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Abstract 

Background  Non-small cell lung cancer (NSCLC) with HER2 mutation has entered into the era of targeted therapy. 
However, both anti-HER2 antibody–drug conjugates (ADCs) and tyrosine kinase inhibitors (TKIs) showed moderate 
objective response rate (ORR) and median progression-free survival (PFS). The aim of this study was to investigate the 
molecular features of responders to pyrotinib in advanced NSCLC with HER2 mutation.

Methods  Patients from our two previous phase II trials were pooled analyzed. Their circulating tumor DNA (ctDNA) 
were detected by next-generation sequencing (NGS) panels, and the correlation with the efficacy of pyrotinib was 
investigated.

Results  This pooled analysis included 75 patients, and 50 of them with baseline plasma samples were finally enrolled 
with a median age of 57 years old. The overall ORR and median PFS were 28% and 7.0 months respectively. Biomarker 
analysis showed that 5 patients were ctDNA nonshedding. Patients with TP53 wild type were significantly associated 
with higher disease control rate (97.1%vs. 68.8%, p = 0.010), PFS (median 8.4 vs. 2.8 months, p = 0.001) and overall 
survival (OS, median 26.7 vs. 10.4 months, p < 0.001) than those with mutations. ctDNA of nonshedding and clearance 
exhibited significantly longer PFS (median: 10.2 vs. 9.8 vs. 5.6 months, p = 0.036) and a trend of longer OS (median: 
35.3 vs. 18.1 vs. 14.6 months, p = 0.357) than those not.

Conclusion  Patients with TP53 wild type, ctDNA nonshedding, or clearance showed superior efficacy of pyrotinib 
in patients with HER2-mutated advanced NSCLC, which might be helpful to guide the utility of pyrotinib in clinical 
setting.

Trial registration: The patients were from two registered clinical trials (ClinicalTrials.gov: NCT02535507, NCT02834936).
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Background
Currently, NSCLC with HER2 mutation entered into the 
era of targeted therapy [1, 2]. Based on the promising 
results of phase II trials that investigated the efficacy and 
side effects of ado-trastuzumab emtansine (T-DM1) [3, 4] 
and trastuzumab deruxtecan (T-DXd) [5], national com-
prehensive cancer network guideline has recommended 
them as options for patients with advanced  HER2-
mutant NSCLC, and the later got the approval by FDA 
in later line setting [6]. Meanwhile, TKIs targeting HER2 
mutation also achieved a breakthrough, pyrotinib [7–9] 
or poziotinib [10] showed an inspiring antitumor activity 
in this setting in phase II trials, and the former got the 
recommendation by the Chinese society of clinical oncol-
ogy (CSCO) guideline. Besides, several other novel TKIs 
including tarloxotinib (NCT03805841) [11], TAK-788 
(NCT02716116) [12] are under development.

However, both the ADCs and TKIs showed moderate 
efficacy, with an ORR of 31–55% and median PFS of 4.4–
8.2  months [3–5, 7]. As a result, identifying the benefit 
population or improving the efficacy by combination is 
essential in the clinical setting. Currently, several strate-
gies, such as combining with anti-angiogenesis [13, 14], 
immunotherapy [15], were ongoing and reported inspir-
ing preliminary results. In this study, aiming to clarify 
molecular features of responders in patients of HER2 
mutant advanced NSCLC treated with pyrotinib, we col-
lected the ctDNA and performed the biomarker analysis 
from the pooled analysis of our two previous phase II tri-
als [7, 8].

Methods
Patients and sample collection
Patients were recruited from two phase II clinical tri-
als of pyrotinib (ClinicalTrial.gov: NCT02535507, 
NCT02834936). Briefly, eligible patients with advanced 
HER2-mutant NSCLC who previously received systemic 
treatment were enrolled. All enrolled patients received 
pyrotinib 400 mg or 320 mg per day, until intolerable tox-
icity, disease progression, death or withdrawal of consent. 
Peripheral blood sample collection was performed at 
baseline, 40 days and 80 days after pyrotinib administra-
tion. A total of 50 patients were enrolled in the biomarker 
analysis. Among them, 21 pretreated tissue samples and 
112 serial blood samples were collected. The study pro-
tocol was approved by ethics committees and relevant 
health authorities. All patients signed informed consent 
forms of our study.

