse [5]. Moreover, accu-
mulating evidence demonstrates that CSCs are resist-
ant to immune surveillance and immunotherapy [6]. 
Immune escape of CSCs is a prerequisite for tumor ini-
tiation, and CSCs resistant immunotherapy for various 
reasons, including low MHC expression and high PD-L1 
expression [7, 8]. The immune cells play a crucial role in 
the CSC niche, and CSCs are key modulators of immune 
niche remodeling [9].

Herein, we review recent progress in colorectal CSCs 
and immune niches, including CSC surface markers, 
signaling pathways, epigenetic modifications, especially 
CSC-immune cell crosstalk in colorectal tumors and 
CSC-targeted strategies.

Colorectal CSCs
Surface markers
To some extent, the study of CSCs originates from the 
identification of their surface markers. CSC surface 
markers are particularly important for the identifica-
tion, isolation, characteristic analysis and eradication of 
CSCs. Several CSC surface markers have been identified 
in patients with CRC, the identification of CD44, CD133, 
Lgr5 and DCLK1 as CRC biomarkers has been widely 
accepted.

CD44
CD44 is a multifunctional transmembrane glycoprotein 
encoded by a gene on human chromosome 11. The CD44 
gene contains 19 exons. The first 5 and last 5 exons sta-
bly encode CD44 standard isoforms (CD44s). The middle 
9 exons are alternatively spliced and assembled into 10 
exons to form CD44 variant isoforms (CD44v) [10, 11]. 
CD44 is a receptor for hyaluronic acid (HA) and multiple 
cytokines that mediates cell–cell and cell–matrix adhe-
sion. It has been identified as a surface marker for a vari-
ety of CSCs, including CRC CSCs [12]. CD44 functions 
as a positive regulator of the Wnt/β-catenin signaling 
pathway, serving as a modulator in the location and acti-
vation of the Wnt receptor LRP6 [13]. Knocking down 
CD44 can inhibit the proliferation and migration of CRC 
cells and can promote cell apoptosis [14].  CD44+ cells 
harbor an enhanced tumor initiation capacity. A single 
 CD44+ cell can proliferate into stem-like tumor spheres 
in vitro, and tumor spheres xenografted into nude mice 
can develop into tumors [15]. The CD44-Src-integrin 
axis promotes the formation and survival of CRC cells 
in  vitro. In addition, translocated nuclear CD44/acety-
lated STAT3 reprograms CRC cells to express stemness 
characteristics by regulating the expression of c-myc [16]. 
CD44 is associated with prognosis and metastasis in CRC 
patients [17]. CRC CSCs express CD44v6, a variant iso-
form of CD44, which acts as a coreceptor for MET to 
activate the EMT program and promote colorectal can-
cer metastasis and is associated with poor prognosis in 
CRC patients [18, 19]. In addition,  PrPc+CD44+ CSCs (a 
subset of  CD44+ CSCs) promote EMT through the ERK2 
pathway, making tumors highly metastatic [20]. Moreo-
ver, CD44 is a functional target for colorectal CSCs 
elimination. CD44 silencing prevents tumorigenesis and 
clonal formation [15].

CD133
CD133, a five-time transmembrane glycoprotein 
encoded by the prominin 1 gene on human chromo-
some 4, was originally found in human hematopoietic 
stem cells and progenitor cells. It has been recognized 
as a marker for CSC in various solid tumors, such as 
liver, colorectal, prostate, and pancreatic tumors [21]. 
Ricci-Vitiani demonstrated that a small subset (approxi-
mately 2.5%) of tumor cells with high CD133 expression 
were CSCs. Compared with  CD133− cells,  CD133+ cells 
isolated from primary CRC samples showed enhanced 
long-term tumorigenic potential, and their CSC charac-
teristics were diminished via serum-induced differentia-
tion [22]. On the contrary, Shmelkov SV et al. found that 
CD133 expression was not limited to the CSCs of CRC, 
but also present in normal colonic epithelial cells. Both 
 CD133+ and  CD133− cells isolated from metastatic CRC 
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can initiate tumorigenesis, and the tumors produced by 
the  CD133− cell subsets are even more aggressive [23]. 
Through exploiting CD133-Cre-lacZ model mice, Zhu 
et al. revealed that CD133 was an optimal marker of CSCs 
in the small intestine but could not be used as a colorec-
tal CSC marker in these mice. The widespread CD133 
expression in the colon, including in stem cells and multi-
ple differentiated cells such as goblet cells, has prevented 
CD133 from being used as a colorectal CSC marker in 
model mice [24]. Notably, although the suitability of 
 CD133+ CSCs as a marker in the mouse colon remains 
debated, the use of CD133 as a CSC marker in human 
CRC has been widely accepted. In vitro,  CD133+ human 
CRC cells can form tumor spheres, and xenotransplanta-
tion of these tumor spheres into immunodeficient mice 
results in tumor development. Additionally,  CD133+ cells 
can secrete IL-4 to resist cell death and exhibit resistance 
to chemotherapy [25]. CD133 expression is also associ-
ated with poor survival in CRC patients [26]. Compared 
with  CD133− CRC cells,  CD133+ CRC cells have higher 
AKT and MAPK pathway activity. [27, 28]. Targeting 
CD133 can reverse the chemotherapy resistance of CRC 
cells through the AKT/NF-κB/MDR1 pathway [29].

Lgr5
Lgr5 is a seven transmembrane domain receptor in the 
G protein-coupled receptor rhodopsin family. First rec-
ognized as a marker of intestinal stem cells (ISCs) in 
2007, it is also a target gene of the classical stem sign-
aling pathway Wnt/β-catenin [30, 31]. The identity of 
CD44 and CD133 as colorectal CSCs remains doubt-
ful. Some studies suggested that the expression of CD44 
or CD133 may be insufficient to determine the identity 
of colorectal CSCs [23, 32]. Since its discovery, scien-
tists have found that  Lgr5+ cells in aggressive lesions of 
intestinal adenomas harbor CSC signatures and poten-
tials, and are associated with tumor expansion and 
stemness [33]. In mouse models, conditioned knockout 
of APC in  Lgr5− cells inhibited the growth of intestinal 
adenomas, while conditional knockout of APC in  Lgr5+ 
cells drove intestinal adenomas, proving that  Lgr5+ cells 
are CSCs for colorectal tumors [34]. Clonal fate tracing 
and retracing analyses revealed that  Lgr5+ cells residing 
in the base of an adenoma segment can undergo self-
renewal and differentiation into several cell types, pro-
viding more definitive evidence that Lgr5 is a marker 
of adenoma CSCs [35]. Single  Lgr5+ cell from intestinal 
crypts can grow into organoids with villus/crypt struc-
tures in three-dimensional cultures in  vitro [36, 37]. 
Organoid technology based on this has played an impor-
tant role in stem cell function research, disease modeling 
and other fields. Orthotopic transplantation of tumor 
organoids constructed from  Lgr5+ CSCs into mice drove 

tumorigenesis, and targeted elimination of  Lgr5+ cells 
inhibited tumorigenesis [38]. However, the depletion of 
 Lgr5+ cells does not block the re-initiation and regres-
sion, which is related to the plasticity of CSCs. In addi-
tion,  Lgr5+ cells have been closely associated with distant 
metastasis of CRC, especially in the formation and main-
tenance of liver metastasis [39]. Similar to Lgr5, Olfm4 
and Ascl2 are also studied as intestinal stem cell markers. 
Since Lgr5 mRNA and protein are expressed at low lev-
els in cells, Olfm4, as a characteristic gene of  Lgr5+ stem 
cells, is often used as a substitute for Lgr5 to mark intes-
tinal stem cells [40]. Some studies have shown that Olfm4 
may not be used as an accurate marker of intestinal stem 
cells. Olfm4 is not only expressed in cells at the base of 
the crypts, but in almost all cells in the crypts [41]. How-
ever, Olfm4 has been confirmed to play an important 
role in CRC. In APC mutant mice, the deletion of Olfm4 
leads to colon adenocarcinoma [42]. The transcription 
factor Ascl2 is a target gene of Wnt. In CRC cases, there 
is a clear correlation between the expression of Lgr5 and 
Ascl2 [43]. Ascl2 has been shown to work synergistically 
with β-catenin/Tcf4 to jointly promote the expression of 
cell stemness characteristics [44]. However, Ascl2 is not 
an oncogene and its primary role is to regulate intesti-
nal crypt stemness. In  Apcmin/+ mice, overexpression of 
Ascl2 did not lead to tumor development [45].

DCLK1
Doublecortin-like kinase 1 (DCLK1) is another marker 
of colorectal CSCs. The DCLK1 gene is located on 
human chromosome 13, and its upregulation is asso-
ciated with the prognosis and metastasis of colorec-
tal cancer [46]. Unlike Lgr5, which is shared by normal 
and tumor stem cells, DCLK1 was shown to be able to 
distinguish between normal and tumor stem cells in the 
gut. Taking advantage of Lgr5CreERT2/+; Ctnnb1lox(ex3)/+ 
and DCLK1CreERT2/+; Ctnnb1lox(ex3)/+ mice, Nakanishi Y 
et al. demonstrated that normal intestinal  DCLK1+ cells 
did not become CSCs, and DCLK1 expression emerged 
in  Lgr5+ CSCs. In addition, they used DCLK1CreERT2/+; 
Rosa26R; ApcMin/+; Rosa26iDTR/+ mice to delete  DCLK1+ 
cells, resulted in tumor regression [47]. Westphalen CB 
et al. used dextran sulfate sodium (DSS) to induce inflam-
matory activation in DCLK1-CreERT × Apcflox/flox mice, 
ultimately leading to tumorigenesis [48]. Chandrakesan P 
et al. isolated  DCLK1+ cells from the intestines of APC-
min/+ mice and found that the CSC markers Lgr5, Bmi1 
and Musashi1 were highly expressed in  DCLK1+ cells, 
and the activities of β-catenin, Notch and NF-kB path-
ways were highly activated, which were all related to the 
occurrence of intestinal tumors [49]. Several mecha-
nisms of DCLK1 in CSC regulation have been identified. 
DCLK1 can enhance the expression of PGE2 through the 
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XRCC5/COX2 axis and promote the stemness and inva-
siveness of CRC [50]. DCLK1 also promotes β-catenin 
signaling by stabilizing CCAR1, thereby enhancing tumor 
cell stemness and mediating 5-fluorouracil resistance in 
CRC [51].

