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GATA family transcriptional factors: 
emerging suspects in hematologic disorders
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Abstract 

GATA transcription factors are zinc finger DNA binding proteins that regulate transcription during development and 
cell differentiation. The three important GATA transcription factors GATA1, GATA2 and GATA3 play essential roles in the 
development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and megakaryocytic 
commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, 
and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an 
essential role in T lymphoid cell development and immune regulation. As a result, mutations in genes encoding the 
GATA transcription factors or alteration in the protein expression level or their function have been linked to a variety of 
human hematologic disorders. In this review, we summarized the current knowledge regarding the disrupted biologic 
function of GATA in various hematologic disorders.
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Background
Hematopoiesis is a finely modulated process controlled 
by numerous transcriptional and signaling factors. GATA 
is one of the transcription factors that play an essential 
role during hematopoietic development. All members of 
the GATA family have highly conserved DNA-binding 
proteins that recognize the motif WGATAR through two 
zinc fingers [1]. The two zinc fingers bind to separate tar-
get sites and each has a distinct function. The C terminal 
zinc finger binds to the GATA consensus sites, whereas 
the N terminal zinc finger promotes the interaction 
between GATA and specific DNA sequences through sta-
bilizing the association with zinc finger protein cofactors 
[1, 2].

Three members of the GATA family of transcription 
factors are involved in distinct and overlapping aspects of 
hematopoiesis, GATA1, GATA2, and GATA3. GATA1 is 
essential in the development of particular hematopoietic 
cell lineages. The expression of GATA1 on hematopoi-
etic stem cells, common myeloid or lymphoid precur-
sor induces megakaryocytic and erythroid commitment 

and simultaneously prevents granulocyte-monocyte and 
lymphoid development. In addition to erythroid cells and 
megakaryocytes, high level of GATA1 protein expression 
is also present on mast cells and eosinophils, suggesting a 
possible role in the terminal differentiation of these cells 
[3, 4]. The instructive effect of GATA1 on megakaryo-
cytic and erythroid commitment is through interaction 
with other transcription factors on target cells [5]. The 
interaction of GATA1 with N terminal zinc finger cofac-
tors such as FOG-1 (Friend of GATA) is essential for 
megakaryocyte or erythroid development [6]. Concomi-
tantly, the cofactors essential for granulocyte-monocyte 
and lymphoid commitment such as PU.1, PAX5 and 
IL-7 are downregulated [7, 8]. Additionally, GATA1 is 
directly involved in the survival of the erythroid precur-
sors, though activation of erythropoietin receptor (EPO) 
signaling [9, 10]. GATA1 activates target genes involved 
in cell cycle regulation or proliferation and differentiation 
[11, 12].

GATA2 is highly expressed in hematopoietic stem 
cells, multipotent hematopoietic progenitors, erythroid 
precursors, megakaryocytes, eosinophils, and mast cells 
[13–15]. GATA2 is required for proliferation and sur-
vival of early hematopoietic cells and mast cell formation, 
but dispensable for the erythroid and myeloid terminal 
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differentiation [13]. Interestingly, GATA2 gene is one 
of the target genes GATA1 regulates. In the absence of 
GATA1, GATA2 can bind to a region upstream of its own 
promoter and result in histone acetylation and activation 
of transcription. Upon induction of GATA1 expression, 
GATA1 displaces GATA2, a process called GATA switch. 
The decline of GATA2 and the beginning of GATA1 
expression contribute to the erythroid commitment and 
differentiation [16, 17].

GATA3 is essential for multiorgan development and 
regulates tissue specific differentiation. GATA3 muta-
tion has been previously reported in a developmental 
syndrome of hypoparathyroidism, deafness, and renal 
dysplasia (HDR syndrome) [18]. Interestingly, same 
mutations that abrogate the DNA-binding ability of 
GATA3 are also present in a subtype of human breast 
carcinoma [19, 20]. In hematopoietic cells, GATA3 is 
expressed mainly in maturing and mature T cells and 
natural killer cells, and plays an essential role in T lym-
phoid cell development and immune regulation [21–23]. 
There is evidence that GATA3 is also expressed in multi-
potent hematopoietic stem cells (HSCs) and regulates 
the balance between self-renewal and differentiation in 
hematopoietic stem cells [24, 25].