DNA extraction and sequencing
DNA was isolated from formalin-fixed paraffin-embed-
ded (FFPE) tumor specimens with the TIANamp 
genomic DNA kit (TIANGEN, China) according to the 

manufacturers’ instructions. Genome DNA is extracted 
by TGuide S32 magnetic blood genomic DNA kit (TIAN-
GEN, China) from peripheral blood lymphocyte (PBL), 
and circulating cell-free DNA (cfDNA) is extracted by 
MagMAX cell-free DNA isolation (ThermoFisher, USA) 
from the plasma sample. Fragmented DNA libraries were 
constructed with a KAPA HTP library preparation kit 
(Illumina Platform) (KAPA Biosystems, Massachusetts, 
USA) according to the manufacturer’s instructions. All 
libraries were quantified using AccuGreen high sensitiv-
ity dsDNA quantitation kit (Biotium, USA), with library 
size assessed on agilent bioanalyzer 2100 (Agilent, USA). 
DNA libraries from baseline tissue samples were cap-
tured with Panel 1, which was a designed panel spanning 
769 cancer-related genes (Genecast, Wuxi, China), while 
DNA libraries from plasma samples were captured with 
panel 2, which covered exon regions of 95 genes (Gen-
ecast, Wuxi, China) related to drug resistance. The cap-
tured library was sequenced on Illumina Novaseq 6000 
with paired end 150 bp mode.

Variant calling
After filtering low quality reads by Trimmomatic(v0.36) 
[16], clean reads were aligned to the human reference 
genome (hg19, NCBI Build 37.5) with the Burrows-
Wheeler aligner (version 0.7.17) [17]. Then Picard toolkit 
(version 2.23.0) [18] was applied for making duplicates 
and genome analysis tool kit (version 3.7) [19] was used 
for realignment. VarDict (version 1.5.1) [20] was used 
to call single nucleotide variant (SNV) mutations while 
compound heterozygous mutations were merged by 
FreeBayes (version 1.2.0) [21]. Sentieon software (genom-
ics-201911) was also used to improve the detection rate 
of mutations in plasma samples, and the mutations were 
annotated through ANNOVAR [22]. Typical QC-filtering 
such as variant quality and strand bias was applied to the 
raw variant list. Additionally, variants in low complex 
repeat and segmental duplication regions that matched 
to the lowly mappable regions were defined by ENCODE 
[23], and variants in an internally developed and vali-
dated list of recurrent sequence-specific errors (SSEs) 
were removed.

Somatic mutation filtering of tumor tissues and plasma
After filtering germline or hematopoietic origin muta-
tions by comparing with paired normal sample, somatic 
mutations met the following criterions were used for 
the following analysis: (i) The variant allele frequency 
(VAF) threshold of mutations was 5% in tumor and 1% 
plasma; (ii) All low-frequency mutations in samples from 
the same patient in different time points were retained. 
For plasma samples, we used a pre-defined blacklist to 
remove false positive variants introduced for special 



Page 3 of 10Mao et al. Experimental Hematology & Oncology           (2023) 12:53 	

processing of UMI data. These quality cut-offs were pre-
determined during the analytical validation of the inter-
nal NGS panel to optimize the test performance and 
measured according to sensitivity, specificity, repeatabil-
ity and reproducibility.

Statistical analysis
Chi-square test or Fisher’s exact test was used to com-
pare the categorical variables. PFS and OS curves were 
estimated by Kaplan–Meier method and compared by 

Log-rank test. Cox proportional hazard model was per-
formed for univariate and multivariate survival analyses 
to calculate the hazard ratio (HR) and 95% confidence 
interval (CI). Mann–Whitney U tests was introduced to 
analyze the significant difference of mutation frequency 
between defined groups. And statistical significance was 
defined with P-value < 0.05. All of the statistical analy-
ses were performed using R V.3.6.1. and SPSS statistical 
software (version 22.0; IBM Corporation, Armonk, NY, 
USA).
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Fig. 1  Study design and treatment efficacy of enrolled patients. a Key eligibility criteria and study design. b Kaplan–Meier estimates of PFS for 
enrolled patients. c Best response of enrolled patients. d Concordance analysis of high-frequency mutations in paired plasma and tumor tissue 
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Results
Molecular characterization of HER2 mutated NSCLC
This prespecified biomarker analysis was performed on 
longitudinal samples collected from two phase II clini-
cal trials (NCT02535507: n = 15, NCT02834936: n = 60) 
which evaluated the efficacy and safety of pyrotinib in 
HER2-mutant advanced lung adenocarcinoma after plat-
inum-based chemotherapy (Fig.  1a). Baseline tumor tis-
sue samples and serial blood samples were collected and 
underwent DNA sequencing. 50 patients with baseline 
plasma samples that were successfully sequenced were 
finally enrolled, including 21 pretreated tissue samples 
and 112 serial blood samples (pretreated: n = 50, 40 days 
post-treatment: n = 37, 80  days post-treatment: n = 25). 
Baseline characteristics were presented in Table  1. The 
median PFS and ORR were 7.0 months and 28%, respec-
tively (Fig.  1b, c). The consistency of variants detec-
tion between ctDNA and corresponding tissue samples 
among 21 patients with paired pretreated samples was 
compared (Fig.  1d), with a Spearman r value of 0.63 

