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Interferon-alpha-based 
immunotherapies in the treatment of B 
cell-derived hematologic neoplasms in today’s 
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Abstract 

B cell lymphoma and multiple myeloma (MM) are the most common hematological malignancies which benefit from 
therapeutic monoclonal antibodies (mAbs)‑based immunotherapies. Despite significant improvement on patient 
outcome following the use of novel therapies for the past decades, curative treatment is unavailable for the major‑
ity of patients. For example, the 5‑year survival of MM is currently less than 50%. In the 1980s, interferon‑α was used 
as monotherapy in newly diagnosed or previously treated MM with an overall response rate of 15–20%. Noticeably, 
a small subset of patients who responded to long‑term interferon‑α further achieved sustained complete remission. 
Since 1990, interferon‑α‑containing regimens have been used as a central maintenance strategy for patients with MM. 
However, the systemic administration of interferon‑α was ultimately limited by its pronounced toxicity. To address 
this, the selective mAb‑mediated delivery of interferon‑α has been developed to enhance specific killing of MM and 
B‑cell malignant cells. As such, targeted interferon‑α therapy may improve therapeutic window and sustain responses, 
while further overcoming suppressive microenvironment. This review aims to reinforce the role of interferon‑α by 
consolidating our current understanding of targeting interferon‑α with tumor‑specific mAbs for B cell lymphoma and 
myeloma.
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Background
B-cell neoplasms account for about 80% of lymphomas, 
which are the most common type of blood cancer. In 
late 1990s, a new era of monoclonal antibody (mAb)-
based immunotherapy emerged with the first anti-CD20 
mAb for treatment of B-cell lymphomas. Surface CD20, 
a pan B-cell marker, is expressed during most stages of 
B cell development: on late pro-B cells to naïve, mature, 
and memory B cells; but not on precursor B cells, early 
pro-B cells, plasma blasts or plasma cells. Accordingly, 

anti-CD20 mAbs directly deplete B cells of interme-
diate stages whilst sparing pre-B cells and long-lived 
plasma cells, which highly expressed cell-surface CD38 
instead. Multiple myeloma (MM), the second most com-
mon blood cancer, is a distinct B-cell derived neoplasm 
characterized by expansion of plasma cells in bone mar-
row. The mAb therapies have become available for MM 
patients by targeting SLAM Family Member 7 (SLAMF7) 
[1, 2] and CD38 [3], both of which highly express on 
primary MM cells. Specifically, anti-CD38 mAb dara-
tumumab is the first mAb showing activity as a mono-
therapy in MM [3]. A very recent interim analysis of 
the phase 3 CASTOR trial also showed that therapeutic 
anti-CD38 mAb, when combined with bortezomib and 
dexamethasone, can significantly prolong progressive-
free survival (PFS) in patients with early relapsed and/or 
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refractory MM [4]. Although these mAb-based immu-
notherapies have led to significant improvements in 
treatment of B-cell neoplasms, patients may relapse and 
ultimately succumb to the disease. Therefore, the timely 
identification of an alternative approach, which more 
effectively destroys tumor cells including cancer stem 
cells (CSCs), is urgently needed.

Significant research efforts spanning nearly 4 decades 
have explored usage of cytokines as immunomodula-
tors to enhance host immune response against cancer. 
The most commonly used cytokines are the interferons 
(IFN), named in 1957 based on their ability to “interfere” 
with viral replication in infected cells [5]. IFNs were then 
further classified into 3 pleiotropic polypeptides: type 
I, II, and III (Table  1) [5, 6]. In 1978, type I IFNs from 
supernatant of human leukocytes exposed to viruses 
were purified to homogeneity and sequenced, leading to 
the discovery of various subtypes of IFNs [7]. In 1981, 
recombinant IFNs were successfully expressed by Genen-
tech, allowing for the large scale production of “clean” 
IFNs to meet both research and clinical demands [8, 9]. 
Interferon-alpha (IFN-α), a type I IFN, is the first recom-
binant subtype and also the most commonly used IFN in 
anti-cancer therapy. IFN-α comprises a family of more 
than 20 related but distinct members encoded by a clus-
ter on chromosome 9. Among these, the most frequently 
used is IFN-α2, having 3 recombinant variants (α2a, α2b, 
α2c) depending upon the cells of origin [10]. IFN-α2b is 
the predominant variant in human genome.