Signaling pathways
Generally, CSCs share many characteristics with embry-
onic and normal tissue stem cells, such as activation of 
the Wnt/β-catenin, Notch, Hedgehog and Hippo/Yap 
signaling pathways [52]. In colorectal CSCs, the most 
extensively investigated pathway is the Wnt/β-catenin 
pathway, whereas the Hippo/Yap1 and JAK-STAT path-
ways have emerged as new modulators in CSC regulation 
[53]. Here, we review recent progress in understanding 
the Wnt/β-catenin, Hippo/Yap, JAK-STAT and Notch 
signaling pathways.

Wnt/β‑catenin
As the canonical Wnt signaling pathway, the Wnt/β-
catenin pathway promotes the proliferation and renewal 
of colorectal CSCs [54]. In the absence of Wnt ligands, 
the intracellular β-catenin destruction complex (mainly 
composed of APC, Axin1/2, GSK3β and CK1α) phos-
phorylates β-catenin. Subsequently, phosphorylated 
β-catenin can be ubiquitinated by β-Trcp and degraded 
through the proteasome pathway [55]. However, in the 
presence of Wnt ligands, their binding to receptor com-
plexes (Frizzled and LRP5/6) on the cell membrane sur-
face disrupts β-catenin destruction complex through 
downstream DVL. β-catenin is thus protected from deg-
radation and accumulates in the cytoplasm, ultimately 
entering the nucleus, it binds to T-cell factor/lymphatic 
enhancer factor (TCF/LEF) to promote the transcrip-
tion and expression of target genes such as MYC, LGR5, 
CD44, CCND1, CCL28, IFNG, and CD274 (PD-L1) [56] 
(Fig. 1A).

The Wnt/β-catenin signaling pathway plays an impor-
tant role in the formation and maintenance of onco-
spheres, and the downregulation of β-catenin reduces 
the transcriptional activity of the TCF/LEF complex and 
inhibits the formation of oncosphere [57]. The mutation 
of APC, which occurs in 85 percent of colorectal cancer 
patients, is also closely related to the stemness of colo-
rectal cancer and Wnt/β-catenin activation [58, 59]. Nor-
mal ISCs with APC deletion tend to be transformed into 
CSCs and promote CRC tumorigenesis [34]. β-catenin 
can combine with Klf4 to regulate the expression of tel-
omerase, thereby maintaining the long telomeres of 
colorectal CSCs and avoiding genomic disaster [60]. 
Moreover, colorectal CSCs promote the epithelial-mes-
enchymal transition (EMT) through the Wnt/β-catenin 

pathway and thus promote tumor cell invasion and 
metastasis [61].

Hippo/Yap
The Hippo/Yap pathway consists of a series of conserved 
kinases that regulate the proliferation, apoptosis, self-
renewal and EMT of CSCs [62]. Among these proteins, 
two kinase complexes, namely, the MST1/2 complex 
(containing the adapter protein SAV1) and the LATS1/2 
complex (containing the adapter protein MOB1), are key 
factors [63]. When stimulated by upstream signaling, 
LATS1/2 phosphorylates the transcriptional coactiva-
tor YAP/TAZ to inhibit its function [64]. In the absence 
of upstream signal stimulation, dephosphorylated YAP/
TAZ enters the nucleus, binds to the transcription factors 
TEAD1-4 and promotes the expression of their target 
genes [65] (Fig. 1B).

YAP is required for CRC progression and CSC self-
renewal. YAP reprograms  Lgr5+ stem cells by inhibiting 
Wnt signal transduction, and early colorectal CSCs with 
APC mutations need YAP to prevent colorectal CSCs 
from differentiating into Paneth cells [66]. Interestingly, 
some studies have indicated that activation of Hippo/
YAP limited DVL activity to inhibit Wnt/β-catenin acti-
vation, leading to the loss of stemness of colorectal CSCs 
and inhibiting tumor growth [67, 68].

JAK/STAT 
The JAK/STAT pathway is one of the most important 
signaling pathways in human body. Over 50 cytokines 
and growth factors have been demonstrated to function 
through the JAK/STAT pathway[69]. Reciprocal phos-
phorylation of receptor-associated JAK is activated when 
cytokines bind to plasma membrane receptors, and acti-
vated JAK then phosphorylates the plasma membrane 
receptor, allowing it to recruit STAT via SH2 domain 
[70]. Ultimately, STAT is phosphorylated and activated 
by JAK, forms a dimer and translocates to the nucleus to 
regulate the expression of target genes [71] (Fig. 1C).

As a critical member of the STAT family, the activation 
of STAT3 promotes the proliferation of CRC cells [72], 
and the expression of STAT3 and activated pSTAT3 in 
colorectal CSCs is higher than that in normal CRC cells 
[73]. Colorectal CSCs resist radiotherapy and maintain 
cell stemness through the action of the JAK2/STAT3/
CCND2 axis [74]. In addition, colorectal CSCs resist to 
death-stimulating signals via the IL-4/JAK3/STAT6 axis 
[75] and harbor an enhanced EMT capacity through the 
ENC1/JAK2/STAT5 axis [76].

Notch
The Notch signaling pathway is also indispensable for 
the maintenance of colorectal CSCs, where the Notch 
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signaling is 10 to 30 times more active than in normal 
colorectal cancer cells [77]. Activation of the Notch 
signaling pathway requires three-step cleavage of Notch 
receptors by proteases [78]. Notch receptors (including 
Notch 1, Notch 2, Notch 3, and Notch 4) are first syn-
thesized in the endoplasmic reticulum and subsequently 
transported to the Golgi apparatus, where the S1 site of 
Notch receptors is cleaved by the furin-like protease, 
and then, Notch receptors are transferred to the cell sur-
face [79]. When Notch ligands (including DLL1, DLL2, 
DLL3, DLL4, Jagged1, Jagged2) of adjacent cells bind to 

Notch receptors, their S2 site is cleaved by the ADAM10 
or ADAM17 protease, and the extracellular domain of 
the Notch receptor is released. Finally, the S3 site of the 
Notch receptors is cleaved by γ-secretase protease, and 
the Notch intracellular domain (NICD) is released. The 
NICD translocates to the nucleus and interacts with CSL 
to induce the transcriptional expression of downstream 
target genes [80] (Fig.  1D). The target genes of Notch 
signaling pathway include Hes family genes [81], GATA3 
[82] and c-myc [83].
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Fig. 1 Signaling pathways in colorectal CSCs. A Wnt/β-catenin signaling pathway. In the presence of Wnt ligand proteins, the engagement 
of Wnt, Frizzled and LRP5/6 on the cell surface induces the activation of downstream DVL signaling, which in turn inhibits the β-catenin 
destruction complex (which is mainly composed of APC, Axin1/2, GSK3β and CK1α), allowing β-catenin to avoid being degraded, to accumulate 
in the cytoplasm and enter the nucleus. β-catenin enters the nucleus and binds with TCF/LEF to promote the transcription and expression of target 
genes. B Hippo/Yap signaling pathway. Upon stimulation via upstream signaling (mainly cell polarity, cell contact, and mechanical force signals), 
phosphorylated MST1/2 phosphorylate LATS1/2, and then, activated LATS1/2 phosphorylate YAP/TAZ to induce their degradation. In the absence 
of upstream signal stimulation, dephosphorylated YAP/TAZ aggregate in the nucleus and combine with the transcription factors TEAD1-4 
to promote the expression of target genes. C JAK/STAT signaling pathway. When cytokines bind plasma membrane the receptors, receptors 
dimerize, and receptor-associated JAK kinase is activated via mutual phosphorylation. Then, the activated JAK kinase phosphorylates receptor 
tyrosine residues and recruits and activates SH2 domain-containing STAT, which dissociates from the receptor, forms dimers in the cytoplasm 
and enters the nucleus to regulate the expression of target genes. D Notch signaling pathway. Delta-like ligands (DLL1, DLL2, DLL3 and DLL4) 
and Jagged ligands (JAG1 and JAG2) adjacent to cells are ligands for Notch receptors (including Notch 1, Notch 2, Notch 3 and Notch 4). Through 
a combination of ligands and receptors, the S2 site in Notch receptors is cleaved by the ADAM10 or ADAM17 protease, resulting in the release 
of the extracellular portion of Notch. Then, γ-secretase cleaves the Notch receptor at the S3 site, allowing the release of the Notch intracellular 
domain (NICD). The NICD enters the nucleus and interacts with CSL to regulate the expression of downstream target genes



Page 6 of 31Zhao et al. Experimental Hematology & Oncology            (2024) 13:6 

The expression of Hes1, a target gene of the Notch 
signaling pathway, can promote the metastasis of CRC.
It is related to the poor prognosis of CRC patients [84]. 
A study showed that miR-195-5p directly bound Notch2, 
thereby inhibited the stemness of CRC and increased the 
sensitivity of drug-resistant human CRC SW620 cells to 
5-Fu [85]. Another study revealed that serine-threonine 
kinase receptor-associated protein (STRAP) promoted 
the stemness of CRC cells through the action of the 
STRAP/NOTCH1/HES1 signaling axis [86].

Epigenetic modifications
Epigenetic modifications, which changes chromatin 
architecture and gene expression without altering the 
DNA sequence, is emerging as a critical regulatory ele-
ment in various physiological and pathological processes 
[87–89], and their roles in CSCs have been extensively 
explored. Epigenetic modifications, including DNA 
methylation, histone modification, chromatin remod-
eling and non-coding RNAs (ncRNAs), modulate multi-
ple important biological processes related to colorectal 
CSCs, such as the expression of CSC marker expression 
and the activation of signaling.

DNA methylation
As a type of chemical modification, DNA methylation 
refers to the covalent binding of a methyl group to the 5 
’carbon position of the cytosine under the action of DNA 
methyltransferase, such as Dnmt1, Dnmt3a or Dnmt3b 
[90]. An increasing number of studies have demonstrated 
that DNA methylation controls gene expression by alter-
ing chromatin structure, DNA conformation, DNA 
stability and DNA interactomes [91]. Generally, DNA 
methylation is associated with gene silencing, although 
its precise function appears to vary according to differ-
ent genomic contexts, such as the concentration of CpG 
islands, placement of transcription start sites, and the 
presence of gene bodies and regulatory elements [92].