The molecular mechanism underlying GATA transcrip-
tional factors has been elucidated from numerous studies 
from cloning of the GATA factors and functional analysis 
from knockout embryonic stem cells and mutant mouse 
strains. Genetic studies in families with hematopoietic 
disorders, particularly with the most recent advances 
in large scale genetic analysis, provide a comprehensive 
approach in characterizing the functional role of GATA 
transcriptional factors in human disease. In this review, 
we highlight the recent understanding of GATA tran-
scriptional factors and their roles in the various aspects 
of hematologic disorders.

GATA1: from leukemia to anemia
Mutations in the GATA1 N-terminal activation domain 
and the N-zinc finger have been linked to human dis-
ease   (Fig.  1). Acquired mutations in GATA1 are tightly 
associated with acute megakaryoblastic leukemia (AMKL) 
and transient abnormal myelopoiesis (TAM) in children 
with Down syndrome (DS) [26, 27]. TAM is an abnormal 
myeloid proliferation that occurs in ~10 % DS newborn. 
TAM has clinical and morphologic findings indistinguish-
able from acute myeloid leukemia (AML) but tends to 
resolve spontaneously without chemotherapy. But about 
20–30 % of TAM will develop AML usually AMKL within 
3 years. Acquired somatic mutations of GATA1 have been 
consistently detected in nearly all Down syndrome TAM 
and AMKL cases [26]. In normal circumstance, both the 
full length 50KD GATA1 protein product and a 40KD 

minor isoform are produced. Mutations of GATA1 in 
TAM and AMKL are clustered in exon 2 and result in a 
truncated GATA1 protein from a premature stop codon 
that lacks the N-terminal activation domain. The trun-
cated GATA1 protein interacts with cofactor FOG1 as 
the full-length GATA1, but with a reduced transactiva-
tion potential [26]. The impaired production of full-length 
GATA1 causes the proliferation seen in TAM and blocks 
differentiation in AMKL. Screening of the GATA1 muta-
tion fails to detect any mutation from 12 to 25 weeks ges-
tation fetal liver, indicating the GATA1 mutation occurs 
late in trisomy 21 fetal hematopoiesis [28]. However, 
GATA1 mutation appears to be the initiating events in 
the Down syndrome leukemogenesis [29]. Although the 
risk factors for the progression from TAM to AMKL in 
DS are unidentified, accumulating evidence suggest the 
development of AMKL is likely a multistep process; addi-
tional genetic events may be required in addition to the 
GATA1 mutation to develop frank disease [30, 31]. For 
example, TP53 mutation has been reported present in 2 
of 3 patients with DS-AMKL but not in 7 patients with 
TAM [32]. The type of the mutation and the quantity of 
the mutant GATA1 protein may also have an effect on the 
risks of developing acute leukemia, although these obser-
vations have not been confirmed in a prospective study 
with a large series of TAM patients or found to be reliably 
predicting progression [33, 34].

Mutations in the GATA1 gene have been associated 
with X-linked familial dyserythropoietic anemia and/or 
thrombocytopenia. Nichols et  al. first described heredi-
tary dyserythropoietic anemia and thrombocytopenia 
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Fig. 1 The full length GATA1 protein contains a solitary “N terminal 
activation domain” (AD) and the two Zinc finger domains (N-ZF, C-ZF). 
The N terminal zinc finger interacts with cofactor FOG1 and increase 
the binding affinity to complex DNA motifs. The C terminal zinc finger 
binds to specific DNA motif “WGATAR”. The short isoform GATA1 
protein is the transcriptional product from the shorter splice variant 
which results in the absence of “N terminal activation domain”. GATA2 
and GATA3 encode full length proteins contain two transactivation 
domains (TA1 and TA2) which contain binding sites for other proteins 
such as transcription coregulators. The N‑terminal Zn finger (N‑ZF1) 
is known to stabilize DNA binding and interact with other zinc finger 
proteins, whereas the C‑terminal Zn finger (C-ZF) binds DNA
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in a pedigree that was consistent with an X-linked dis-
order. Genetic analysis of GATA1 from available family 
members revealed a heterozygous G>A mutation in exon 
4 which codes for the N-terminal zinc finger domain 
resulted in a substitution of methionine for valine at 
amino acid 205 of GATA1 [35]. The V205M mutation 
impairs the interaction between GATA1 and FOG1, 
which is essential for both megakaryocyte and erythroid 
development. This mutation causes skipping of exon 2 
and results in loss of long isoform of GATA1 [26]. Sev-
eral other reports described families with X-linked mac-
rothrombocytopenia, dyserythropoiesis and congenital 
erythropoietic porphyria harbor mutations in the same 
zinc finger of GATA1 [36–41] (Table  1). The majority 
of these mutations involve the N terminal zinc finger 
domains and cause amino acid changes in the otherwise 
highly conserved domain. As a result, these mutations 
adversely affect the binding of FOG 1 to the N zinc finger 
mutants with a weaker affinity compared to the wild-type 
GATA1 [36]. The interaction GATA1 and its cofactors 
are important in megakaryocyte development [42], as the 
GATA1 recognition site is present in promoter sites for 
many megakaryocyte-expressed genes [43, 44].

