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Abstract

Monoclonal antibody (mAb) has fulfilled the promise of being the “Magic Bullet” in oncology with the clinical
success of mAbs against CD20, Her-2/neu, epidermal growth factor receptor, vascular endothelial cell growth factor
and others in a variety of cancers. Most manufacturers of mouse-human chimeric antibodies (and most
immunologists) have treated the constant region of human immunoglobulin (Ig) as if it were naturally
monomorphic and therefore not immunogenic in humans. In fact, the constant region of Ig heavy and light chain
is highly polymorphic, and yet Ig haplotypes are usually not defined by genome-wide association studies nor are
they considered to be important for optimizing mAb therapy. We hereby summarize evidence that Ig allotypes are
important and biologically relevant in that they contribute to the etiopathogenesis of many malignant, infectious,
and autoimmune diseases. Because Ig allotypes differ from each other in engaging Fc receptor, we argue that
future development of effective mAb therapy for cancer should take a patient-specific approach by using the
correct allotype for each patient to maximize the efficacy of this therapy.

Keywords: GM and KM allotypes, IGHG genes, ADCC, CDC, Isoallotypes, Immunosurveillance, GVL
Introduction
Though any genetic variant of a protein could be called
an allotype, in immunology, the term is commonly used
for hereditary antigenic determinants expressed on im-
munoglobulin (Ig) polypeptide chains. Allotypes are
encoded by autosomal codominant genes that follow
Mendelian laws of heredity. With one exception [1],
allotypes identified thus far are expressed on the con-
stant (C) region of IgG, IgA, and IgE heavy chains and
on κ-type light chains [2]. In this minireview, we will
focus primarily on GM (genetic markers of γ chain) and
KM (genetic markers of κ chain) allotypes (Figure 1).

GM allotypes
GM allotypes are encoded by three very closely linked
and highly homologous genes—Ig heavy chain G1
(IGHG1), IGHG2, and IGHG3—on chromosome 14q32.
There are two systems of GM gene nomenclature cur-
rently in use—alphameric and numeric. We have
provided both. In accordance with the international
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system for human gene nomenclature, haplotypes and
genotypes/phenotypes are written by grouping together
the markers that belong to each subclass, by the numer-
ical order of the marker and of the subclass; markers
belonging to different subclasses are separated by a
space, while allotypes within a subclass are separated by
commas. There are currently 18 serologically testable
GM specificities—four on γ1 (1/a, 2/x, 3/f, 17/z), one on
γ2 (23/n), and 13 on γ3 (5/b1, 6/c3, 10/b5, 11/b0, 13/b3,
14/b4, 15/s, 16/t, 21/g1, 24/c5, 26/u, 27/v, 28/g5). With
the exception of allelic GM3 and GM17 determinants
expressed in the Fd region (the Fab portion of heavy
chain), all other GM alleles are expressed in the Fc re-
gion of γ chains. Linkage disequilibrium (non-allelic as-
sociation) in the GM system within a racial group is
almost absolute and the determinants are transmitted as
a group—haplotypes. Each major race has a distinct array
of several GM haplotypes. GM 3 23 5,10,11,13,14,26 and
GM 1,17 5,10,11,13,14,17,26 are examples of common
Caucasian and Negroid haplotypes, respectively. Unless
there is genetic admixture, these two groups do not share
any haplotypes. Nucleotide substitutions (SNPs) respon-
sible for most of the 18 serologically detectable GM
specificities have not yet been identified. Serological
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Figure 1 Localization of GM and KM allotypes on IgGκ molecule.
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reagents for GM typing are either extremely scarce or not
available at all. Molecular methods for determining some
GM markers are available; we, and others, are currently
developing DNA-based methods for other markers.

Isoallotypes
These are markers that behave as alleles in one IgG sub-
class (allotypes) but are also expressed in all molecules of
at least one other subclass (isotype). For instance, human
γ4 chains, unlike other γ chains, do not express unique
allotypes, but they do express isoallotypes. These
isoallotypes may be functionally involved in the so-called
“Fab arms exchange” between IgG4 antibodies, an
immunological mechanism implicated in the anti-
inflammatory activity of these antibodies [3]. The argin-
ine/lysine substitution at amino acid position 409 (R409/
K409) of γ4, characterizes an isoallotype [4]. R409 and
K409 behave as alleles on γ4 (allotypes), but they are also
present on all molecules of the other γ chains (isotypes).
R409 enables the Fab arms exchange, while K409 blocks it
[5]. Thus, examination of γ allotypes and isoallotypes may
shed light on the etiology of IgG4-mediated diseases [6].