Typically, DNA methyltransferases are highly expressed 
in various tumor cells, and DNA methylation has been 
closely associated with depletion of tumor suppressors 
and differentiation genes [93]. Accordingly, DNA meth-
yltransferases have emerged as novel targets for tumor 
prevention [94]. DNMT1 knockout HCT116 cells exhib-
ited decreased CSC marker expression and impaired 
tumor-initiating ability but a growth rate similar to that 
of DNMT1-WT cells, indicating the involvement of 
DNMT1 in CSC-specific maintenance and functionality 
[95]. Interestingly, another work revealed that DNMT1 
regulated the activation of the Wnt/β-catenin signal-
ing pathway, the most important regulatory signaling 
pathway in CSCs. Dnmt1 knockout decreased the total 
β-catenin level and blocked the nuclear translocation of 

β-catenin [96]. Similarly, the DNMT inhibitor 5-Aza-
2′-deoxycytidine (5-AzaDC) significantly reduced CSC 
maintenance and inhibited the activation of β-catenin 
(Fig. 2A). Mechanistically, the promoter regions of Wnt/
β-catenin inhibitory genes are frequently methylated in 
CRC cells and CSCs, leading to their decreased expres-
sion and subsequent activation of the Wnt/β-catenin 
pathway [97].

Histone modifications and chromatin remodeling
Histone modifications, including mainly methyla-
tion and acetylation, occur at various sites of histones, 
mainly at lysine and arginine residues. Histone meth-
ylation results in transcription inhibition or activation 
of corresponding genes, depending on the position 
of the modified amino acid residues, the extent of the 
modification and the nature of the methyltransferase 
[98, 99]. In contrast, histone acetylation generally 
induces transcriptional activation [100]. Histone modi-
fication regulates chromatin structure through multiple 
mechanisms, and the dynamic regulation of chromatin 
results in chromatin remodeling [101]. As critical lay-
ers of epigenetic regulation, histone modifications and 
chromatin remodeling are intricately involved in CSC 
modulation.

The regulation of typical marker of transcrip-
tional activation, histone 3 trimethylated on lysine 
4 (H3K4me3) is mediated by histone demethylase 
KDM3 and lysine methyltransferase KMT2A (also 
named MLL1). Through short interfering RNA (siRNA) 
screening, KDM3A and KDM3B were identified as 
regulators of Wnt/β-catenin activation and CSC main-
tenance. Interestingly, KDM3A/B promoted the tran-
scription of the Wnt/β-catenin target genes AXIN2 and 
DKK1 through erasing H3K9me2 marks and promoting 
MLL1-dependant H3K4me3 [102] (Fig. 2B). H3K4me3 
remodels chromatin and drives transcription by pro-
moting the interaction of the marked sequence with the 
nucleosome remodeling factor (NuRF) complex [103], 
which is also required for the self-renewal of CSCs in 
various tumors, including liver cancer [104], gastric 
cancer [105] and CRC [106]. For colorectal CSCs, the 
NURF complex is recruited onto the promoter of EHF, 
a core transcription factor for Lgr4/5 expression and 
CSC self-renewal [106].

Histone acetylation is also involved in CSC self-
renewal and tumorigenesis control. In colorectal 
CSCs, the Wnt/β-catenin target gene PROX1 is highly 
expressed, and Notch inhibition increases the number 
of PROX1-positive CSCs. In contrast, PROX1 inhibits 
the promoter activation and transcription of Notch1 
in a nucleosome remodeling and deacetylase (NuRD) 
complex-dependent manner. PROX1 interacts with and 
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recruits the NuRD complex to the Notch1 promoter, 
through which NuRD drives histone deacetylation and 
chromatin remodeling to ultimately block the tran-
scription of Notch1 [107] (Fig.  2C). Interestingly, the 
NuRD complex functions in niche cells to modulate 
CSC activity. For example, enteric serotonergic neurons 
secrete 5-HT to drive the self-renewal of colorectal 

CSCs, and the production of 5-HT is regulated by the 
NuRD complex [108].

In addition to the NuRF and NuRD complexes, other 
nucleosome-remodeling complexes, such as the SWI/
SNF, TIP60/P400 and PRC2 complexes, are highly 
abundant and activated in various CSCs, collectively 
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confirming aberrant epigenetic regulation in tumor tum-
origenesis and CSC maintenance [109–111].

Noncoding RNAs
NcRNAs, including microRNAs (miRNAs), long noncod-
ing RNAs (lncRNAs), and circular RNAs (circRNAs), have 
emerged as central regulators in various physiological and 
pathological processes, including tumorigenesis [112]. The 
regulatory roles of ncRNAs in CSCs and niche cells have 
been extensively discussed in another review [113], and 
therefore, here, we exclusively focus on several ncRNAs 
involved in Wnt/β-catenin activation and CSC metabolism.

The Wnt/β-catenin signaling pathway is activated in 
CSCs and is the most important pathway involved in 
CSC self-renewal; however, the mechanism underlying 
the initiation of Wnt/β-catenin signaling has been rarely 
investigated. In colorectal CSCs without APC mutations, 
Wnt/β-catenin is initiated by FZD3, a Wnt receptor 
highly expressed in colorectal CSCs. Moreover, cis-HOX 
drives FZD3 expression in a HOXC10-dependent man-
ner [114] (Fig.  2D). Interestingly, FZD6, another Wnt 
receptor, is highly expressed in liver CSCs. Mechanisti-
cally, the FZD6 promoter is activated by lncFZD6, which 
is also highly expressed in CSCs [115]. The divergent Wnt 
receptors and initiating mechanism of Wnt/β-catenin in 
colorectal and liver CSCs demonstrate intertumoral het-
erogeneity in Wnt/β-catenin initiation.

As hallmarks of tumors, metabolic disorders are pre-
cisely regulated by ncRNAs [116]. Compared with 
non-CSCs and normal cells, glycolysis is activated and 
oxidative phosphorylation (OXPHOS) is inhibited in 
CSCs. mcPGK1, which is coded by mitochondrial DNA, 
is highly expressed in CSCs and drive the metabolic 
switch. mcPGK1, which is encoded by mitochondrial 
DNA, is highly expressed in CSCs and drives metabo-
lism switching. mcPGK1 promotes the interaction of 
PGK1 and the TOMM40 complex, facilitates PGK1 entry 
into mitochondria and ultimately inhibits OXPHOS in 
a PGK1-dependent manner [117]. In addition to glu-
cose metabolism, lipid metabolism is regulated by ncR-
NAs in CSCs. LncROPM (a regulator of phospholipid 
metabolism) is highly expressed in CSCs, enhances the 
stability of PLA2G16 mRNA, and ultimately promotes 
phospholipid metabolism and arachidonic acid produc-
tion. Arachidonic acid, in turn, activates Wnt/β-catenin 
and Hippo/YAP signaling in CSCs [118]. Accordingly, 
ncRNAs have emerged as critical metabolic modulators 
in CSC regulation.

Colorectal CSCs and the immune niche
The regulation of self-renewal of CSCs and activation 
of CSC-related signaling pathways is fine tune by vari-
ous intracellular and extracellular factors. Because of 

the great success and promising prospects of immuno-
therapy for patients with hematological malignancies and 
solid tumors [119, 120], the immune niche of CSCs has 
attracted more attention [121]. In this section, we review 
recent progress in investigating the mutual interaction 
between colorectal CSCs and their immune niches.

Expression of immune proteins on colorectal CSCs
Since immune checkpoint inhibitors (ICIs) have proven 
effective in eliminating melanoma and other tumors 
[122], targeting immune checkpoints has become one of 
the main strategies of current immunotherapy. However, 
similar to that CSCs in many other tumors, the cross-
talk between colorectal CSCs and immune cells shapes 
an inhibitory immune microenvironment and promotes 
tumor progression [9]. This is consistent with the cur-
rent situation that CRC patients are difficult to benefit 
from anti-PD-1/PD-L1 therapy [123]. However, immu-
notherapy exerts an effect on some subsets of colorec-
tal tumors. In fact, the expression levels of the immune 
markers FoxP3, PD-L1 and CD3 greatly affect the prog-
nostic value of the CSC markers SOX2 and CD133, 
indicating the close relationship between CSCs and anti-
tumor immunity [124]. Recently, an increasing number of 
studies have revealed that many immune-associated pro-
teins are expressed on nonimmune cells, accounting for 
the immunological regulatory function of nonimmune 
cells [125]. Therefore, the expression profile of immune-
related surface proteins on colorectal CSCs is helpful for 
understanding the interaction between colorectal stem 
cells and niche immune cells.

Low MHC expression on colorectal CSCs
Among all subsets of immune cells, the  CD8+ T cells play 
a primary role in the antitumor immune effects [126]. 
A neoantigen peptide mutated in tumor cells can be 
presented at the cell surface of MHC-I class molecules, 
and the T-cell receptor (TCR) on the surface of  CD8+ T 
cells recognizes and binds the neoantigen peptide–MHC 
complex, thereby exerting an antitumor immune effect by 
killing tumor cells directly [127]. However, the expression 
of MHC class I molecules is downregulated in colorectal 
CSCs [128], which limits the recognition and tumor-kill-
ing effect of  CD8+ T cells [129] (Fig. 3A).

In contrast to  CD8+ T cells, natural killer (NK) cells, 
constituting another subset of killer cells in the immune 
system, can recognize and kill MHC-I-low cells in an 
MHC-independent manner. Notably, colorectal CSCs 
express ligands, including NKG2D, natural cytotoxic-
ity receptors and DNAM-1, that lead to NK activation 
[130] (Fig.  3B). Therefore, NK-based immunotherapy is 
expected to become a new method for the treatment of 
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colorectal cancer and CSCs [131]. Unfortunately, another 
study revealed that CRC cells escape NK killing because 
of downregulated NKG2DL, indicating that further 
investigation is needed to develop better methods to kill 
CRC cells and CSCs via NK cells [132].

High expression of immune checkpoint molecules
PD-L1 is the most extensively characterized immune 
checkpoint on the surface of tumor cells, and immuno-
therapy targeting PD-1/PD-L1 has opened a new era of 
antitumor therapy [133, 134]. When the ligand PD-L1 

Non-stem cell

Colorectal CSC

CD8+ T cell

NK cell

MHC-I

TCR

NKGRD NCR

Ligand

PD-1

PD-L1

Stemness genes

Notch target genes

PD-L1/CD274

Wnt/β-catenin

PI3K/Akt/mTOR
Me

ARID3B

KDM4C STAT3

A B C

D

Fig. 3 Expression profiles of immune proteins on colorectal CSCs. A The expression of MHC class I molecules on colorectal CSCs is downregulated, 
making them difficult to recognize and kill by  CD8+ T cells. B NK cells are activated by receptors such as NKG2D and natural cytotoxicity receptors 
(NCRs), which recognize and kill CSCs in an MHC-independent manner. C Colorectal CSCs express high levels of the immune checkpoint PD-L1, 
which can inhibit the antitumor immune effect of T cells. D PD-L1 and colorectal CSC-related genes are downstream of the same transcriptional 
element. The ARID3B-KDM4C complex regulates chromatin state to activate downstream Notch target genes, CRC stemness genes and PD-L1 
transcriptional expression. In addition, PD-L1 is the direct target gene of the Wnt/β-catenin, PI3K/Akt/mTOR, and STAT3 signaling pathways
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binds to PD-1 on the surface of T cells as a ligand, the 
activation of T cells activation is impaired inhibited. 
On the one hand, the immune receptor tyrosine–based 
inhibitory motif (ITIM) and immune receptor tyrosine–
based switch motif (ITSM) at in the cytoplasmic tail of 
PD-1 are phosphorylated, and then, Src homology region 
region-2 domain-containing phosphatase (SHP-2) is 
recruited and activated, and finallyultimately, the activa-
tion of TCR and CD28 proximal downstream signaling 
areis blocked [135]. On the other hand, PD-1 disrupts 
TCR-pMHC-CD8 trimolecular interactions and directly 
inhibits the antigen recognition process of T cells [136]. 
Collectively, PD-L1 plays a significant inhibitory role in 
antitumor immunity.