(p < 0.0001, Fig. 1e). A positive correlation was observed 
between mutation count in baseline ctDNA and tumor 
CT volume (Spearman r = 0.43, p = 0.02, Additional file 1: 
Fig. S1).

We listed the SNV and indel landscape of baseline 
ctDNA in Additional file 1: Fig. S2. TP53, NF1, PIK3CA, 
RET and MTOR were the top five mutant genes by fre-
quency and were detected in 16 (32%), 10 (20%), 6 (12%), 
6 (12%), 5 (10%) patients, respectively. In addition, cir-
culating HER2 variants were detected in 45 of 50 (90%) 
pretreated plasma samples. The remaining 5 patients 
with undetectable HER2 variants were categorized as 
nonshedding tumor, with a trend of higher ORR (60.0% 
vs 24.4%, p = 0.126) and longer PFS (median: 10.2 vs. 
6.8  months, p = 0.131), though not reaching statisti-
cal difference due to small sample size of nonshedding 
tumor. After comparing the clinicopathological charac-
teristics of these two groups, we found that nonshedding 
tumor had a lower tumor burden (22.4 vs 53.0, p = 0.027), 

Table 1  Demographic data and clinical characteristics of enrolled patients

ECOG PS Eastern Corporation Oncology Group

Characteristic Biomarker cohort (n = 50), No 
(%)

TP53 MUT (n = 16), No (%) TP53 WT (n = 34), No (%) p value

Median age, years (range) 57 (40–72) 53 (41–72) 61 (40–69) 0.020

Sex

 Male 21 (42.0) 6 (37.5) 15 (44.1) 0.658

 Female 29 (58.0) 10 (62.5) 19 (55.9)

Smoking histology

 Never 35 (70.0) 12 (75.0) 23 (67.6) 1.000

 Former 14 (28.0) 4 (25.0) 10 (29.4)

 Current 1 (2.0) 0 (0.0) 1 (2.9)

ECOG performance status

 0 7 (14.0) 1 (6.3) 6 (17.6) 0.406

 1 43 (86.0) 15 (93.8) 28 (82.4)

Clinical stage

 IIIB 2 (4.0) 0 (0.0) 2 (5.9) 1.000

 IV 48 (96.0) 16 (100.0) 32 (94.1)

No. of metastatic organs

  ≤ 2 25 (50.0) 7 (43.8) 18 (52.9) 0.544

  > 2 25 (50.0) 9 (56.3) 16 (47.1)

Prior chemotherapy

  < 2 Lines 28 (56.0) 12 (75.0) 16 (47.1) 0.063

  ≥ 2 Lines 22 (44.0) 4 (25.0) 18 (52.9)

Previous targeted therapy

 No 38 (76.0) 13 (81.3) 25 (73.5) 0.728

 Yes 12 (24.0) 3 (18.8) 9 (26.5)

Previous radiotherapy

 No 35 (70.0) 12 (75.0) 23 (67.6) 0.746

 Yes 15 (30.0) 4 (25.0) 11 (32.4)
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although the other variables were not statistically differ-
ent (Additional file 2 Table S1).

TP53 wild type associated with superior efficacy
As mentioned above, TP53 was the most frequent con-
current mutation. Therefore, we further demonstrated 
the impact of concurrent TP53 mutation on pyrotinib 
efficacy. As result, patients with wild type TP53 were sig-
nificantly associated with superior disease control rate 
(DCR, 97.1% vs. 68.8%, p = 0.010, Fig. 2a), PFS (median: 
8.4 vs. 2.8 months, p = 0.001, HR = 0.35 95% CI 0.18–0.67, 
p = 0.002, Fig. 2b) and OS (median: 26.7 vs. 10.4 months, 
p < 0.001, HR = 0.16, 95% CI 0.07–0.35, p < 0.001, Fig. 2c) 
than those with TP53 co-mutation, though the improve-
ment of ORR (32.4% vs. 18.8%, p = 0.501) was marginal. 
Demographic analysis revealed that TP53 co-mutations 
were more common in younger patients, with no other 
significant differences identified (Table 1).