IFN-α can be secreted by intratumoural dendritic cells 
(DCs) and malignant cells in response to various stim-
uli and via positive autocrine and paracrine loops. As 
reported, a majority of human B-lineage cell lines (e.g. 
lymphoblastoid cells, B lymphoma, and MM cells) spon-
taneously produce significant amounts of IFN-α [11]. 
Plasmacytoid DCs have earned the moniker “human 
IFN-producing cells” (IPCs), hence they have the great-
est capacity to secrete type I IFNs. In the classical model 
of an antiviral immune response, IPCs are involved at 
two stages: (1) during the initial innate immune response 
stage, IPCs rapidly secrete type I IFNs to promote the 
function of natural killer (NK) cells, B cells, T cells, and 
myeloid DCs, and (2) at a later stage involving the adap-
tive immune response, IPCs differentiate into mature 
DC, which in turn directly regulates the function of T 
cells. All known IFN-α subtypes exert their function 
through a specific cell surface membrane receptor com-
plex known as IFN-α receptor (IFN-ΑR), commonly des-
ignated as IFN α/β receptor. IFN-ΑRs consist of two high 
affinity chains: a 110 kDa subunit α (IFN-ΑR1) reported 
in 1990; and a 102  kDa subunit β (IFN-ΑR2c) reported 
in 1994. Additionally, two different spliced isoforms of 
IFN-ΑR subunit β have been reported: (1) 40 kDa soluble 

IFN-ΑR2a; and (2) 5  kDa transmembrane short form, 
IFN-ΑR2b. IFN-α binding to IFN-ΑRs leads to activa-
tion of intracellular signaling cascades that increase the 
expression and promote the activation of signal transduc-
ers and activators of transcription (STAT)1, STAT2, and 
STAT3. STAT1 is required for IFN-α-mediated cell death. 
IFN-ΑRs are expressed not only on malignant cells but 
also on non-malignant cells, which contributes to anti-
tumor effects and nonspecific toxicity by IFN-α.

Systemic IFN-α administration is, to a large extent, 
hampered by its short half-life, high myelotoxicity, and 
paradoxical immunosuppressive effects. At present, 
cell-based immunotherapy is a very promising thera-
peutic approach; incorporation of a cell-based approach 
that exploits the specificity of mAb-targeting can selec-
tively deliver IFN-α into the tumor compartment, with 
fewer side effects as normal cells are spared. This review 
thereby reevaluates the utility of IFN-α-based regimens 
for B-cell lymphoma and MM in the current treat-to-tar-
get era.

Preclinical studies of IFN‑α in B cell lymphoma 
and myeloma
Recombinant IFN-α has shown activity against B-cell 
hematologic neoplasms, primarily through indirect 
depletion of B-cell neoplasms by immune activation of 
IFN-ΑR-expressing immune effector cells [12]. For T 
cells, IFN-α induces the generation and long-term sur-
vival of both cytotoxic CD8+ T cell (CTL) and memory 
CD8+ T cells against tumor antigens, as well as polarizes 
immune responses towards CD4+ T helper-1 (Th1) phe-
notype. For NK cells, IFN-α enhances NK cell-mediated 
toxicity and survival of NK cells. For B cells, IFN-α posi-
tively regulates antibody production. For DC cells, IFN-α 
promotes their maturation and chemotaxis. Moreover, 
IFN-α treatment induces the expression of programmed 
cell death-1 (PD-1) on tumor-infiltrating T cells and 
PD-L1 on tumors [13], which can be neutralized using 
checkpoint blockade with anti-PD-1/PD-L1 mAbs [14, 
15], currently in clinical trials in both lymphoma and 
MM.