Accumulating evidence has revealed that colorectal 
CSCs evade immune surveillance by hijacking the PD-L1 
antitumor pathway, and previous studies have demon-
strated that PD-L1 is highly expressed in colorectal CSCs 
[137, 138] (Fig. 3C). Mechanistically, the upregulation of 
PD-L1 in colorectal CSCs is induced mainly via two path-
ways (Fig. 3D). On the one hand, PD-L1 and CSC-related 
genes are activated downstream of the same transcrip-
tional element. For example, colorectal CSCs express 
high levels of ARID3B, and ARID3B binds with KDM4C 
to form a complex, which directly binds to the regulatory 
region of PD-L1, as well as activates Notch target genes 
and stem-related genes. Thus, PD-L1 is coexpressed 
with Notch target genes in colorectal CSCs [139]. On the 
other hand, PD-L1 is a direct target gene of critical path-
ways involved in CSC maintenance, including the PI3K/
Akt/mTOR, STAT3 and Wnt/β-catenin pathways. Insulin 
stimulates the expression of PD-L1 in colorectal CSCs 
through the PI3K/Akt/mTOR signaling pathway, and 
EGF further enhances the stability of PD-L1 on the cell 
membrane [140]. Moreover, colorectal CSCs express low 
levels of S100A14, which initiates the high expression of 
PD-L1 by affecting the stability of STAT3 [141]. Recently, 
an increasing number of studies have proven that PD-L1 
is directly regulated by the canonical Wnt/β-catenin 
signaling pathway. In APC mutant CRC cells, overex-
pressed β-catenin formed a complex with TCF4, which 
bound the promoter region of the PD-L1-encoding gene, 
to promote the transcription of PD-L1, indicating that 
PD-L1 is a direct target of β-catenin [142]. Another study 
demonstrated that PD-L1 and other immune checkpoint 
molecules, including TIM3 and CD24, were direct tar-
get genes of Wnt/β-catenin pathways, and collectively 
these immune checkpoint molecules accounted for the 
immune escape of CSCs [143].

In addition to PD-L1, CD-47, another immune check-
point involved in the macrophage phagocytosis is also 
expressed on CSCs, and it promotes the malignancy of 

EMT-associated CRC cells and enhances the stemness of 
CRC cells [144].

CSC–immune cell crosstalk during tumorigenesis
Tumorigenesis is a complicated process, and the biogene-
sis and expansion of cancer CSCs are typical events in the 
early stage of tumorigenesis. Ultimately, tumorigenesis 
initiation requires stable inheritance of oncogenic vari-
ants that enable to outcompete neighboring normal cells 
to gain advantages and the clonal expansion of CSCs, 
escape of CSCs from immune surveillance, and remod-
eling of the immune microenvironment [145]. Here, we 
mainly summarize the recent progress in the latter two 
CSC advantages.

Colorectal CSCs escape immune surveillance
The surveillance function of the immune system can 
identify and eliminate cancer cells and prevent the occur-
rence of early cancers. However, colorectal CSCs can 
evade immune surveillance and initiate tumorigenesis 
in multiple ways. A study demonstrated that colorectal 
CSCs suppressed the proliferation of T cells by secret-
ing high levels of IL-4 secretion. In a coculture system 
of colorectal CSCs, peripheral blood mononuclear cells 
(PBMCs), and phytohemagglutinin (PHA)/ concanava-
lin (Con) A, the proliferation and activation of T cells 
were inhibited by colorectal CSCs [128] (Fig.  4A). A 
high-fat diet, a risk factor for colorectal tumorigenesis, 
can induce the downregulation of MHC-II molecules in 
colorectal CSCs, thereby inhibiting the direct or indirect 
killing effect of  CD4+ T cells. In mice,  APCnull MHC-II− 
colorectal CSCs were more tumorigenic than  APCnull 
MHC-II+ colorectal CSCs [146] (Fig.  4B). In addition, 
PD-L1 and CD47 on the surface of colorectal CSCs also 
led to early escape of tumor cells from immune surveil-
lance during tumor development. The APC mutation, 
the major oncogenic variation in early colorectal tumo-
rigenesis, also promotes the expression of the immune 
checkpoint PD-L1 via Wnt/β-catenin signaling, drives 
the immune resistance to  CD8+ T cells, and ultimately 
initiates colorectal tumorigenesis [142] (Fig. 4C).

Colorectal CSCs remodel the immunosuppressive 
microenvironment
In the early stage of CRC carcinogenesis, colorectal 
CSCs remodel the immune microenvironment, undergo 
immune escape and drive their own self-propagation 
Exploiting DNA label retention, single-cell RNA sequenc-
ing, coculturing, cell depletion assays, and lineage trac-
ing, He et  al. revealed that intestinal CSCs remodel the 
tumor microenvironment (TME); for example, they 
remodel tumor-associated monocytes and macrophages 
(TAMMs), which in turn promote CSCs through the 
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PGE2-EP4 pathway. In general, the crosstalk between 
CSCs and TAMMs drives the formation of an immuno-
suppressive and protumorigenic niche [147] (Fig.  4D). 
Moreover, colorectal CSCs secrete miR-146a-loaded 
exosomes, which in turn reduce the infiltration rate of 
 CD8+ T cells in tumors and thus promote the forma-
tion of an immunosuppressive microenvironment [148] 
(Fig. 4E). In addition, exosomal RNAs secreted by colo-
rectal CSCs expanded the neutrophil population in bone 
marrow and induced the neutrophils to secrete IL-1β. 
Moreover, colorectal CSCs secreted CXCL1/2, which 
recruited CXCR2-expressing neutrophils from the bone 
marrow to the tumor niche. Reciprocally, IL-1β secreted 
by these neutrophils promoted tumorigenesis and CSC 
self-renewal [149] (Fig.  4F). Interestingly, these neutro-
phils also inhibited the proliferation and function of T 
cells by reducing the expression of IL-2, which is a key 
mediator of T-cell activation [150] and antitumor effects 
[151].

CSC‑immune cell crosstalk in tumor maintenance
The crosstalk between CSCs and immune cells is involved 
not only in tumor initiation but also in tumor mainte-
nance. In established tumors, CSC self-renewal and dif-
ferentiation are regulated by CSC-intrinsic immune 
factors and extrinsic immune cells. In addition, CSCs 
reshape the immune microenvironment, ultimately pro-
moting the maintenance of tumors and CSCs.

CSC‑intrinsic immune factors.
As described in the previous section, some immune 
checkpoint molecules are highly expressed in CSCs and 
are active through various pathways, and more impor-
tantly, these immune checkpoint molecules are key 
modulators in CSC function. On the surface of colo-
rectal CSCs, PD-L1 interacts with Frizzled6 (FZD6) to 
activate β-catenin, thereby promoting the expression of 
Wnt/β-catenin target genes and driving the stemness of 
colorectal CSCs. Interestingly, PD-L1 is also a target of 
the Wnt/β-catenin pathway, and the positive feedback 
of PD-L1-Wnt/β-catenin highlights CSC–immune cell 
cross-talk [152] (Fig.  5A). Moreover, PD-L1 interacts 
with HMGA1 to promote the proliferation of colorectal 
CSCs through the PI3K/Akt and MEK/ERK pathways 
[153] (Fig. 5B). Colorectal CSCs with high PD-L1 expres-
sion showed an enhanced EMT phenotype, suggesting 
that PD-L1 also regulates the invasion capacity of colo-
rectal CSCs [138].

In addition to immune checkpoint molecules, some 
other immune-associated factors also modulate the 
self-renewal of colorectal CSCs. S100A14 interacts 
with and induces the degradation of STAT3 and thus 
impairs PD-L1 expression and the tumorigenesis and 

chemoresistance of colorectal CSCs [141] (Fig.  5C). 
CircREEP3, a circular transcript involved in RIG-1-de-
pendent antitumor immunity, drives the tumorigenic, 
metastatic and stem cell-like phenotypes of CRC cells, 
further indicating crosstalk between innate immune cells 
and CSCs [154] (Fig. 5D).

The immune microenvironment regulates colorectal CSCs
As the key immune cells in antitumor function, T cells 
profoundly modulate the self-renewal of CSCs. The 
Weiping Zou laboratory team identified IL-22+CD4+ T 
cells in CRC tissues, and these cells were recruited via 
the CCR6-CCL20 axis. Moreover, IL-22+CD4+ T cells 
secreted IL-22, and IL-22 in turn promoted the stemness 
of CRC cells via STAT3 activation and the expression of 
the H3K79 methyltransferase DOT1L [155] (Fig.  6A). 
Interestingly, a recent study also revealed that iNKT17-
derived IL-22 promoted the liver metastasis of CRC by 
facilitating cancer cell extravasation in an endothelial 
cell-dependent manner [156]. Regulatory T cells (Tregs), 
a major subset of T cells involved in immune suppres-
sion, suppressed the antitumor activity of  CD4+ T cells 
and  CD8+ T cells in the tumor immune microenviron-
ment [157]. The level of Tregs was measurable detect-
able in CRC tissues, and these Tregs secreted IL-17 to 
enhance the stemness of colorectal CSCs through AKT 
and MAPK signaling [158] (Fig. 6B).

