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CD133: a stem cell biomarker and beyond
Zhong Li1,2
Abstract

Cancer stem cells (CSCs) or tumor initiating cells (TICs) contribute to tumorigenesis, metastasis, recurrence and
chemoresistance. CD133, a pentaspan membrane glycoprotein, has been used as a stem cell biomarker for isolation
of stem-like cells from a variety of normal and pathological tissues as well as cell lines since its discovery in 1999.
Recent studies are focusing on the functionality of CD133. In this review, we summarize new insights into CD133
regulation and the involvement of CD133 in cell self-renewal, tumorigenesis, metastasis, resistance, metabolism,
differentiation, autophagy, apoptosis, and regeneration.
Introduction
Since CD133 was identified as a pentaspan transmem-
brane protein for human hematopoietic stem cells and
mouse neuroepithelial cells [1-3], many studies have
subsequently revealed that CD133 expression is associ-
ated with progenitor/stem cells, tumor, regeneration, dif-
ferentiation, and metabolism. CD133 is one of key
biomarkers for isolation and characterization of stem
cells. Increasing evidence has shown that CD133 is not
only a biomarker, but functions also in cell growth, de-
velopment and tumor biology. Therefore, in this review,
we will summarize the new functions of CD133.
CD133, also called Prominin-1, is a product of a

single-copy gene on chromosome 4 (4p15.33) in human
or chromosome 5 (5b3) in mice. Human CD133 is a
transmembrane glycoprotein of 865 amino acids with a
total molecular weight of 120 kDa. This protein consists
of an N-terminal extracellular domain, five transmem-
brane domains with two large extracellular loops, and a
59 amino acids cytoplasmic tail [4]. It is selectively local-
ized in microvilli and other plasma membrane protru-
sions [5,6]. In general, CD133 positive and CD133
negative cells display different characters. For example,
1) CD133+ and CD133- glioma cells belong to independ-
ent cancer stem cell populations; 2) CD133+ glioma cells
are derived from primordial CD133- CSCs; 3) CD133-

CSCs retain their stem-like features as well as tumor ini-
tiation capacity, and can re-acquire CD133 expression
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in vivo; and 4) Both CD133+ and CD133- CSCs have dif-
ferent expression profiles in transcriptional activities and
extracellular matrix molecules [7,8].

Regulation of CD133 expression
The CD133 expression is regulated by many extracellu-
lar or intracellular factors and represents changes of cell
type with particular functions [9]. Griguer, et al. revealed
that hypoxia, mitochondrial dysfunction or depletion of
mitochondrial DNA induced a reversible up-regulation
of CD133 expression [10]. Hypoxia-induced CD133 ex-
pression is also found in human lung cancer, pancreatic
cancer and glioma cells [11,12]. Hypoxic condition in-
creases hypoxia inducible factor 1α (HIF-1α) expression
which inhibits the mammalian target of rapamycin
(mTOR) C1 activity [12,13]. Increased HIF-1α induces
the expansion of the CD133+ cells [11,12,14]. Pharmaco-
logical inhibition of mTOR with rapamycin greatly in-
creases both the CD133+ populations and the expression
of stem cell-like genes [14,15]. Enhancing mTOR activity
by over-expressing Rheb significantly decreases CD133
expression, whereas knockdown of the mTOR yields an
opposite effect [15].
Transforming growth factor β1 (TGFβ1) is identified

to be capable of up-regulating CD133 expression specif-
ically within the Huh-7 hepatocellular carcinoma (HCC)
cell line in a time- and dose-dependent manner [16].
TGFβ1 inhibits DNA methyltransferases (DNMT) 1 and
DNMT3β expression and subsequently induces the de-
methylation of promoter-1 of CD133 [16]. Analysis of
Toll-like receptors (TLR) in colorectal cancer (CRC) re-
veals that TLR7 and 8 increase in CD133+ cells in CRCs
[17]. Both TLRs and chemokines activate NF-κB
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signaling in cancer stem cells [18,19]. Therefore, CD133
expression may play an important role in communica-
tion through membrane receptors.
MicroRNA (miRNA) profiling has revealed that several