IFN-α can also trigger direct anti-tumor cytotoxic-
ity. By activating IFN-ΑR signaling in B cell lymphomas, 
IFN-α can induce apoptosis [16], inhibit proliferation 
[17] and cell cycle progression [18], and promote ter-
minal differentiation in cancer cells [19]. IFN-α signal-
ing also upregulates major histocompatibility complex 
class I molecules on the surface of tumor cells, leading 
to enhanced tumor recognition by CTLs. IFN-α was 
recently reported to upregulate the expression of tumor-
associated antigens on human breast cancer xenografts, 
highlighting their potential for synergy with mAb therapy 
[20].
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However, the precise mechanisms underlying IFN-α’s 
anti-myeloma effect remain unclear [21]. This is due, in 
part, to contradictory reports on the effects of IFN-α on 
ex vivo cultured myeloma cells: some studies showed that 
IFN-α induces apoptosis and inhibits growth on myeloma 
cell lines [22], while other studies reported that IFN-α is a 
survival factor for human myeloma cells via upregulation 
of anti-apoptotic molecule Mcl-1 [23]. There is an ongo-
ing debate questioning relevance of an ex vivo system to 
model the highly complex tumor microenvironment in 
MM [24]. The utility of IFN-α as a maintenance drug for 
patients with MM was first reported in 1990 [25]. Since 
then, multiple studies to define the therapeutic benefit of 
IFN-α-based maintenance regimens have had conflict-
ing results. The primary focus of maintenance therapy 
in MM is to improve PFS and overall survival (OS). The 
achievement of positive responses hinges on the thor-
ough depletion of CSC pools (i.e. myeloma-initiating 
cells) after minimal residual disease (MRD) is achieved 
following induction therapy. Residual myeloma cells can 
survive by senescence and entering into the quiescent G0 
phase of the cell cycle [26], while IFN-α initially induced 
cell cycle arrest at the G0/G1 phase in an in vivo mouse 
model. Thereby, chronic stimulation by IFN-α could 
cause dormant hematopoietic stem cells to efficiently 
exit G0, and reverse therapeutic-induced senescence and 
drug-resistance [27]. IFN-α can therefore exert direct 
anti-cancer effects by re-activating and mobilizing senes-
cent CSCs [28], which may explain the efficacy of IFN-α 
maintenance therapy in MM.

History of IFN‑α‑based therapy in B cell lymphoma 
and myeloma
In the field of B cell lymphoma and MM, the usage of 
IFN-α-based immunotherapies spans two distinct eras: 
(1) pre-mAb; and (2) post-mAb eras (Table  2). The uti-
lization of IFN-α in the treatment of human B cell lym-
phoma dates back to the late 1970s, beginning with the 
use of natural IFN-α in murine models of leukemia and 
lymphoma (Additional file 1: Table S1) [29–31]. In 1981, 
the National Cancer Institute undertook Phase II trials 
of IFN-α2a in patients with low-grade non-Hodgkin’s 
lymphoma (NHL) [32]. And then, IFN-α has been used 
mainly in the treatment of low-grade follicular lymphoma 
(FL), the most common indolent NHL. The efficacy of 
IFN-α in cutaneous T cell lymphoma (CTCL) was first 
reported in 1984 and also subsequently at the 1995 Inter-
national Conference on CTCL to be the most effective 
single agent treatment. However, initial results of IFN-α 
treatment of other B-cell neoplasms were far less impres-
sive, since IFN could provide only palliative benefit in 
certain low-grade or early stage B-cell lymphomas, with 
complete remission and overall response of 10 and 48%, 

respectively [33, 35]. The first reported instance of IFN-α 
use in human MM dates back to 1979 when Mellstedt 
et  al. demonstrated its efficacy in previously untreated 
myeloma [36]. Since then, IFN-α2b has achieved 50 and 
15% responses in patients with newly diagnosed and 
refractory MM, respectively [37]. From 1997 onwards, 
the introduction of anti-CD20 mAbs led to significantly 
better disease control in high-grade lymphoma subtypes 
(e.g. diffuse large B cell lymphoma) and advanced stage/
high-grade FL [38]. Increased survival, due to the use of 
rituximab, has changed disease course to a more indolent 
one, affording time to define the effect of IFN-α treat-
ment of aggressive lymphomas as part of an induction 
and maintenance strategy [39]. However, these studies 
are mostly single arm, due to the difficulty in obtaining a 
large sample size related to high mortality in these high-
risk populations.

IFN‑α‑targeted immunocytokines in B cell 
lymphoma and myeloma
Although higher doses of IFN-α demonstrate greater 
anti-tumor activity, its significant systemic toxicities 
result in a very narrow therapeutic index (low maxi-
mum tolerated dose vs high optimal therapeutic dose). 
To address this limitation, several strategies have been 
explored to selectively deliver IFN-α to the tumor itself, 
including: (1) immunocytokines; (2) genetically modi-
fied DCs expressing IFN-α; (3) viral and other tumor-
targeting vectors encoding IFN-α [40–43]; and (4) 
vectors encoding pattern recognition receptor agonists 
delivered directly into tumor microenvironment. One 
major strategy currently under pre-clinical development 
aims to target IFN-α to specific cell populations (such 
as malignant cells or specific types of leukocytes) by 
conjugating IFN-α to mAbs to generate antibody-based 
IFN-α fusion proteins, also called immunocytokines or 
immunoconjugates.