Recently, myeloid cells have emerged as critical mod-
ulators in the tumor immune microenvironment, and 
their roles in CSC regulation and tumor targeting have 
been extensively investigated [159]. Tumor-associ-
ated dendritic cells (TADCs) secreted CXCL1, which 
in turn increased the expression of the CSC mark-
ers CD44 and CD133 on the SW620 CRC cell line and 
promoted their stemness (Fig.  6C). In addition, CXCL1 
increased the invasion and EMT rates of SW620 cells 
[160]. Constituting a type of myeloid-derived suppres-
sor cells (MDSCs) [161], granulocyte myeloid-derived 
suppressor cells (G-MDSCs) secrete S100A9-containing 
exosomes to enhance the stemness of CRC cells. CRC 
cells treated with S100A9 produced more ROS and 
Nox4, which enhanced the stemness of CSCs by induc-
ing the phosphorylation levels of STAT3 and NF-κB p65 
[162] (Fig. 6D). As an important component of the tumor 
immune microenvironment [163], tumor-associated 
macrophages (TAMs) explain the interaction between 
CSCs and immune cells. IL-1β secreted by TAMs inac-
tivates GSK3β phosphorylation by activating the NF-κB 
and AKT signaling pathways, thereby abrogating the 
β-catenin destruction complex and activating the Wnt/β-
catenin signaling pathway in CRC cells [164] (Fig.  6E). 
In addition, as a potential marker of type 2 TAMs 
(M2-TAMs), JMJD8 expression has been positively 
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correlated with CRC stemness maintenance, chemother-
apy resistance and immunosuppression [165].

Colorectal CSCs remodel the immune microenvironment
As a potential marker of CSCs in CRC [47], DCLK1 is 
involved in remodeling the immune microenvironment. 
DCLK1 expression has been significantly and posi-
tively correlated with the infiltration of various immune 
cells, including TAMs and Tregs, and is associated with 
M2-TAM polarization and T-cell exhaustion [166]. In 
addition, DCLK1 promotes the expression of CXCL1/
CXCL2 via the ERK signaling pathway. Subsequently, 
CXCL1/CXCL2 recruits MDSCs, which suppress the 
activity of tumor-specific T cells [167] (Fig.  7A). Six1 is 
another candidate marker of colorectal CSCs. Six1-over-
expressing CRC cells showed enhanced stemness, and 
Six1 increased the secretion levels of CSF-1, CCL2/5 and 
VEGF, thereby recruiting more TAMs that induce immu-
nosuppression [168] (Fig. 7B).

In addition to the recruitment of immune cells, colo-
rectal CSCs secrete cytokines and chemokines to 
remodel the TME in established tumors, and among 
these cytokines, interleukin-4 (IL-4) has been intensively 
studied.  CD133+ colorectal CSCs secrete high levels of 
IL-4; IL-4/IL-4R blockers promote the antitumor effects 
of chemotherapeutic drugs, while IL-4 promotes the sur-
vival of colon CSCs [25]. Mechanistically, IL-4 activates 
the STAT6 signaling pathway to promote the expression 
of BIRC5, a well-characterized apoptosis-inhibitory pro-
tein [75]. In addition, IL-4 is required for the activity of 
cathepsins in TAMs and accounts for the tumor-promot-
ing function of TAMs [169] (Fig. 7B). Overall, colorectal 
CSCs secrete functional cytokines and chemokines to 
remodel the TME in established tumors.

CSC‑immune cell crosstalk in tumor metastasis
Tumor metastasis is a major cause of tumor-related 
death, and the molecular mechanism and targeting 
strategy have been described in another review [170]. 
Colorectal CSCs and immune cells are both intricately 
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involved in metastasis. The prion protein (PrPc) is highly 
expressed in a subset of  CD44+ colorectal CSCs, and 
 PrPc+CD44+ colorectal CSCs exhibited enhanced meta-
static capacity [20]. Conversely, metastasis regulates the 
self-renewal of CSCs. SNAIL, a key modulator of tumor 
metastasis, drives the self-renewal and tumorigenicity of 
colorectal CSCs through IL-8 and JUN expression [171]. 
Moreover, metastasis is regulated by immune cells, espe-
cially in the formation of the premetastatic niche [172]. 
MDSCs accumulate in the liver before CRC metastasizes 
to the liver and promote the survival and clonal expan-
sion of metastatic tumor cells. Moreover, VEGF and 
the CXCL1-CXCR2 axis are necessary for the forma-
tion of the premetastatic niche. VEGF secreted by cells 

in a colorectal tumor induces TAMs to secrete CXCL1, 
which recruits CXCR2-expressing MDSCs to the liver, 
ultimately inducing an immunosuppressive premetastatic 
niche [173]. These works highlight the close relationship 
among CSCs and metastatic and immune-regulating 
factors.

Moreover, during tumor metastasis, CSCs are closely 
related to immune cells, and their interactions extensively 
regulate metastasis. As a critical pathway in immune reg-
ulation, the TDO2-AHR signaling pathway is activated 
in colorectal CSCs during metastasis. The TDO2-AHR 
signaling pathway promotes the liver metastasis of CRC, 
which requires the suppression of immunosurveillance, 
and this process is related to the positive regulation of 
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AHR in PD-L1 expression [174]. Another study revealed 
that colorectal CSCs can fuse with monocytes to form 
 CD45+CD14+EpCAM+ tumor hybrid cells (THCs), 
which exhibit higher metastatic and immune escape 
capacities [175]. Collectively, colorectal CSC–immune 
cell crosstalk affects tumor metastasis.

CSC‑immune cell crosstalk in drug resistance
Drug resistance and relapse are still the direct rea-
sons for the low survival rate of cancer patients [176]. 
CSCs have been proven to be critical to drug resistance 
[177]. In multiple types of tumors, CSCs are enriched 
in a residual cell population after conventional 

chemoradiotherapy [178]. CSCs protect themselves 
from being killed by antitumor drugs via the EMT 
[179], metabolic reprogramming[180], epigenetic mod-
ifications [181], autophagy [182] and the DNA damage 
response [183]. The critical role of colorectal CSCs in 
chemotherapy resistance has been described in another 
review [184]. 5-Fu is a main drug for the treatment of 
CRC patients, and 5-Fu drug-resistant CRC cells highly 
express CSC markers and maintain cell quiescence 
through the c-Yes/YAP axis [185].

In addition to colorectal CSCs involvement in drug 
resistance, the immune microenvironment is involved. 
TAMs secrete MFG-E8 to activate the STAT3 and 
Hedgehog signaling pathways in colorectal CSCs and 
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promote the chemotherapy resistance and relapse of 
colorectal CSCs [186]. Moreover, accumulating evi-
dence has proven that CSCs become resistant to immu-
notherapy via various mechanisms, including low MHC 
expression, high expression of immune checkpoint 
molecules such as PD-L1, low neoantigen production 
and the formation of an immunosuppressive niche [8].

Targeting colorectal CSCs
In the past ten years, the advent of immunotherapy, such 
as ICIs and chimeric antigen receptor (CAR)-T cells, has 
subverted the traditional antitumor therapy. ICIs have 
been applied to the treatment of hematological tumors 
and various solid tumors, and have shown great clini-
cal effects [187]. CSCs harbor the characteristics of self-
renewal, tumor initiation, metastasis, and are difficult to 
be eliminated by traditional antitumor treatments. The 

elimination of CSCs has always been an important goal 
of basic research and clinical applications [188]. Notably, 
research targeting colorectal CSCs through antibodies, 
tumor vaccines, adoptive cell therapy and small molecule 
inhibitors has been explored recently in the context of 
CRC, and the results are reviewed herein.

Monoclonal antibodies (mAbs)
Since rituximab, the first mAb drug targeting CD20, was 
approved by the FDA in 1997, mAbs have been shown 
to be very successful antitumor immunotherapies in 
clinical practice [189]. New mAbs targeting colorectal 
CSCs, especially those targeting surface markers and key 
signaling pathways, are constantly being developed and 
clinically evaluated. The CD44, CD133, Lgr5 and Notch 
pathways are frequently targeted to eliminate colorec-
tal CSCs (Table 1), whereas the Wnt/β-catenin pathway 

Table 1 Elimination of colorectal CSCs based on monoclonal antibodies

Target Drugs Clinical trial title References

CD44 RG7356 A Study of RO5429083 in Patients With Metastatic and/or Locally Advanced, CD44-Express-
ing, Malignant Solid Tumors (ID: NCT01358903)

[191]

Notch1 Brontictuzumab A Dose Escalation Study of OMP-52M51 in Subjects With Solid Tumors (ID: NCT01778439) [203]

Notch2, Notch3 Tarextumab A Dose Escalation Study of OMP-59R5 in Subjects With Solid Tumors (ID: NCT01277146) [205]

Target Drugs Action References

DLL4 Anti-DLL4 mAb In vivo and in vitro experiments show antitumor activity
Combination with chemotherapy drugs increases drug sensitivity

[207, 208]

Carbohydrate epitope CC188 Recognizing a carbohydrate epitope on the surface of colorectal CSCs inhibits tumor inva-
sion in human colorectal cancer cells

[209]

Progastrin Hz8CV2 Inhibition of Wnt signaling and self-renewal of colorectal CSCs
Combined with chemotherapy drugs to increase drug sensitivity

[211]

Lgr5 BNC101 Antitumor activity against colorectal cancer patient-derived xenograft mice
Combination therapy increases efficacy of anti-PD-1 therapy

[193–195]

RSPO3 Anti-RSPO3 mAb Inhibition of colorectal cancer in patient-derived xenograft mice
Inhibition of Wnt target gene expression disrupts cancer stem cell function

[198]

Target Drugs Action References

DLL4 Anti-DLL4 mAb In vivo and in vitro experiments show 
antitumor activity
Combination with chemotherapy drugs 
increases drug sensitivity

[207, 208]

Carbohydrate epitope CC188 Recognizing a carbohydrate epitope 
on the surface of colorectal CSCs inhibits 
tumor invasion in human colorectal cancer 
cells

[209]

Progastrin Hz8CV2 Inhibition of Wnt signaling and self-renewal 
of colorectal CSCs
Combined with chemotherapy drugs 
to increase drug sensitivity

[211]

Lgr5 BNC101 Antitumor activity against colorectal cancer 
patient-derived xenograft mice
Combination therapy increases efficacy 
of anti-PD-1 therapy

[193–195]

RSPO3 Anti-RSPO3 mAb Inhibition of colorectal cancer in patient-
derived xenograft mice
Inhibition of Wnt target gene expression 
disrupts cancer stem cell function

[198]
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is relatively rarely investigated, perhaps because of the 
constitutive activation of Wnt/β-catenin induced by APC 
dysfunction in approximately 85% of CRC patients.