GM allotypes and disease susceptibility
The marked differences in the frequencies of GM
allotypes among races, strong linkage disequilibrium
within a race, and racially-restricted occurrence of GM
haplotypes, all suggest that differential selection over
many generations may have played an important role in
the maintenance of polymorphism at these loci. As first
suggested by J.B.S. Haldane, major infectious diseases
have been the principal selective forces of natural selec-
tion [7]. Malignant diseases, however, might also have
exerted adaptive pressure on GM polymorphisms. Since
most cancers (breast, prostate, etc.) occur predominantly
in middle and older age groups, it is commonly
suggested that they may not be subject to natural selec-
tion because people with these diseases are beyond their
reproductive age. However, the predominant occurrence
of cancer in the older age groups may reflect the
multistep nature of cancer development rather than the
lack of evolutionary adaptive pressure [8].
Using hypothesis driven candidate gene approaches,

numerous studies have identified particular GM genes as
risk factors for many malignant [9-13], infectious
[14-18], and autoimmune diseases [19-24], but most of
these findings have not been confirmed or refuted by
modern genome-wide association studies (GWAS). One
contributing factor might be the absence of GM gene
probes in most genotyping platforms. GWAS are
assumed to be able to detect/tag all SNPs in the genome
whose frequency is at least 5% or less (using newer



Pandey and Li Experimental Hematology & Oncology 2013, 2:6 Page 3 of 7
http://www.ehoonline.org/content/2/1/6
arrays). This, however, is not true. Most GM alleles are
common within a racial group (some with gene fre-
quency >70%), but the IGHG gene segments harboring
them are highly homologous and apparently not amen-
able to the high throughput genotyping technology used
in GWAS. Because these genes were not typed in the
HapMap project, they cannot be imputed or tagged
(through linkage disequilibrium) by any SNPs that are
included in the genotyping platforms. One of us (J.P.P.)
has stressed the importance of GM genes in human biol-
ogy and pointed out that they are not being evaluated by
GWAS in letters to some high-profile journals [25-28],
hoping to reach a wide audience. It is encouraging to
note that a recent GWAS of multiple sclerosis did in-
clude GM alleles and concluded that particular GM
haplotypes contributed to the higher IgG levels in the
cerebrospinal fluid of these patients [29]. Using a candi-
date gene approach, we came to the same conclusion
over three decades ago [30].

Possible mechanisms underlying the involvement
of GM genes in the etiopathogenesis of human
diseases
Several immunological mechanisms, which are not mu-
tually exclusive, can be postulated to explain GM gene
involvement in various human diseases.

GM allotypes and immune response to self and
non-self antigens
GM allotypes could mediate the development or progres-
sion of a disease by influencing the immune responsive-
ness to the antigens relevant to the disease. Importance of
Ig allotypes in controlling immune responsiveness was
recognized over 40 years ago [31]. More recent studies
have shown that immune responsiveness to a variety of
antigens—infectious agents, vaccines, autoantigens, in-
cluding some tumor-associated antigens, are associated
with particular GM and KM (see below) allotypes
[14,32-39]. We have recently reported the contribution of
these genes to antibody responses to the tumor-associated
antigens mucin 1 and human epidermal growth factor re-
ceptor 2 (HER2) [40-43].
GM markers could influence antibody responsiveness

to disease-associated antigens by being part of the recog-
nition structure for these antigens on the B-cell
membrane-bound IgG. Membrane-bound IgG molecules
expressing different GM specificities may have differen-
tial affinity to antigenic epitopes, resulting in stronger/
weaker humoral immunity to particular antigens. Alter-
natively, these C-region determinants could influence
the conformation of the Ig variable (V) regions involved
in antigen binding and thus cause changes in antibody
affinity and specificity. Studies in mice investigating the
contribution of C-region determinants to the expression
of certain idiotypes and their participation in other con-
formational changes in the V region support this inter-
pretation. Involvement of both C and V regions in the
formation of idiotypic determinants was documented
many years ago [44]. Recent investigations by Casadevall
and his colleagues have clearly established that the C re-
gion contributes to the affinity and specificity of anti-
bodies [45]. Relevant to the present discussion, they
have shown that amino acid sequence polymorphisms in
the C region of the Ig molecule affect the secondary
structure of the antigen-binding site in the V region
[46]. Amino acid substitutions associated with GM
allotypes cause structural changes in the C region, which
could impose structural constraints (conformation) on
the V region, resulting in variation in antibody affinity
and specificity. Thus, C regions expressing different GM
allotypes, even when combined with identical V region
sequences, can generate new antibody molecules with
new functions.