To characterize the discrepancy of genomic features 
between patients with or without TP53 co-mutation, 
we performed baseline ctDNA mutation landscape in 
patients stratified according to TP53 co-mutation status 
(Fig. 2d). Of note, patients without TP53 mutations had 
lower mutation load than those with TP53 mutations 
(median [P25–P75]: 3.78 [0.51–7.17] vs. 19.63 [7.32–
32.51], p = 0.003, Fig. 2e). Furthermore, the mutation load 
of HER2 gene was also lower in patients without TP53 
mutations (median [P25–P75]: 0.35 [0.15–0.91] vs. 2.48 
[0.54–8.04], p = 0.001, Fig.  2f ). To assess the predictive 
capability of TP53 mutation status on treatment efficacy, 
a multivariable COX regression analysis that included 
mutation load and various clinical factors was utilized 
(Fig. 3). The results showed that TP53 co-mutation was 
an independent risk factor for both PFS (p = 0.003) and 
OS (p < 0.001), while mutation load was not significantly 
correlated with treatment outcomes. These findings 
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underscore the importance of considering TP53 muta-
tion status as a prognostic marker when evaluating treat-
ment response.

The association between ctDNA status and clinical 
outcome
Previous researches have demonstrated that dynamic 
change of ctDNA was associated with treatment 
response and survival in solid tumors treated with tar-
geted therapy [24]. In this study, we further evaluated 
ctDNA clearance as a predictor of pyrotinib response. 
A total of 34 patients had matched baseline and first 
evaluation plasma samples with evaluable response 
data. The individual VAF changes of HER2 mutations 
were presented in Fig. 4a. Patients who presented par-
tial response (PR) or stable disease (SD) ≥ 12  weeks 
(defined as responder) exhibited a greater HER2-
mutant ctDNA decrease compared with those who 
presented SD < 12  weeks or progressive disease (PD) 
(defined as non-responder), not reaching statistical 
significance (p = 0.056, Fig.  4b). Complete clearance 
(defined by conversion from ctDNA positive at base-
line to ctDNA negative) of HER2-mutant ctDNA was 
observed at the first radiological evaluation in 17.6% 
(6/34) patients. These patients with HER2-mutant 
ctDNA clearance exhibited significantly longer PFS 

(median: 9.8 vs. 5.6  months, p = 0.032, HR = 0.33, 95% 
CI 0.12–0.97, p = 0.044, Fig. 4c) than those with HER2-
mutant ctDNA remained but with similar OS (median: 
18.1 vs. 14.6 months, p = 0.906, HR = 1.06, 95% CI 0.42–
2.64, p = 0.906, Fig.  4d). Furthermore, we listed treat-
ment duration and response to pyrotinib of patients 
with 3 types of ctDNA status (nonshedding ctDNA 
[n = 5], cleared HER2-mutant ctDNA [n = 6], remained 
HER2-mutant ctDNA [n = 28]) in Fig. 4e.

We presented here three cases in which ctDNA can 
be used to monitor patients’ response to pyrotinib 
treatment in different conditions. Patient #12012 had 
decreased ctDNA VAF for both HER2-mutant gene and 
total mutant genes at both 40 and 80 days after pyrotinib 
treatment, and both increased at the time of PD, reflect-
ing changes in ctDNA consistent with the efficacy eval-
uated by imaging (Fig.  4f ). Patient #12001 had a rise in 
total mutant genes at the time of resistance despite no 
detectable HER2 mutation, and on imaging this patient 
presented with stable target lesion but was evaluated 
as progression due to new liver metastases (Fig.  4g). 
Patient #05002 had significantly elevated HER2-mutant 
ctDNA at first evaluation and also showed on imaging an 
enlarged target lesion and new interstitial hepatogastric 
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Fig. 3  Multivariate COX regression analysis of TP53 mutation status and clinical parameters on treatment outcomes
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lymph node metastases with a PFS of 2.9  months 
(Fig. 4h).

Discussion
In this study, we firstly presented the up-to-date larg-
est cohort of dynamic ctDNA profiling in HER2 mutant 
NSCLC on the basis of a prespecified biomarker analy-
sis of two prospectively trials. We found that TP53 wild 
type at baseline were independently correlated with bet-
ter clinical outcomes, including superior disease control 
rate (p = 0.010), longer PFS (p = 0.001) and OS (p < 0.001), 

than those with mutation. Our study also revealed that 
nonshedding tumor or ctDNA clearance were associ-
ated with superior efficacy. These findings shed light on 
the individual targeted therapy in patients with HER2 
mutation.