Anti‑CD44 mAb
CD44 is a widely recognized colorectal CSC marker, and 
inhibition of CD44 can suppress the growth and invasion 
of CSCs and sensitize tumors to therapy [190]. However, 
in a phase 1 clinical trial for patients with advanced solid 
tumors, RG7356 (a humanized anti-pan-CD44 mAb) 
was terminated early because it did not demonstrate 
a clinical, pharmacodynamic dose‒response relation-
ship, although RG7356 demonstrated acceptable safety. 
Among the 65 oncology patients participating in the clin-
ical trial, 19 were CRC patients. The final results showed 
that most patients showed disease progression after the 
second cycle, with only 13 of 61 patients that could be 
evaluated (21%) showing the best response, which was 
stable disease (SD), and with tumor shrinkage observed 
in 3 of the CRC patients [191].

Anti‑Lgr5/RSPO mAb
Lgr5 is a colorectal CSC marker associated with the 
Wnt/β-catenin pathway, and anti-Lgr5 mAbs that rec-
ognize colorectal CSCs have been developed [192]. Fur-
thermore, BNC101, a mAb with high affinity for Lgr5, 
exhibited antitumor activity that led to prolonged sur-
vival in multiple mouse models with CRC patient-derived 
xenograft (PDX) tumors [193, 194]. In animal experi-
ments, BNC101 has been shown to increase the efficacy 
of anti-PD-1 therapy [195]. R-spondin (RSPO) is a ligand 
of Lgr5, and their combination significantly enhanced the 
activity of the Wnt/β-catenin signaling pathway [196]. 
Targeting RSPO with antibodies inhibited the growth 
of various tumors, including CRC, and inhibited tumor 
stemness [197]. Storm et al. used a synthetic anti-RSPO3 
mAb to treat PTPRK-RSPO3 fusion-positive CRC cells 
in PDX mouse models, which effectively inhibited tumor 
growth and promoted tumor differentiation. An RNA 
sequencing data analysis showed that the expression of 
Wnt target genes was obviously reduced after this mAb 
treatment. Moreover, the number and function of CSCs 
were also reduced [198]. DBPR117, an anti-RSPO3 anti-
body, is being studied in combination with ICIs in solid 
tumors[199].

Anti‑Notch/DLL mAb
The Notch signaling pathway is important to colorec-
tal CSC self-renewal and resistance to apoptosis [200]. 
Accordingly, it is a direction to design mAbs target-
ing Notch receptors or DLL ligands for blocking Notch 
downstream genes.

Notch receptors, including Notch 1, Notch 2, Notch 3 
and Notch 4, are expressed in human cells. Knockdown 
of Notch1 in CRC cells inhibited their growth and pro-
liferation [201]. The effectiveness of brontictuzumab, a 
mAb designed to target Notch1 [202], has been evaluated 
in a phase 1 clinical trial in patients with solid tumors. 
Forty-eight patients, including 14 patients with CRC, 
were enrolled in this study. Although brontictuzumab 
was well tolerated, only 6 of the 36 evaluable patients 
showed clinical benefit [203]. Tarextumab is a cross-reac-
tive mAb developed to block Notch2 and Notch3 simul-
taneously. In PDX models of breast cancer, lung cancer, 
ovarian cancer or pancreatic cancer, the combination of 
tarextumab and chemotherapeutic drugs showed posi-
tive antitumor activity, and the number and tumorigenic 
capacity of the CSCs in residual tumors were significantly 
decreased after treatment [204]. However, in a phase I 
clinical trial of solid tumors using tarextumab alone, the 
final therapeutic effect of the 42 patients enrolled, 9 of 
whom were CRC patients, was not obvious, although the 
safety of the drug was verified [205]. In summary, evalu-
ation of the therapeutic effect of the tarextumab–chemo-
therapy combination was promising in clinical trials.

Among the six ligands that bind Notch, DLL4 is vas-
cular specific and involved mainly in the physiological 
process of angiogenesis and arteriogenesis [206]. An anti-
DLL4 mAb in colorectal tumor-bearing mice inhibited 
tumor cell proliferation and reduced tumor volume [207]. 
In another study, an anti-DLL4 mAb was shown to be 
effective against both KRAS-wild-type and KRAS-mutant 
CRC cell lines. In addition, the combination therapy of an 
anti-DLL4 mAb with irinotecan effectively reduced the 
number of CSCs in CRC tissues [208].

Other mAbs
Xu et  al. developed a mAb (CC188) that recognized a 
carbohydrate epitope on the cell surface of colorectal 
CSCs. CC188 showed adequate sensitivity and specific-
ity for human CRC cells in a tissue microarray analysis. 
In addition, CC188 inhibited the invasion of human CRC 
cells [209].

CRC cells secrete progastrin in an autocrine manner, 
which promotes colorectal CSC self-renewal and main-
tenance. Inhibiting the expression of progastrin mark-
edly reduced the number and impaired the tumorigenic 
capacity of colorectal CSCs [210]. The results of in vivo 
and in vitro experiments showed that Hz8CV2, an mAb 
targeting progastrin, inhibited the survival and self-
renewal of colorectal CSCs and blocked tumor growth, 
invasion and metastasis. A mechanistic investigation 
revealed that Hz8CV2 inhibited the Wnt/β-catenin sign-
aling pathway. Furthermore, the combination of Hz8CV2 
and 5-Fu showed encouraging therapeutic effects 
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compared to those of 5-Fu alone, confirming Hz8CV2 
as a potential new treatment for colorectal tumors and 
CSCs [211].

Antibody‒drug conjugates (ADCs)
Although mAbs have provided great benefits to cancer 
patients in the past two decades, the use of mAbs still 
has limitations, including the drug resistance acquisi-
tion and ineffective treatment [212]. In addition, the 
ability of mAbs alone to kill tumor cells is not satisfac-
tory [213]. Therefore, ADCs are designed as new syn-
thetic drug molecules that which consist of three parts: 
a monoclonal antibody, chemical linker and cytotoxic 
payload [214, 215]. The antibody is responsible mainly 
for recognizing specific antigens on the tumor cell sur-
face and being internalized into tumor cells where the 
payload is delivered [216]. The chemical linker is the 
bridge connecting the mAb to the cytotoxic payload and 
is responsible for the release of the cytotoxic payload 
[217]. The cytotoxic payload kills tumor cells after entry 
of the ADC into tumor cells [218]. To date, more than 
one dozen ADC drugs have been approved for market-
ing worldwide, and more than one hundred ADC drug 
candidates are in the clinical evaluation stage [219]. In 
terms of ADCs that target and kill colorectal CSCs, a 
variety of drugs are being developed and entered into 
clinical trials (Table 2).

Lgr5
As a recognized marker of colorectal CSCs, Lgr5 is an 
important target for the elimination of CSCs by ADCs. 
Gong et  al. developed two ADCs targeting Lgr5 to 
eliminate CSCs. This team utilized cleavable and non-
cleavable chemical linkers to conjugate the anti-Lgr5 
mAb with the tubulin-inhibiting agent monomethyl 
auristatin E (MMAE), in which yielded anti-LGR5-
mc-vc-PAB-MMAE and anti-LGR5-mp-MMAE, 
respectively. Subsequent in vitro experiments revealed 
that anti-LGR5-mc-vc-PAB-MMAE with a cleavable 
chemical linker was more cytotoxic than anti-LGR5-
mp-MMAE. In vivo experiments also proved that anti-
LGR5-mc-vc-PAB-MMAE significantly reduced tumor 
volume, and it eliminated CSCs, achieving complete 
remission (no tumor detected), without inducing toxic-
ity to the normal portion of the intestinal tract [220]. 
Another team designed two other ADC drugs target-
ing Lgr5, namely, anti-LGR5–mc-vc-PAB–MMAE and 
anti-LGR5–NMS818. MMAE is an antimitotic drug, 
while NMS818 contains the components of the topoi-
somerase inhibitor anthracycline drug PNU159682, 
which is a DNA-damaging drug. Both ADC drugs 
showed significant antitumor activity against CRC and 
CSCs and prolonged survival in animal models. Anti-
LGR5–mc-vc-PAB–MMAE showed better tolerance, 
while anti-LGR5–NMS818 showed target-dependent 
toxicity, which may be related to the bystander effect. 
A possible mechanism underlying the difference in 

Table 2 Elimination of colorectal CSCs based on antibody–drug conjugates

mAb Cytotoxic payload Clinical trial title References

Anti-CD166 DM4 PROCLAIM-CX-2009: A Trial to Find Safe and Active Doses of an Investigational Drug 
CX-2009 for Patients With Selected Solid Tumors
(ID: NCT03149549)

[228]

mAb Cytotoxic payload Action References

Anti-Lgr5 MMAE In vivo experiments significantly reduce 
tumor volume and eliminate colorectal CSCs 
with less intestinal toxicity and prolonged 
survival of tumor mice

[220, 221]

Anti-Lgr5 NMS818 Exhibits target-dependent toxicity 
while having antitumor activity

[221]

Anti-CD133 SN-38 Targeted killing of colorectal CSCs, delaying 
tumor recurrence

[222]

Anti-CD44 Doxorubicin With stronger affinity to tumor tissue, C26 
tumor-bearing mice have a longer survival 
period after treatment

[224]

Anti-EpCAM
(3–17I)

Saporin Stronger lethality to EpCAM-positive colo-
rectal cancer cells
Becomes more effective with increasing 
light dose

[225]

Anti-EpCAM (HEA125) α-amanitin In vivo experiments inhibit tumor growth 
and reduce side effects

[226]
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toxicity involves NMS818 released in tumor cells pen-
etrating the cell membrane to affect surrounding nor-
mal cells, whereas free MMAE exerted a 10–100-fold 
weaker effect than NMS818 on dividing cells [221]. 
Overall, these investigations targeting Lgr5 via ADCs 
indicate viable therapeutic strategies to obliterate colo-
rectal CSCs.

 CD133
Ning et  al. developed CD133Ab-NPs-SN-38 nano-
particles, which combine the anti-CD133 mAb and 
SN-38, an inhibitor of topoisomerase I. Compared 
with free SN-38 and nanoparticles loaded with SN-38 
(NPs-SN-38), CD133Ab-NPs-SN-38 showed greater 
antitumor ability and precisely targeted and killed colo-
rectal CSCs, inhibited tumor growth and delayed tumor 
recurrence, demonstrating that CD133 is a promising 
ADC target for colorectal CSC elimination [222].

CD44
As the first nanodrug approved by the FDA, Doxil is 
loaded with doxorubicin encapsulated in liposomes, 
and it shows a longer circulation time and induces 
fewer side effects [223]. Arabi et al. used an anti-CD44 
mAb to modify Doxil and thus produced CD44-Doxil 
for the targeted elimination of colorectal CSCs. Because 
of the engagement of the anti-CD44 mAb, CD44–Doxil 
showed higher affinity for tumor tissue, with a higher 
T/NT ratio than Doxil alone. Both in vitro and in vivo 
experiments showed significant antitumor effects, and 
C26 tumor-bearing mice treated with CD44-Doxil pre-
sented with longer survival times [224].