Mutations involving exon 2 donor splice site of GATA1 
gene have recently been reported in patients with clinical 
features consistent with the current diagnostic criteria 
for Diamond Blackfan anemia (DBA) or with DBA like 
features. DBA is a bone marrow failure syndrome char-
acterized by macrocytic anemia as a result of reduced 
erythroid precursors in the bone marrow. Although the 
majority of the cases harbor heterozygous loss of func-
tion mutations involving ribosomal protein genes, the 

molecular pathogenesis remains unclear in a subset of 
cases [45]. Recently, Sankaran et al. identified the GATA1 
mutation involving exon 2 splicing site in 2 siblings with 
DBA using whole exome sequencing [46]. Subsequently 
they screened 62 DBA patients with no known muta-
tions of ribosomal proteins and identified one additional 
patient with the same GATA1 mutation. This mutation is 
characterized by a deletion of one of 2 adjacent G nucle-
otides that would impair splicing and frameshift of the 
full-length GATA1 open reading frame, and as a result, 
favor the production of the minor isoform of GATA1 
protein [46]. Additional GATA1 mutations have been 
reported in other pedigrees associated with clinical fea-
tures of DBA (Table 1). All these mutations are predicted 
to impair the production of the mRNA encoding the 
full-length form [46–48]. Although it is unclear whether 
GATA1 mutations define a distinct subset of DBA or it 
is somehow related to ribosomal dysfunction, a recent 
study published by Ludwig et al. confirmed the decreased 
GATA1 mRNA translation in hematopoietic cells from 
patients with ribosomal haploinsufficiency, suggesting 
an impairment of selective GATA1 translation initia-
tion from reduction of ribosomal protein as the potential 
pathogenesis in this subset of DBA [49].

GATA2: a culprit in disguise
Acquired somatic mutations involving GATA2 are not 
common in sporadic AML cases. It has been reported in 
a small subset of AML with CEBPA mutation as acquired 
secondary genetic events [50, 51]. The GATA2 muta-
tional status does not appear to have any prognostic sig-
nificance in these patients [51]. More recently, germline 

Table 1 Reported GATA1 mutations in Diamond–Blackfan anemia, X-linked macrothrombocytopenia and related entities

Authors Mutations Impaired function Clinical features

Sankaran et al. [46] c.220G>C (p.Val74Leu) exon 2 splice 
site of the GATA1 gene

Loss of the full‑length form GATA1 Diamond–Blackfan anemia

Klar et al. [47] c.220G>C exon 2 of the GATA1 gene Loss of the full‑length form GATA1 Diamond–Blackfan anemia

Holanda et al. [48] c.332G>C exon 2 of the GATA1 gene Synthesis of only the short isoform Anemia and trilineage dysplasia

Parrella et al. [69] c.2T > C in the initiation codon Loss of the full‑length GATA‑1  
isoform

Diamond–Blackfan anemia

Nichols et al. [35] p.Val205Met exon 4 of N‑terminal  
zinc finger domain

Impairs the interaction between 
GATA1 and FOG1

Hereditary dyserythropoietic anemia 
and thrombocytopenia

Freson et al. [36] c.653A>G (p.Asp218Gly) in N‑ 
terminal zinc finger domain

Impairs the interaction between 
GATA1 and FOG1

Hereditary macrothrombocytopenia 
and mild dyserythropoiesis

Mehaffey et al. [37] c.622G>T, 623G>C (p.Gly208Ser) in 
N‑terminal zinc finger domain

Impairs the interaction between 
GATA1 and FOG1

Macrothrombocytopenia and severe 
bleeding

Yu et al. [38] and Tubman et al. [41] p.Arg216Gln in N‑terminal zinc  
finger domain

Affect DNA binding, diminishing the 
ability of the transcription factor  
to bind GATA binding sites