Therapeutic landscape has been largely changed in 
patients of advanced NSCLC with HER2 mutation [25, 
26]. Doublet chemotherapy used to be the standard-
of-care for HER2-mutated NSCLC, however, previous 
results including ours showed a discouraging result with 
the ORR of 10–43.5% and median PFS of 4.3–6 months 
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[27]. Subsequently, it was also found that patients with 
HER2 mutation were unsuitable for immunotherapy, 
such as anti-PD-1/PD-L1 monotherapy [15, 28, 29]. 
Encouragingly, the recent advance of ADCs such as 
T-DM1 [4] and T-DXd [5, 30], TKIs such as pyrotinib [7, 
31] or poziotinib [10] showed inspiring antitumor activ-
ity in HER2-mutated NSCLC in phase II trials, which 
made HER2 mutation a druggable target. However, their 
moderate efficacy indicated that there’s an urgent need 
to establish effective predictive biomarkers in the clinical 
practice.

As far as we know, this is the first study to investigate 
the predictive role of genomic alternations through the 
ctDNA detection in HER2 mutant NSCLC, and we found 
that TP53 mutation was associated with the inferior effi-
cacy of pyrotinib. Previously, several studies revealed that 
concurrent mutations would deteriorate the anti-cancer 
effect of EGFR-TKIs in patients with EGFR mutations 
[32, 33]. Moreover, TP53 mutations was further found 
to promote genetic evolution and accelerate occurrence 
of resistance both in patients with ALK fusion and EGFR 
mutation [34]. Similarly, this study for the first time 
reported that TP53 mutation was of vital importance in 
the resistance of pyrotinib treatment in HER2 mutant 
NSCLC. Taken together, these findings suggested that 
TP53 mutations played an important role in the resist-
ance of targeted therapy and needed to be considered as 
a stratification factor in study design in the future.

Moreover, we found that 10% patients had nonshed-
ding ctDNA of lung tumors at baseline and after pyro-
tinib therapy. Importantly, patients with nonshedding 
tumors had a higher ORR of 60% and longer median 
progression free survival of 10.2 months. Recently, it was 
found that the presence of nonshedding tumors in the 
minimal residual disease (MRD) detection was associ-
ated with longer relapse-free survival (RFS) and higher 
possibility of cure [35]. Although the nonshedding obser-
vation might also be attributed to the insufficient detec-
tion sensitivity, the possible underlying mechanisms still 
needed to be further explored. Our findings showed that 
nonshedding might also be served as a potential bio-
marker for the superior prognosis and efficacy of pyro-
tinib treatment.

Additionally, we also investigated the predictive role 
of ctDNA dynamics. Previously, several reports includ-
ing ours consistently demonstrated that ctDNA clearance 
after 2 cycle of chemotherapy [36] or immune check-
point inhibitors (ICIs) therapy [37, 38] was associated 
with a better efficacy in advanced NSCLC, indicating 
that ctDNA dynamics was a useful marker for systemic 

therapy in lung cancer. In this study, we also observed 
that the pyrotinib treatment efficacy was superior in 
patients with ctDNA clearance after 40  days of treat-
ment. Taken together, this study highlighted the impor-
tance of ctDNA detection and found that TP53 wild type, 
nonshedding tumor and ctDNA clearance could be used 
to identify the patients benefit from pyrotinib treatment 
in NSCLC.

Several limitations must be mentioned in this study. 
First, the number of patients finally enrolled into 
the analysis was still small even this was a pooled anal-
ysis of two phase II trials. Thus, selection bias might be 
inevitable. Second, only blood samples were used for the 
biomarker analysis due to the insufficient tissues and 
difficulty of re-biopsy at the disease progression, some 
genomic information might be missed in the liquid-based 
NGS testing. Thirdly, currently pyrotinib was only rec-
ommended by CSCO NSCLC guidelines in the later line 
setting, therefore, these findings might not suitable for a 
wide generalization.

Conclusions
In conclusion, our study highlighted the potential advan-
tage of ctDNA analysis for precisive treatment of pyro-
tinib in patients with HER2 mutation. We found that 
TP53 mutations could accelerate the occurrence of drug 
resistance during targeted therapy. We also unveiled that 
ctDNA clearance or nonshedding tumor were associ-
ated with superior efficacy of pyrotinib treatment. These 
findings might be helpful to guide the clinical utility of 
anti-HER2 targeted therapy, which still requires further 
validating in the future.
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