 EpCAM
EpCAM is a marker of colorectal CSCs, and a bioti-
nylated anti-EpCAM mAb (3–17I) was linked to saporin 
(a ribosome-inactivating toxin) to form 3–17I-saporin. 
3-17I-Saporin showed an enhanced killing effect on to 
the EpCAM-positive WiDr CRC cell line. Due to the 
involvement of photochemical internalization (PCI), 
3–17I-saporin became more potent with increasing 
doses of light stimulation [225]. Exploiting another anti-
EpCAM mAb, HEA125, and toxic α-amanitin, a specific 
inhibitor of RNA polymerase II that is closely related 
to CRC, Liu et  al. designed ama–HEA125 via conjuga-
tion of the HEA125 mAb to α-amanitin. Ama–HEA125 
effectively inhibited tumor growth in CRC-bearing mice 
with a low α-amanitin dosage and thus showed greatly 
reduced side effects [226].

CD166
CD166 has also been identified as a marker of colorec-
tal CSCs [227]. CX-2009 is an ADC drug that combines 
an anti-CD166 mAb Probody with the maytansinoid 
derivative DM4. A phase I/II clinical trial was conducted 
to evaluate the safety, pharmacokinetics and efficacy of 
CX-2009 for use in patients with advanced solid tumors 
[228]. In another preclinical study, CX-2009 was com-
bined with anti-PD-1 and used to treat CD166-positive 
CT26 cell-bearing mice, and the results showed that the 
combined treatment significantly inhibited the growth 
of the tumors in the mice. In addition, CX-2009 reduced 
the number of exhausted  CD8+ T cells and promoted the 
activation of T cells, possibly because of the involvement 
of anti-PD-1 [229].

Bispecific antibodies
To prevent the ubiquitous immune evasion of tumor cells 
and CSCs [230], new therapeutic strategies have been 
developed to combine immune cells with tumor cells 
[231]. Bispecific antibodies (BsAbs) are artificially con-
structed hybrid proteins and are considered potential 
antitumor drugs [232]. In contrast to traditional mAbs 
that can recognize only a single epitope, BsAbs were 
capable of simultaneously recognizing two different anti-
gen epitopes [233]. Bispecific T-cell engager (BiTE) is a 
type of BsAb that links T cells and tumor cells together 
to enhance their antitumor effects [234]. Currently, 
more than 50 BsAbs are undergoing clinical trials [235], 
and there are also attempts to target colorectal CSCs 
(Table 3).

 EpCAM × CD3 BiTE
MT110 and MuS110 are BiTEs linking anti-EpCAM 
and anti-CD3 antigen-specific antibody single chains 
together, with MT110 is human-derived and MuS110 is 
mouse-derived. MT110 exhibits high antitumor activity 
against the human CRC cell line SW480 in tumor-bearing 
mice, with a vigorous ability to inhibit tumor initiation, 
demonstrating the CSC-targeting capacity of MT110. 
MuS110 showed the same therapeutic effect in a mouse 
lung metastasis model of CT26 cells [236]. In a phase I 
clinical trial of MT110 (solitomab) in the treatment of 
refractory solid tumors, dose-limiting toxicities occurred 
in 15 of 65 patients enrolled. Among 54 patients who 
were assessed by RECIST, 17 patients (31%) had the best 
SD response [237]. In another study, the combination of 
bispecific EpCAM × CD3 antibody and umbilical cord 
blood mononuclear cells (MNCs) derived from mouse 
liver inhibited tumor growth in SW480 tumor-bearing 
mice [238]. Catumaxomab is the first commercially mar-
keted trifunctional antibody (anti-EpCAM × anti-CD3). 
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In addition to binding tumor cells and T cells, its Fc 
region can also connect to helper cells by binding to Fcγ 
receptors [239]. In clinical trials of patients with malig-
nant ascites, including CRC, catumaxomab showed an 
acceptable safety and promising efficacy [240, 241]. Inter-
estingly, intraperitoneal injection of catumaxomab facili-
tates the accumulation of  CD8+ T cells in the peritoneal 
cavity [242].

DLL4 × VEGF
Dilpacimab (ABT-165) is a BsAb targeting DLL4 and 
VEGF. In preclinical studies, the therapeutic effect of Dil-
pacimab on tumor-bearing mice of human CRC SW-48 
cells was superior to that of anti-DDL4 or anti-VEGF 
mAb alone. In addition, dilpacimab combined with 
chemotherapy had a better curative effect on tumor-
bearing mice with the human CRC cell line HT-29 than 
chemotherapy alone [243]. However, in a phase II clini-
cal trial, the combined efficacy of dilpacimab and FOL-
FIRI chemotherapy in patients with metastatic CRC was 
investigated. The results showed that dilpacimab com-
bined with FOLFIRI chemotherapy did not bring signifi-
cant clinical benefit, and the clinical trial was terminated 
early [244].

As another BsAb targeting DLL4 and VEGF, CTX-009 
(ABL001) showed antitumor activity in xenograft mouse 
models of human CRC cells Colo205, WiDr, SW-48 and 
SW620. The combined treatment of CTX-009 and iri-
notecan on SW48 and SW620 xenograft mice showed 

a synergistic effect, and their combination reduced the 
expression of DLL4 in tumor tissue and promoted the 
apoptosis of tumor cells [245]. In a phase Ia clinical trial, 
patients with metastatic gastrointestinal tumors were 
treated with CTX-009, and the safety and preliminary 
efficacy of CTX-009 were verified [246]. Another phase II 
clinical trial of CTX-009 is ongoing in adult patients with 
metastatic CRC who have received at least two types of 
systemic chemotherapy [247].

EGFR × LGR5
Cetuximab, a mAb targeting EGFR, is the first-line drug 
for the treatment of patients with Ras wild-type CRC. 
However, cetuximab still has therapeutic limitations, 
and it is difficult to produce curative effect on patients 
with Ras mutant CRC [248]. MCLA-158, a BsAb target-
ing EGFR and Lgr5, showed significant inhibitory effects 
on patient-derived CRC organoids in a preclinical study 
[249]. Compared with cetuximab alone, MCLA-158 
showed better efficacy on both Ras wild-type and Ras 
mutant CRC in PDX mouse models, and MCLA-158 can 
effectively target CSCs and inhibit the initiation of tumor 
organoids [250].

Tumor vaccine
With the rise of tumor immunotherapy represented by 
ICIs and CAR-T cells, the research on tumor vaccines 
has ushered in a revival [251]. Tumor vaccines carry-
ing tumor-associated antigens (TAAs) or tumor-specific 

Table 3 Elimination of colorectal CSCs based on bispecific antibodies

Targets Drugs Clinical trial title References

EpCAM × CD3 MT110 Phase I Study of MT110 in Lung Cancer (Adenocarcinoma and Small Cell), Gastric Cancer or Adeno-
carcinoma of the Gastro-Esophageal Junction, Colorectal Cancer, Breast Cancer, Hormone-Refractory 
Prostate Cancer, and Ovarian Cancer (MT110-101)
(ID: NCT00635596)

[237]

EpCAM × CD3 Catumaxomab Study in EpCAM Positive Patients With Symptomatic Malignant Ascites Using Removab Versus 
an Untreated Control Group
(ID: NCT00836654)

[241]

DLL4 × VEGF Dilpacimab
(ABT-165)

A Study of ABT-165 Plus FOLFIRI vs Bevacizumab Plus FOLFIRI in Subjects With Metastatic Colorectal 
Cancer Previously Treated With Fluoropyrimidine, Oxaliplatin and Bevacizumab
(ID: NCT03368859)

[244]

DLL4 × VEGF CTX-009 (ABL001) This is a Study to Evaluate the Safety and Tolerability of the Study Drug ABL001, and to Determine 
the Maximum Tolerated Dose and/or Recommended Phase 2 Study Dose of ABL001
(ID: NCT03292783)

[246]

DLL4 × VEGF CTX-009 (ABL001) A Study of CTX-009 in Adult Patients With Metastatic Colorectal Cancer
(ID: NCT05513742)

[247]

EGFR × LGR5 MCLA-158 Inhibiting the growth of CRC organoids
Efficacy in both Ras wild-type and Ras mutant PDX mice

[250]

Targets Drugs Action References

EGFR × LGR5 MCLA-158 Inhibiting the growth of CRC 
organoids
Efficacy in both Ras wild-type 
and Ras mutant PDX mice

[250]
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antigens (TSAs) are recognized by the human immune 
system, and antitumor immune responses, mainly T-cell-
based cellular immunity, are triggered to prevent the 
propagation of tumors [252]. As early as 1985, clinical 
research on the treatment of CRC with tumor vaccines 
was reported [253]. Tumor vaccines based on CSCs have 
been proven to have significant antitumor ability [254]. 
For CRC, attempts to achieve immune prevention and 
treatment of CSCs through tumor vaccines are under-
way, which may break through the plight of the suppres-
sive immune microenvironment of CRC.

MUC1 vaccine
Studies have shown that high expression of MUC1 is 
associated with poor prognosis in CRC patients [255]. 
MUC1 is significantly enriched in colorectal CSCs and 
is also considered a potential target for intervention in 
colorectal CSCs [256]. A study showed that MUC1 is 
a key component of a CSC vaccine that exerts antitu-
mor immune activity. When comparing the tumor pre-
vention effect of vaccines generated from control CSC 
lysate and shMUC1 CSC lysate, the vaccine developed 
from CSC lysate showed a significant preventive and 
protective effect on SW620 cells, while knocking down 
MUC1 impaired the protective effect [257]. In contrast, 
another study designed a CSC vaccine with high expres-
sion of MUC1. Mice injected with this vaccine showed 
more robust antitumor ability after receiving CT26 cell 
shock, characterized by decreased CSCs in tumor tis-
sue, enhanced infiltration and cytotoxicity of NK,  CD4+ 
and  CD8+ T cells, increased antibody production, and 
reduced immunosuppressive MDSC and Treg cells [258].

Tecemotide is a liposomal vaccine based on the 25 core 
amino acids of MUC1 [259]. In a clinical trial of tecemo-
tide in the treatment of CRC patients with liver metas-
tases after resection, the median OS of the patients was 
up to 62.8  months [260]. Compared with the other two 
clinical trials of cetuximab and bevacizumab combined 
with chemotherapy, tecemotide vaccinated patients had a 
longer survival period [261].