The potential benefit of an immunocytokine approach 
can be explained in part by mAb-induced target-specific 
cell death mediated via several indirect mechanisms: (1) 
immune effector cell-mediated antibody-dependent cel-
lular cytotoxicity (ADCC); (2) complement-mediated 
cytotoxicity (CDC); (3) restoring immune effector cell 
function; and (4) direct mechanisms such as caspase-
dependent apoptosis (Fig.  1). Indeed, the anti-CD38 
mAbs inhibit immunosuppression exerted by regulatory 
T cells in MM [44–46] in addition to inducing myeloma 
cell death via lysosomal-associated and apoptotic path-
ways, which can be further enhanced by immunomodu-
latory drugs (IMiDs) [47]. Anti-CD38 mAbs may also 
inhibit MM-activated CD38+ pDC precursors [48] and/
or restore DC maturation and presentation of tumor anti-
gens, thereby further enhancing anti-tumor immunity. 
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The addition of IFN-α was reported to augment ADCC 
by therapeutic mAbs both in  vitro and in  vivo [49, 50]. 
Specifically, mAb-mediated ADCC can be enhanced 
by IFN-α in the 3 ways: (1) enhancement of total tar-
get–mAb–effector binding by increasing tumor-asso-
ciated antigen expression on tumor cells, as evidenced 
by in  vitro studies showing that IFN-α induces CD20 
upregulation on malignant B cells [51]; (2) activation of 
immune cells either directly, as IFN-α is a strong stimulus 
of NK cell activity, or indirectly through IFN-α-mediated 
upregulation of NKG2D ligands, which bind to co-stimu-
latory natural-killer group 2, member D (NKG2D) recep-
tors expressed by NK cells, CD8 T cells, γδ T cells and 
macrophage [52]; and (3) blocking of effector cell ‘inhibi-
tory’ signals, which remains largely unexplored. Addi-
tionally, type I IFN-containing immunocytokines can 
also target the tumor microenvironment by specifically 
binding to epidermal growth factor receptor on CTLs 
[53]. Taken together, cell-specific responses to tumor-tar-
geting IFN-α-containing-mAbs relate to its sensitivity to 
IFN-α, the specific mAbs used, as well as the expression 
and density of the targeted tumor-associated antigens.

Prior to the discovery of anti-CD20 mAbs, anti-tumor 
cytotoxic effect of mAbs was limited. In 1984, the idea 
of using mAbs to deliver IFNs into specific cellular com-
partments was first proposed in a human cancer model 
to exploit the anti-Epstein-Barr viral and anti-prolifer-
ative effects of IFNs [54]. In 1993, the anti-tumor activ-
ity of an immunoconjugate comprising natural IFN-α 
bound to a mAb specific for a human breast epithelial 

membrane mucin was studied in a xenograft tumor 
mouse model [20]. This study highlighted the potential 
feasibility of antibody-based IFN-α fusion proteins. Since 
then, the introduction of newer and highly potent mAbs 
(such as rituximab/anti-CD20, daratumumab/anti-CD38, 
elotuzumab/anti-SLAMF7) has renewed interest in the 
development of IFN-α-targeted immunocytokines. Pre-
clinical studies now evaluating anti-CD20-IFN-α and 
anti-CD20-IFN-β against B cell lymphoma, as well as 
anti-CD138-IFN-α against myeloma [17, 55–57]. Geneti-
cally engineered anti-CD20-IFN-α fusion proteins exert 
direct cytotoxicity and overcome CD20 mAb resistance 
in mice bearing B-cell lymphoma xenografts [58]. In 
MM, anti-CD138-IFN-α fusion proteins in combination 
with bortezomib resulted in synergistic cytotoxicity in a 
MM mouse model [59]. These preclinical studies form 
the rationale for the subsequent clinical trials [60]. Phase 
I clinical evaluation of anti-CD20-IFN-α to treat B-cell 
lymphomas (ClinicalTrials.gov Identifier NCT02519270) 
has been initiated and is still ongoing (Table 3).