X‑linked thrombocytopenia, absence 
or paucity of α‑granules, thalas‑
semia

Phillips et al. [40] p.Arg216Trp in N‑terminal zinc  
finger domain

Alters affinity of GATA1 for either  
FOG‑1, or with GATA recognition 
sites

Congenital erythropoietic porphyria, 
thrombocytopenia and thalassemia
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GATA2 mutations have been implicated in a group of 
complex clinical entities with overlapping features includ-
ing familial myelodysplastic syndrome/acute myeloid leu-
kemia (AML), Emberger syndrome (primary lymphedema 
with MDS), and MonoMAC syndrome characterized 
by peripheral monocytopenia, B- and NK-cell lympho-
cytopenia, increased susceptibility to mycobacterium 
infections and a predisposition to acute myeloid leuke-
mia and myelodysplastic syndrome. Spinner et al. exam-
ined 57 patients from 40 different families with GATA2 
mutations, and reported a broad spectrum of manifes-
tations including mononuclear cytopenias, infection, 
myelodysplasia (MDS), and acute myeloid leukemia, 
deafness, lymphedema [52]. It is not completely surpris-
ing as GATA2 is a versatile transcription factor regulating 
hematopoiesis, immunity, inflammatory and developmen-
tal processes. Recent work established GATA2 as a MDS/
AML predisposition gene, in addition to the previously 
reported RUNX1 and CEBPA. GATA2 associated familial 
MDS/AML have only been described recently, but studies 
from a dozen pedigrees indicated clear heterogeneity in 
the clinical features (Table 2). Patients with GATA2 muta-
tion are younger than controls with sporadic MDS/AML 
and wild-type GATA2. But the onset age of disease in 
affected family members are variable. Familial MDS/AML 
may arise without preceding hematologic abnormali-
ties. Disease progression from MDS to AML in patients 
with GATA2 deficiency appear to be more rapid compare 
to wide type MDS cases with comparable IPSS scores 
[53]. Acquiring secondary genetic abnormalities such as 
ASXL1 gene mutation are considered as important events 
during progression [54, 55].

Cases of AML with GATA2 mutations are reported 
demonstrating a spectrum with different morphologic 

subtypes and variable cytogenetic abnormalities, includ-
ing most frequently monosomy 7, but also trisomy 8, 
and trisomy 21 [56]. There is a marked genetic hetero-
geneity ranging from single base substitutions, dele-
tion, and frameshift mutations, present throughout the 
GATA2 gene. Two types of GATA2 mutations have been 
described. Mutations occur in C-terminal zinc finger 
domains interfere the interaction with DNA, other tran-
scription factors and cofactors, and leads to more varia-
ble phenotypic consequences. The N-terminal frameshift 
mutations result in a nonfunctional protein lacking most 
of the function of the C terminal [57, 58]. Development of 
secondary mutations, which may occur at different times 
for affected individuals, may also contribute the hetero-
geneity in the clinical manifestation. Patients with famil-
ial MDS/AML associated with GATA2 mutation have 
increased risks for severe infections, particular intracel-
lular organisms. AML with GATA2 mutation usually 
have a poor outcome due to comorbidities such as pro-
pensity of infections. Anecdotal cases reported allogeneic 
hematopoietic stem cell transplant may be beneficial as 
in addition to eradicating the abnormal myeloid clone, 
it also offers the benefits to reconstitute the deficient 
immune cells and correct the propensity for infection. 
However, the indication or timing of transplant as well as 
the conditioning regimen and donor source are still being 
investigated in clinical trials. As there is increasing clini-
cal awareness, and the genetic testing is becoming more 
available to the clinical laboratories, the incidence of 
AML with hereditary gene mutations may appear on the 
rise in the coming years. The unique clinical features may 
warrant AML with GATA2 mutations, along with other 
AML with hereditary mutations, to be recognized and 
treated as distinct entities.

Table 2 Reported GATA2 mutations in familial MDS/AML

Authors Mutations Locations Clinical features

Hahn et al. [56] c.1061C>T (p.Thr354Met), c.1063_1065delACA 
(p.Thr355del)

C‑terminal zinc finger domain Familial MDS/AML

Bodor et al. [70] c.1061C>T (p.Thr354Met) C‑terminal zinc finger domain Familial MDS/AML

Holm et al. [58] c.313_314insCC (p.Leu105ProfsX15), c.121C>G 
(p.Pro41Ala), c.1187G>A (p.Arg396Gln), 
c.1061C>T (p.Thr354Met)

Various regions Familial MDS/AML, lymphedema, skin cancer

Pasquet et al. [71] c.1187G>A (p.Arg396Gln), c.610C>T 
(p.Arg204X), c.670G>T (p.Glu224X),  
c.988C>T (p.Arg330X), c.1114G>A 
(p.Ala372Thr), c.1162A>G (p.Met388Val), and  
a 61 kb deletion of the GATA2 locus

Various regions Chronic neutropenia and evolution to MDS/
AML

Kazenwadel et al. [72] c.1061C>T (p.Thr354Met), p.Leu332Thrfs*53, 
deletion encompassing GATA2 gene, 
p.Met1del290, c.1017 + 2T>G (p.?)