DC vaccine
As the most powerful antigen-presenting cells in the 
body, DCs are specifically responsible for antigen presen-
tation to T cells to activate antitumor immunity. There-
fore, tumor antigen (TAA or TSA)-loaded DCs serve as a 
rational vaccine for tumor targeting [262]. Fu et al. loaded 
colorectal CSC lysate onto DCs to make a DC vaccine, 
which had a significant inhibitory effect on tumor growth 
in colorectal CSC-bearing mice models. In addition, 
mice vaccinated with DC vaccine in advance produced 
more interferon after receiving CSC shock to inhibit the 
occurrence of tumors [263]. In another study, colorectal 
CSC-derived defective ribosomal products containing 
autophagosome-rich blebs (DRibbles) were cocultured 
with DCs to make DRibble vaccines, and treatment of 
BALB/c CRC mice with the DRibble vaccine resulted in 
more  CD8+ T-cell-mediated cytotoxicity and longer sur-
vival [264].

Adoptive cell therapy
Adoptive cell therapy transforms and activates autol-
ogous or allogeneic immune cells in  vitro and then 
expands and infuses them back into the patient’s body to 
eliminate tumor cells [265]. A study carried out as early 
as 1988 showed that immune cells extracted from mela-
noma patients could mediate the objective regression 
of melanoma in some patients after expansion in  vitro, 
combination with IL-2 and infusion back into the patient 
[266]. At present, cell adoptive therapy has been devel-
oped into various methods such as CTL [267], CAR-T 
[268], TCR-T [269], and CAR-NK [270]. Overall, the 
number and status of immune cells affect the prognosis 
and survival of CRC patients with adoptive cell therapy 
[271, 272]. Targeting and eliminating colorectal CSCs 
through adoptive cell therapy is emerging as a direction 
for exploring personalized treatment of CRC (Table 4).

CTL
A study showed that OR7C1 is a potential marker of 
colorectal CSCs, and its high expression enhanced 
the stemness of CRC. The induction and expansion of 

Table 4 Elimination of colorectal CSCs based on adoptive cell therapy

Type Target Action References

CTL OR7C1
ASB4
CEP55

Effective recognition and killing of colorectal CSCs [273]
[274]
[275]

CAR-T EpCAM
CD133
DCLK1
Lgr5

Recognition and killing of colorectal CSCs without antigen presentation by MHC-I 
molecules

[277, 278]
[279]
[50, 280]
[281]

CAR-NK EpCAM EpCAM-specific CAR-NK can effectively recognize and kill colorectal CSCs
Combined with regorafenib to exert a stronger anti-tumor effect

[286]
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OR7C1-specific CTLs in  vitro proved to be effective in 
recognizing and eliminating colorectal CSCs, and these 
results were confirmed by in  vivo experiments [273]. 
Another study revealed that the specific CTL induced by 
the peptide epitope of ASB4, which is expressed in tumor 
tissues but not in normal tissues, can distinguish colo-
rectal CSCs from normal stem cells, leading to colorectal 
CSC-specific lethality. Moreover, CSC-specific CTLs also 
inhibited tumor growth in vivo, demonstrating the clini-
cal efficacy of targeting and eliminating colorectal CSCs 
[274]. In addition, CEP55-specific CTLs have also been 
shown to be able to target and kill colorectal CSCs, which 
may present another strategy for CRC treatment after 
chemotherapy resistance [275].

CAR‑T
CAR-T cells are genetically modified T cells express-
ing CARs, which can recognize and kill tumor cells 
without the contribution of MHC-I molecule antigen 
presentation [276]. Anti-EpCAM CAR-T cells targeting 
epithelial cell adhesion molecule (EpCAM) inhibited 
the progression of CRC in tumor-bearing mice with-
out inducing obvious toxic side effects [277, 278]. Anti-
CD133 CAR-T cells showed strong antitumor activity 
against  CD133+ colorectal CSCs, and their safety and 
preliminary efficacy have been verified in a phase I 
clinical trial [279]. Anti-DCLK1 CAR-T cells, which 
targeted the colorectal CSC marker DCLK1, effectively 
recognized CSCs and released IFN-γ, which exerted 
cytotoxic functions. In  vivo experiments showed that 
anti-DCLK1 CAR-T-cell treatment of LOVO xeno-
graft mice inhibited tumor growth by more than 42% 
without inducing obvious toxicity [280]. The efficacy 
of CNA3103, CAR-T cells targeting Lgr5 antigen, 
were evaluated in a 1/2a clinical trial for patients with 
metastatic CRC [281]. In addition, the combination of 
anti-PD-L1 CAR-T and DC vaccines achieved good 
preclinical efficacy in targeting  ALDH1+ colorectal 
CSCs, reflecting the value of combined immunothera-
pies [282].

CAR‑NK
NK cells are another type of immune cells which can 
effectively recognize and kill tumor cells. The combina-
tion of CAR and NK cells is a novel attempt at generating 
antitumor immunotherapy with superior safety [283]. NK 
cells have been shown to preferentially target CSC popu-
lations [284, 285]. The combination therapy consisting of 
EpCAM-specific CAR-NK cells and regorafenib showed 
stronger antitumor activity than monotherapy against 
CRC cells and tumor-bearing mice. EpCAM-specific 
CAR-NK cells effectively recognized  EpCAM+ CRC cells 

and released IFN-γ, perforin and granzyme B to induce 
cytotoxicity [286].

Small molecule inhibitors
Small molecule inhibitors have become the main drugs 
approved by FDA for anti-tumor therapy due to their 
advantages of high selectivity, convenience, wide efficacy, 
and high tissue permeability [287]. Small molecule inhib-
itors are also one of the important targeting strategies for 
colorectal CSCs, mainly including targeting CSC surface 
markers and stemness pathways.

DCLK1-IN-1 is a highly selective DCLK1 kinase 
inhibitor that has been shown in multiple experiments 
to inhibit the aggressiveness and stemness of colorec-
tal cancer and reverse chemotherapy resistance [50, 51, 
288]. In addition, high expression of DCLK1 is associ-
ated with low  CD8+ T cell infiltration [166], and one 
study has found that the use of DCLK1-IN-1 in renal cell 
carcinoma can promote the efficacy of ICIs [289], which 
provides new ideas for the treatment of CRC. Napabu-
casin is a CSC inhibitor that targets STAT3. It has been 
tested in Phase III clinical trials in patients with meta-
static CRC. Although the results showed no significant 
difference in OS between the Napabucasin group and 
the placebo group, targeting pSTAT3 positive patients, 
the Napabucasin group had better survival [290]. Jing B 
et  al. used apoptotic tumor-derived particles (TMPs) as 
the carrier to construct nanodrugs loaded with Napabu-
casin N3-TMPs@NAP, which showed strong anti-tumor 
immune activity in vivo [291]. Mithramycin A (Mit-A) is 
another small molecule inhibitor that has been shown to 
inhibit colorectal CSCs. Dutta R et al. found that Mit-A 
can increase the expression of PD-L1 in CRC tissues, 
thereby increasing the drug sensitivity of anti-PD-L1 
therapy. Combined treatment with Mit-A and anti-PD-
L1 can increase the infiltration of CD8 + T cells and 
reduce the immunosuppressive Treg cells [292].

Perspectives and conclusions
At present, there are some challenges in CSC targeting, 
including specificity, heterogeneity and plasticity. First, 
many markers and targets of CSCs are TAAs but not 
TSAs; therefore, immunotherapy against these targets 
leads to side effects. Second, there are many subgroups 
of CSCs, and different subgroups have specific gene 
expression patterns, making the identification of univer-
sal targets in all subgroups difficult. Third, after elimina-
tion of CSCs, non-CSCs can dedifferentiate into CSCs 
because of the plasticity of these cells, and this process is 
similar to process underlying relapse in patients who had 
received traditional therapy; in summary, after elimina-
tion of non-CSCs, the surviving CSCs differentiate into 
new non-CSCs to generate new tumors [293]. Hence, it 
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may be feasible to overcome the plasticity of CSCs and 
target their microenvironment, which CSCs need to sur-
vive. With the development of new biotechnologies, such 
as RNA sequencing, single-cell sequencing and CRISPR 
screening [294], our understanding of CSCs will be fur-
ther advanced, and new promising targets for immuno-
therapy targeting of CSCs will certainly be identified.

Although tumor immunotherapy has achieved great 
success in a variety of tumors, and emerges as a ris-
ing star in tumor targeting even for solid tumors, there 
are still many dilemmas for immunotherapy, including 
cytokine storm, impaired tumor-infiltration of immune 
cells, immunosuppressive microenvironment, immune 
tolerance and relapse [295–298]. CSCs play impor-
tant roles in the remodeling of the immunosuppressive 
microenvironment and tumor cell immune escape, which 
largely account for tumor relapse and drug resistance 
after immunotherapy. However, the current investigation 
on tumor microenvironment is often population-based, 
and the specific microenvironment of CSCs has been less 
extensively studied. Due to the key role of CSCs in tumor 
initiation, metastasis, drug resistance and relapse, there 
is an urgent need to understand the specific CSC micro-
environment. Some recently advanced technologies, such 
as genetic labeling of CSCs, microenvironment labeling, 
CSC and immune cell coculturing systems, CRISPR 
screening technology and spatial transcriptome assays 
[299], will greatly promote investigation of the interac-
tion between CSCs and immune cells, ultimately provid-
ing a theoretical basis for CSC immune targeting.

Traditionally, CRC has been considered a “cold” tumor 
with insufficient infiltration of immune cells and there-
fore not suitable for classical ICI or CAR-T therapy. 
However, in some CRC patients, especially patients 
with high microsatellite instability (MSI), tumor immu-
notherapy has been effective, indicating the importance 
of the immune microenvironment in immunotherapy. 
Therefore, how to remodel the tumor immune micro-
environment from “cold” to “hot” is the key to tumor 
immunotherapy, and definitely it will provide new 
insight for tumor immunotherapy to intensively investi-
gate the mutual interaction between CSCs and immune 
cells. Moreover, the success of tumor immunotherapy, 
similar to that traditional therapy, is reduced by many 
difficulties, such as limited drug delivery, loss of target-
ing ability, drug tolerance and disease relapse. A variety 
of interdisciplinary strategies have been established for 
the delivery of traditional drugs to promote their stabil-
ity and tumor-specificity, as well as to reduce side effects 
[300]. Similarly, interdisciplinary strategies will bring 
breakthrough to tumor immunotherapy, which needs to 
be further strengthened in future. In summary, immu-
notherapy of patients with CRC and colorectal CSCs 

requires the integration of strategies used in multiple 
disciplines, including biology, medicine, biomaterials and 
nanotechnology.
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