miRNA are involved in regulation of CD133 expression in a
variety of cells. By analyzing miRNA expression profiling of
CD133+ and CD133- cells from human HCC clinical speci-
mens and cell lines, Ma, et al. has identified elevated miR-
130b in CD133+ HCC TICs [20]. Forcing expression of
miR-130b in CD133- cells enhances their chemoresistance,
self-renewal and tumorigenicity in vivo. But upregulation of
miR-125b inhibits the invasion of CD133+ primary glio-
blastoma cells [21]. In addition, miR-142-3p [22], miR-
199b-5p [23], miR-143, miR-145 [24], and miR-150 [25]
show inhibition of the colony-forming ability and tumor
sphere formation of CD133+ cells. However, most of
these miRNAs exhibit indirect regulation of CD133 ex-
pression. A specific miRNA targeting CD133 expression
has not been identified yet.
CD133 expression is also regulated by epigenetic fac-

tors. Methylation of the CD133 promoter represses
CD133 gene transcription. Demethylation of the CD133
gene has been found in a variety of human tumors in-
cluding colorectal cancer [26], gastric carcinoma [27],
gliomas and glioblastoma [28,29], HCC [30], and ovarian
cancer [31] and so on. TGFβ1 induced CD133 expres-
sion via demethylation of CD133 promoter-1 in Huh-7
cells [16]. Upregulation of CD133 is in CRC that exhibits
a hyperactivated Ras-Raf-MEK-ERK pathway secondary
to mutations in K-Ras or B-Raf [32].

CD133 in cell self-renewal and tumorigenesis
Freshly isolated CD133+ cancer cells from colorectal cancer,
gallbladder carcinoma, HCC, ovarian cancer and other tu-
mors gave rise to long-term tumor spheroids and xenograft
tumors in immunodeficient mice [20,33-35]. The underlying
mechanisms involved in regulation of self-renewal in HCC
may depend on the Akt/PKB and Bcl-2 pathway [36]. Using
the genome-wide microarray analysis, Tang et al. revealed
that a significant interleukin-8 (IL-8) signaling network was
activated in CD133+ liver TICs obtained from HCC clinical
samples and cell lines responsible for self-renew, tumor
angiogenesis, and tumorigenesis [37]. C-terminal cytosolic
domain of CD133 is phosphorylated by Src-family kinases
as determined by mass spectrometry and site-directed
mutagenesis. Tyrosine-828 and the nonconsensus
Tyrosine-852 are the major tyrosine phosphorylation
sites [38]. T-828 phosphorylation of CD133 mediates
activation of PI3K/Akt pathway in glioma stem cells
through interaction with p85 regulatory subunit [39].
Silencing of CD133 impairs the self-renewal and
tumorigenic capacity of tumor cells [40].
Although both CD133+ and CD133- cells are capable

of tumor initiation in the nonobese diabetic/severe
combined immunodeficient (NOD/SCID) mice, most of
CD133+ tumor subpopulations form colonospheres in
an in vitro culture and retain long-term tumorigenic
capacity in a NOD/SCID serial xenotransplantation
model [41]. Upstream molecules in Akt and mitogen-
activated protein kinase (MAPK) pathways are preferen-
tially activated in CD133+ colon cancer cells [42]. Ras
and its downsteam effectors such as ERK, JNK, PI3K,
p38K, and RalA are also significantly activated in CD133+

human primary malignant peripheral nerve sheath tumor
[43]. Stemness genes, octamer biding transcription factor
3/4 (OCT4) and/or SRY-box containing gene 2 (SOX2),
have been found to bind to the P1 promoter region of
CD133 gene loci and ectopic OCT4 or SOX2 expression
triggers the CD133P1 activity in the lung cancer cell lines
N417, H358, and A549 [44]. Therefore, CD133 expression
is essential for self-renewal function and tumorigenesis in
certain cell types.