Various regions Familial MDS, MonoMac

Gao et al. [73] p.Thr358Asn, p.Leu359Val C‑terminal zinc finger domain MDS/AML, immunodeficiency

Fujiwara et al. [74] p. Arg330X N‑terminal zinc finger domain MDS/AML, immunodeficiency
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GATA2 mutations have been identified in acute mye-
loid transformation of chronic myeloid leukemia. Zhang 
et al. reported a p.Leu359Val in 8 of 85 cases of CML in 
blast crisis and associated with myelomonoblastic fea-
tures and a 6 amino acid in-frame deletion spanning the 
C-terminal border of ZF1 detected in one patient at mye-
loid crisis with eosinophilia. The p.Leu359Val has a gain 
of function effect with increased transactivation activity 
of GATA2 but also enhances its inhibitory effect on the 
activity of PU.1, a major transcription factor for myeloid 
cell differentiation [59].

Altered GATA2 protein expression levels by mecha-
nisms other than GATA2 mutations may also be a signifi-
cant event in leukemogenesis. A recent study by Celton 
et  al. using RNA sequencing reported a reduction in 
GATA2 protein expression in normal karyotype AML 
due to aberrant DNA methylation [60]. Along with previ-
ous observation GATA2 being one of the most differen-
tially hypomethylated locus in DNMT3a knockout mice 
[61], these findings implicated the epigenetic regulation of 
GATA2 is likely, though not sufficient by itself, included 
in the epigenetic modulation during leukemogenesis [62].

GATA3: beyond the T cells
GATA3 expression, as an important downstream event of 
Notching signaling, is required for producing early T-lin-
eage progenitor cells [22, 63]. Sequencing data identified 
GATA3 mutation as one of the recurring somatic genetic 
abnormalities in early T cell precursor acute lymphoblas-
tic leukemias (ETP-ALL) with a frequency of approxi-
mately 10 % (6 of 64 cases) in a large series published by 
Zhang et al. GATA3 mutation was not present in any of 
the 42 non-ETP acute lymphoblastic leukemia [64]. Four 
of the six cases reported were at R276 residue, which was 
also mutated in HDR [65]. Most of the mutations were 
biallelic due to either mutations involving both alleles or 
concomitant deletion of the second allele, and impair the 
DNA-binding affinity of GATA3 for its DNA targets and 
result in loss of GATA3 function [64].

Beyond the commitment to early T cell lineage, GATA3 
promotes the development of CD4  +  Th2 cells. High 
expression of GATA3 identifies a biologically distinct 
subgroup in peripheral T cell lymphoma associated with 
overall poor prognosis [66, 67]. The gene expression pro-
file of the GATA3 subset of peripheral T cell lymphoma 
also identifies high expression of Th2 associated tran-
scripts. This observation provides insight in understand-
ing the pathogenesis and potential oncogenic pathways 
for the peripheral T cell lymphoma. Surprisingly, aber-
rant expression of the T-cell transcription factor GATA3 
is observed in B cell-derived Hodgkin Reed-Sternberg 
(HRS) tumor cells. The dysregulated GATA3 expression 
is likely due to constitutive binding of NFkB and Notch-1 

pathways to GATA3 promoter elements [68]. The dys-
regulated GATA3 expression correlates with regulation 
of IL-5, IL-13, STAT4, and contributes to the complex 
cytokine and signaling network involving HRS. The role 
for GATA3 beyond T cell development still needs to be 
elucidated.

Conclusion
GATA family transcription factors play essential roles 
during normal hematopoiesis. Mutations in genes encod-
ing the GATA transcription factors have been linked to a 
variety of human hematologic disorders. In this review, 
we summarized recent understanding of how the dis-
rupted biologic function of GATA may contribute to the 
hematologic diseases. Much of the knowledge regarding 
the role of GATA transcriptional factors in human hema-
tologic disorders has just started to emerge, but accumu-
lating data indicate their versatile and essential functions 
in many aspects of hematopoietic system. Some of these 
findings are rapidly transforming our current view of sev-
eral hematologic entities.
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