GM allotypes and antibody-dependent cell-
mediated cytotoxicity (ADCC)
ADCC, which links the innate and the adaptive arms of
immunity, is a major host immunosurveillance mechan-
ism against tumors, as well as the leading mechanism
underlying the clinical efficacy of therapeutic antibodies
such as cetuximab and trastuzumab, which target tumor
antigens, HER1 and HER2, respectively. IgG antibody
mediated ADCC is triggered upon ligation of Fcγ recep-
tor (FcγR) to the Fc region of IgG molecules. It follows
that genetic variation in FcγR and Fc could contribute
to the differences in the magnitude of ADCC. Several
studies have shown that genetic variation in FcγR
contributes to the differences in the magnitude of ADCC
[47-50], but with the exception of our studies, the con-
tribution of natural genetic variation in the Fc region of
IgG—GM allotypes—has not been investigated. Using an
ADCC inhibition assay, we have shown that IgG1
expressing the GM 3+,1-,2- allotypes was equally effect-
ive in inhibiting cetuximab- and trastuzumab-mediated
ADCC of respective target cells, in the presence of NK
cells expressing either valine or phenylalanine allele of
FcγRIIIa [51]. These findings have important implications
for engineering antibodies with human γ1 C region.
Concerted effort is currently being directed at engineering
Fc variants with optimized affinity for activating and
inhibiting FcγRs [52-54]. Evaluation of the role of nat-
urally occurring Fc (GM) variants that may have been
evolutionarily selected because of their contribution
(through ADCC and other protective immunosurveillance
mechanisms) to survival from malignant diseases [8] is es-
sential for engineering the next generation of humanized
monoclonal antibodies, which have reduced immunogen-
icity, have better clinical efficacy, and benefit more
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patients than what is possible with the currently available
therapeutics.

GM allotypes and complement-dependent
cytotoxicity (CDC)
The complement system plays an important role in
immunosurveillance, and CDC has been shown to be in-
strumental in the efficacy of certain mAbs, such as
rituximab (anti-CD20) and alemtuzumab (anti-CD52).
Though not yet investigated, there is a good rationale
for the involvement of GM alleles in CDC as well. In
CDC, C1q binds the antibody and triggers the comple-
ment cascade. C1q’s binding affinity to the antibody
molecules is likely to affect the level of CDC against
tumor cells. It has been known for some time that C1q
discriminates between two major alleles of IgG3: It binds
slightly better to IgG3 proteins expressing the GM21
allele than to those expressing the alternative GM5 allele
[55]. It follows that IgG3 mAbs expressing the GM21
allele in their Fc would be more effective in CDC against
cancer cells.

GM allotypes and viral immunoevasion
Several viruses have been implicated in the etiopathogenesis
of malignant diseases, and the list of virally-induced/spurred
cancers is growing steadily. To ensure their survival, viruses
must be able to enfeeble the defense mechanisms employed
by the host’s immune system to eliminate the virions and
virally infected cells (immunosurveillance). During the co-
evolution of viruses and their hosts, the host must have
evolved specific mechanisms to modulate the effects of
these viral strategies and ensure our survival as a species. A
clue to one such mechanism is offered by studies involving
GM allotypes and human cytomegalovirus (HCMV), which
is implicated in gliomas [56], and hepatitis C virus (HCV), a
well-known etiological agent for liver cancer.
HCMV has evolved a large repertoire of immune evasion

strategies. One strategy involves generating two proteins—
encoded by genes TRL11/IRL11 and UL119-UL118—that
have functional properties of the FcγR [57], which may
enable the virus to evade host immunosurveillance by
evading the effector consequences of antibody binding,
such as ADCC, CDC, and phagocytosis. We have recently
shown that GM alleles modulate this viral strategy: the
HCMV TRL11/IRL11-encoded FcγR has significantly
higher affinity for IgG1 proteins expressing the GM 3+,
1-,2- allotypes than for those expressing the allelic GM
17+,1+,2+ allotypes [58]. Because of their higher affinity
to the HCMV-encoded FcγR, anti-HCMV IgG1 anti-
bodies expressing the GM 3+,1-,2- allotypes would be
more likely to have their Fc domains scavenged, thereby
reducing their immunological competence to eliminate
the virus through Fc-mediated effector mechanisms.
Consequently, the frequency of these allotypes would
be expected to be higher in patients with HCMV-
induced/spurred diseases. This appears to be the case
in glioma (manuscript under review). Another herpes
virus, herpes simplex virus type 1 (HSV1), also encodes
for immune-evading FcγR proteins that discriminate
between GM alleles [59]. However, the HCMV- and
HSV1-encoded FcγRs have contrasting binding affin-
ities to allelically disparate IgG1 antibodies, making the
particular alleles relevant to the etiology of HCMV- or
HSV1-spurred diseases. Similarly, the HCV core pro-
tein, which also displays the functional properties of
the FcγR, binds differentially to IgG proteins expressing
different allotypes [60-62], making these allotypes rele-
vant to the etiology of HCV-induced liver cancer.