CD133 and metastasis
Increasing evidence indicates that a subset of tumor cells
contributing to metastasis has the properties of CSCs
or TICs. CD133+ cells are higher in liver metastasis
than in primary colorectal tumors [45]. Compared with
CD133+CXCR4- cells, CD133+CXCR4+ cancer cells
have a high metastatic capacity in vitro and in vivo and
undergoes epithelial-mesenchymal transitions (EMT)[45].
CD133+CD44+ cancer cells have been characterized in
several highly metastatic tumors, such as CRCs [46-48],
HCCs [49,50], pancreatic cancer [51], gallbladder carcin-
oma [52], lung adenocarcinomas [53] and gastric cancer
[54]. Immunohistochemical study of human HCC speci-
mens reveals that the number of CD133+ CD44+ HCC
cells is increased and associated with portal vein invasion
[49]. In colorectal cancer with early liver metastases, co-
expression of CD133 and CD44 is significantly higher
when compared to those without early liver metastases
[48]. Knockdown of CD133 in hepatocarcinoma PLC/
PRF/5 and HCT116 cells results in decreased expressions
of matrix metalloproteinase (MMP)-2, a disintegrin and
metalloproteinase (ADAM)9 [55,56]. These lead to de-
creased invasion as demonstrated in an in vitro system
[55,56]. In addition, chemokine CCL5 and its receptors,
CCR1, CCR3 and CCR5, are found to be upregulated in
CD133+ cancer stem-like cells from ovarian cancer [57].
Blocking of CCL5, CCR1 or CCR3 effectively inhibits the
invasive capacity of these cells via inhibition of NF-kappaB
and MMP9 secretion [57]. Therefore, CD133+ TICs may
confer metastatic potential to their progenies.

CD133 and chemo- and radio-resistance
CD133 positive cells show a high degree of chemoresistance.
CD133+ lung cancer cells exhibit drug resistance [58]. Iso-
lated CD133+ CSCs from human oral squamous cell
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carcinoma are substantially resistant to standard
chemotherapy [59]. Ectopic overexpression of CD133 in
rat C6 glioma cells leads to significant reluctance to
undergo apoptosis from camptothecin and doxorubicin
treatments [60]. Chemoresistant CD133+ cells usually
have the upregulation of ATP-binding cassette (ABC)
transporter [52,60]. Since ATP-binding cassette sub-
family B member 5 (ABCB5)- mediated doxorubicin ef-
flux [61], suppression of ABCB5 sensitizes the cells to
doxorubicin uptake and apoptosis [62]. Moreover,
CD133-expressing liver cancer cells following radiation
exposure show higher activation of MAPK/PI3K signal-
ing pathway and reduction in reactive oxygen species
levels compared to CD133- cells. The irradiated CD133+

cell induces an increase of tumor formation in an
in vivo xenograft model compared to the CD133- group,
suggesting that CD133 contributes to radioresistance in
HCC [63]. Treatment of unsorted HCC cells with anti-
cancer drugs in vitro also significantly enriches the
CD133+ subpopulation [36].

CD133 and metabolism
In epithelial cells, CD133 is found in microvilli, the pri-
mary cilium and the midbody [64]. This membrane
protein has been found to be released from apical
midbodies and the primary cilium of neuroepithelial
cells as a whole or in part, into the extracellular space,
yielding the CD133-enriched membrane particles found
in the neural tube fluid [65]. Intriguingly, the release of
these particles has been implicated in (neuro)epithelial
cell differentiation [64]. CD133 is selectively associated
with microvilli and largely segregated from the mem-
brane subdomains containing placental alkaline phos-
phatase [66]. CD133 is also a cholesterol-interacting
membrane protein responsible for the generation of
plasma membrane protrusions, their lipid composition
and organization as well as the membrane-to-membrane
interactions [67]. Unraveling that CD133 inhibits trans-
ferrin uptake and AC133 antibody downregulates this
uptake [68] further indicates the involvement of CD133
in cell metabolism.
Hexokinase II is a key enzyme in the glucolytic path-

way. Its gene expression and enzymatic activity are lower
in CD133+ than in CD133- hepatoma BEL-7402 [69].
Pancreatic cancer patients with low expression of hexo-
kinase II have significantly shorter survival than those
with higher expression [70]. Higher expression of hexo-
kinase II is associated with advanced tumor grade and
higher stage as well as higher mortality in HCC [71].
β-galactoside α2,6-sialyltransferase (ST6Gal-I) adds an