In future, the ability to define patients who respond 
optimally to IFN-α-based immunotherapies is a cen-
tral goal in cancer immunotherapy. Patients with B-cell 
lymphomas and MM are often immunocompromised, 
due to both the disease and its treatment. As IFN-α acts 
through activation of the immune system, a compro-
mised immune system may limit IFN-α’s efficacy. In our 
opinions, IFN-α-based immunotherapies may benefit the 
following subpopulations of patients: (1) patients who 
have responded to intensive chemotherapy and stem cell 

Fig. 1 Enhancement of anti‑tumor immunity by antibody‑targeted IFN‑α in B cell malignancies. Antibody‑IFN‑α fusion proteins are given by intra‑
venous administration. The delivery of concentrated quantities of IFN‑α to malignant sites is facilitated by tumor specific mAbs. Three potentially 
important mechanisms used by antibody‑IFN‑α fusion proteins to kill targeted tumor cells are: (1) IFN‑αR mediated signals, i.e., IFN‑α binds to 
membrane receptor IFN‑αR expressed on tumor cells and activates downstream pathways to induce apoptosis; (2) IFN‑α internalization, i.e., after 
mAb‑IFN‑α fusion proteins are internalized, IFN‑α is released within cancer cells; (3) enhancing Fc receptor mediated ADCC, i.e., IFN‑α augments 
ADCC exerted by mAbs through binding to the membrane receptor IFN‑αR expressed on effector cells. E effector cells including NK cells, γδ T cells, 
macrophages and dendritic cells, B malignant B cells, IFN interferon, sIFN-αR soluble interferon alpha receptor, mAb monoclonal antibody, ADCC 
antibody‑dependent cell‑mediated cytotoxicity
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transplantation, whose response may be deepened and 
prolonged by IFN-α-based immunotherapy; (2) patients 
with very early stage and/or indolent disease, limited 
tumor burden, and an intact immune response; (3) 
patients with robust anti-viral immunity, which can be 
reprogrammed to target cancer instead; and (4) patients 
with highly detectable proportions of circulating immune 
effector cells. The search continues for other potential 
biomarkers of response to IFN-α-based therapies, while 
genome-wide gene expression profiling (GEP) has in 
recent years emerged as a powerful tool. Taken rheu-
matoid arthritis for example, GEP revealed that phar-
macodynamic differences in anti-CD20 mAb response 
very closely correlate to type-I IFN response gene activ-
ity [61]. Specifically, the increased expression of a set of 
6 IFN response genes (RSAD2, IFI44, IFI44L, HERC5, 
LY6E and Mx1) was associated with a good response to 
mAb-based immunotherapy while higher baseline levels 
of type I IFNs may predict for lack of response to anti-
CD20 mAbs.

Conclusions
The unique and multi-faceted anti-tumor mechanism 
of mAb-targeted IFN-α-based immunotherapy makes 
it a very promising agent for treatment of B cell malig-
nancies. Moving forward, in vitro and in vivo preclinical 
studies are needed to further evaluate the therapeutic 
efficacy of mAb-targeted IFN-α-based immunothera-
pies both as monotherapy and in combination with other 
MM therapies including proteasome inhibitors, immu-
nomodulatory drugs, and glucocorticoids. The following 
questions can be examined in preclinical models: (1) the 
relative anti-MM activity of intrinsic INF-α and anti-
IFN-α mAb; (2) the reduction of tumor burden, includ-
ing malignant stem cells, triggered by anti-IFN-α mAb 
compared to mAb alone; (3) impact of IFN-α on expres-
sion of tumor associated antigens (either on tumor cells 
or cells the within immune regulatory network) targeted 

by mAbs: by increasing the expression of CD20 on malig-
nant B cells [51], anti-CD20-IFN-α has shown promising 
anti-tumor activity in patients who were unresponsive to 
anti-CD20 mAb-containing regimens; (4) tolerability of 
mAb-targeted IFN-α-based immunotherapies compared 
to systemic administration of IFN-α; and (5) whether 
mAb therapies modulate the IFN pathway. Additional 
studies are required to determine the optimal doses, 
schedules, and sequence of mAb-targeted IFN-α-based 
immunotherapies. Current research provides a strong 
rational for the early clinical evaluation of these agents. 
Ultimately, the clinical utility of these targeted IFN-based 
approaches will need to be validated in multicenter, rand-
omized-controlled prospective studies.
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Oncology, Department of 
Medicine, UCLA (USA)

Preclinical Vasuthasawat et al. [59]
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