Immunoglobulin KM allotypes
Like the γ chains, the κ chain is also polymorphic,
characterized by the segregation of three alleles—KM1,
KM1,2, and KM3 on chromosome 2p12 [2]. Over 98% of
the people positive for the KM1 allotype are also positive
for KM2; the KM1 allele, without KM2, is extremely
rare. These alleles represent amino acid substitutions at
positions 153 and 191 of κ chain—KM1: valine 153, leu-
cine 191; KM1,2: alanine 153, leucine 191; and KM3:
alanine 153, valine 191.
Though virtually ignored so far, KM alleles are likely

to become important in cancer immunology research,
thanks to a major genomics study [63]. This comprehen-
sive analysis of human gene expression identified IGKC
as a novel prognostic marker in several solid tumors.
The IGKC as a single marker had as much effect on
metastasis-free survival as the 60 genes in the B-cell
plasma cell metagene. This is not surprising since the κ
chain can pair with the Ig heavy chains of all classes and
subclasses. Although the authors could not address the
biological roles of the IGKC signature, their results pro-
vide a compelling rationale for investigating the role of
KM alleles, genetic variants of IGKC, in humoral im-
munity to tumor-associated antigens. It is relevant to
note that several years ago we noted an increased fre-
quency of the KM1 allele in patients with head and neck
cancer [64]. Examination of KM alleles would be espe-
cially important in malignancies characterized by racial
disparity, such as prostate cancer, since KM gene
frequencies differ significantly among various racial
groups [2].
It would also be important to investigate possible

interactive effects of GM and KM alleles in disease sus-
ceptibility, in immune responsiveness to tumor antigens,
and in patient survival after therapy. Although immun-
ology textbooks state that heavy and light chains pair
randomly to produce Ig molecules, some studies in
experimental animals have provided evidence for
preferential pairing of these polypeptide chains [65,66].



Pandey and Li Experimental Hematology & Oncology 2013, 2:6 Page 5 of 7
http://www.ehoonline.org/content/2/1/6
Thus γ and κ chains expressing particular GM and KM
alleles could preferentially associate to generate an IgG
antibody directed against an antigen. We have shown
such interactive effects of GM and KM alleles in
humoral immunity to Epstein-Barr virus [67], group B
streptococcus antigens [68], HCV envelope proteins E1
and E2 [32], and mucin 1 [40].

KM allotypes and graft versus leukemia (GVL)
KM allotypes appear to be relevant to hematological
malignancies. Since they are expressed on B cells, they
are potential minor histocompatibility antigens and
could be targets for the GVL phenomenon when
hematopoietic cell transplant (HCT) recipients and
donors express different KM alleles. Results of a study
from Australia support this contention [69]. In this
study, HLA-matched Caucasian donors and recipients of
HCT for B-cell malignancies were typed for KM alleles
to determine whether or not KM disparity influenced
the HCT outcome. KM allotype disparity between trans-
plant pairs was associated with increased survival
compared with pairs that were not mismatched. More
such studies are needed, especially in African Americans
where KM1 allele frequency is significantly higher than
that in Caucasians.

GM and KM allotypes and development of
resistance to monoclonal antibody therapy
The response rate to most mAbs is low and all patients
eventually develop resistance to this therapy. Numerous
mechanisms of resistance have been proposed but they
do not account for the total inter-individual variation in
treatment responses in de novo and in acquired resistance,
which suggests involvement of additional mechanisms.
One potential mechanism that has not received adequate
attention is the role of anti-allotype antibodies. All
licensed chimeric or humanized mAbs express certain
GM allotypes on their heavy chains and KM allotypes on
their κ light chains. For instance, trastuzumab expresses
GM17 and KM3 and cetuximab expresses GM3 and
KM3. Most GM/KM determinants are highly immuno-
genic, and the Ig molecules carrying these markers cross
the maternal-fetal barrier in both directions, leading to
anti-GM/KM antibody production in the mother against
the paternal GM/KM markers present in the child, and in
the child against the maternal GM/KM alleles [70].
Patients who lack the GM/KM allotypes present on the
mAbs would be expected to generate antibodies to these
determinants if exposed through maternal-fetal incom-
patibility, allotype-incompatible blood transfusion or infu-
sion of the mAbs. These preexisting or mAbs-induced
anti-allotype antibodies and the administered mAbs could
form immune complexes that would be eliminated by
phagocytic cells, leading to nonresponsiveness. At present,
no data are available on the prevalence of anti-allotype
antibodies in patients treated with mAbs.
In summary, inclusion of polymorphic GM, KM, and

FcγR alleles in cancer immunology investigations could
identify novel immune pathways to tumor immunity. This
knowledge would be helpful in diagnosis, prognosis, and
in devising effective immunotherapeutic strategies against
cancer. At present, a candidate gene approach would be
necessary for these studies, since these genes (GM in par-
ticular), are not included in most genotyping arrays used
in GWAS. Furthermore, GWAS, in general, do not meas-
ure epistasis (gene-gene interaction), which probably
accounts for a significant portion of the “missing” herit-
ability in complex diseases.
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