α2-6-linked sialic acid to the N-glycans of CD133 mem-
brane proteins that may stabilize CD133 [72]. ST6Gal-I
has been reported to be upregulated in human colon
cancer, induced pluripotent stem (iPS) cells and CSCs
[73]. CD133 has eight N-glycosylation sites on its extra-
cellular loops [4]. Lectin binding assay for cell surface
glycan epitopes and microarray analysis for expression
of N-glycan biosynthesis-related genes demonstrate
that over 10% difference between CD133+ and CD133-

hematopoietic stem and progenitor cells (HSPC) [74].
Biantennary complex-type N-glycans are enriched in
CD133+ cells that have the overexpressed mannosyl (α-
1,6-)-glycoprotein β-1,2-N-acetylglucosaminyltransferase
(MGAT) 2 and underexpressed MGAT 4 [74]. Moreover,
the amount of high-mannose type N-glycans and ter-
minal α2,3-sialylation is increased in CD133+ cells [74].
N-glycosylation of CD133 is thought to be associated
with cell differentiation [75] and promoted by hypoxia
[76]. In addition, silencing CD133 reduces the glucose
uptake [77], indicating that CD133 expression may be
responsible for energic metabolism and the survival of
CSCs.
Further analysis of signaling pathways in CD133+ and

CD133- cells has found that freshly isolated CD133+

cells from benign prostate tissue show expression of
transcripts associated with cell development, ion homeo-
stasis and cell communication, whereas profiling of
CD133- cells revealed gene transcripts related to cell
proliferation and metabolism [78]. In human cord
blood-derived CD133+ cells, 690 transcripts are differen-
tially expressed in CD133+ and CD133- cells. Of these,
393 are increased and 297 are decreased in CD133+ cells
in which that the highest overexpression genes are asso-
ciated with metabolism, cell communication, and devel-
opment [79]. Transcriptomic profiling of sorted CD133+

and CD133- cells from human glioblastoma multiforme
reveals a CD133 gene expression signature composed of
214 differentially expressed genes [80]. Moreover, com-
parison of transcripts in CD34+ and CD133+ cells reveals
that CD133+ cells have higher numbers of up-regulated
genes than CD34+ cells. The uniquely expressed genes
in CD34+ or CD133+ cell populations are associated with
different biological processes: CD34+ cells overexpress
many transcripts associate with development, while
CD133+ cells express genes associated with chromatin
architecture, DNA metabolism, and cell cycle [81].

CD133 and differentiation
CD133 is expressed on both CSC and differentiated
tumor cells. CD133 is possibly folded as a result of dif-
ferential glycosylation to mask specific epitopes [75]. Al-
though both CD133+ and CD133- cells derived from
primary glioblastomas show similar tumorigenicity in
nude mice, there are 117 genes differentially expressing
in these two subtypes [82]. Observation of CD133 ex-
pression in several neuroblastoma cell lines/tumor sam-
ples has shown that CD133 represses neurite extension
and the expression of differentiation marker proteins,
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but accelerates cell proliferation, anchorage-independent
colony formation and in vivo tumor formation of neuro-
blastoma cells [83]. Platelet-derived growth factors
in the presence of a cytokine cocktail suppress ex vivo
expansion of umbilical cord blood CD133+ cells and en-
hance their differentiation into megakaryocytic progeni-
tor cells in a dose- and time-dependent manner [84].
Consistent with rapamycin increasing CD133 expression,
mTOR inhibition severely blocks the differentiation of
CD133+ to CD133- liver tumor cells [15]. Interestingly,
single-cell culture experiments have revealed that
CD133- liver tumor cells are capable of converting to
CD133+ cells and the inhibition of mTOR signaling sub-
stantially promotes this conversion [15]. However, we
should also note that CD133 expression and post-
translational modification are dynamic and reversible
that are dependent on cell microenvironment and
physiological regulation [85].
Figure 1 Functional outline of CD133+ cells. The number of CD133+ ce
tissues and even tumors. When cells or tissues are damaged by chemical, p
activated to self-renew, proliferate and differentiate in order to repair the d
chemo- or radio-resistance and recurrence. CD133 expression is dynamic a
CD133 is involved in diverse cellular processes, including glucose and trans
matrix metalloproteinase functions. IL-8 pathway, mTOR, PI3K and MAPK pa
CD133 and autophagy
Autophagy as a key homeostatic process of cytoplasmic
degradation and recycling is associated with the status of
tumor cells. The shift of CD133 subcellular localization
from the cytoplasm to the plasma membrane leads to
the alternation of its functions [40]. CD133 has been
shown to affect the clathrin-endocytosis process [68].
We have found that CD133 expression promotes glucose
uptake and autophagosome formation in the glucose
deprivation [77]. Immunofluorescence and time-lapsed
confocal techniques demonstrate co-locolization of
CD133 with an autophagy marker, microtubule-associated
protein light chain3 (LC3) and a lysosome marker.
CD133-mediated functions are beneficial for CSC sur-
vival. Knockdown of CD133 by siRNA attenuates pro-
duction of LC3-II while the expression of autophagy
associated genes (Atg9, Atg5/Atg12, and beclin-1) is
not affected [77]. We speculate that CD133-mediated
lls is maintained in a relative constant in bone marrow, blood, different
hysical or mutational causes, CD133+ progenitor or stem cells are
amage. CD133+ CSCs or TICs are responsible for tumor metastasis,
nd reversible in response to the changes of cell microenvironment.
ferrin uptake, autophagy, membrane-membrane interaction, and
thways are preferably activated in the CD133+ cells.
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autophagy may be involved in the membrane-mediated
phagophore formation.

CD133 and apoptosis
CD133+ cell population demonstrates significant resist-
ance to TGF β- and TNF-related apoptosis-inducing lig-
and (TRAIL)- induced apoptosis compared with CD133-

cells [86,87]. High expression of FLICE-like inhibitory pro-
tein (FLIP), an inhibitor of the extrinsic apoptotic pathway,
in CD133+ cells is thought to be associated with the resist-
ance to the apoptosis induced by TRAIL [88]. In addition,
CD133+ population has grater resistance to staurosporine-
induced apoptosis than CD133- population [89] and
stress-induced apoptosis [90]. Targeting CD133 by its anti-
body leads to cell death via attenuation of autophagy and
promotion of apoptosis in HCC cells [77].

CD133 and regeneration
CD133+ cells that are isolated from bone marrow, cord
blood, and peripheral blood have been tested in both
animal models and clinical trials in an attempt to repair
the injured tissues with the pluripotent of CD133+ cells
[91]. The cell lines derived from human endothelial pro-
genitor cells and cord blood undergo in vitro pre-
angiogenic process, form pseudovessel structures and
present an accelerate angiogenesis in hypoxic conditions
[92]. Cells isolated from the peripheral blood using
CD133 antibodies have been shown through a mouse
spinal cord injury model as being able to enhance angio-
genesis, astrogliosis, axon growth and functional recov-
ery. In contrast, the administration of CD133- cells fails
to promote axon growth and functional recovery, but
moderately enhances angiogenesis and astrogliosis [93].
When CD133+ cells embedded in atelocollagen gel into
a silicone tube is used to bridge a 15-mm defect in the
sciatic nerve of athymic rats, sciatic nerves are structur-
ally and functionally able to regenerate within 8 weeks
and the transplanted CD133+ cells are differentiated into
Schwann cells [94]. In a muscle injury rat model, gran-
ulocyte colony stimulating factor-mobilized peripheral
blood CD133+ cells are differentiated into endothelial
and myogenic lineages [95]. In addition, autologous bone
marrow-derived CD133+ stem cell therapy has been used
in clinical trials for patients with chronic total occlusion
and ischemia [96], myocardial infarction [97], hepatic fi-
brosis [98], and liver regeneration [99]. The CD133+

cells have also been used for cardiac stem cell therapy
[100] and bone regeneration [101]. Better application
and expansion of CD133+ cells may yield tremendous
benefits for tissue engineering.

Perspective
To better understand how to modulate the stem
cells, particularly cancer stem cells, we have to identify
specific biomarkers. Extensive studies of CD133 in dif-
ferent fields have provided new insights into the diverse
CD133 functions (Figure 1). However, it remains a chal-
lenge to integrate the available expression, regulatory,
structural, and functional data for this fascinating pro-
tein [102].
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