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Abstract 

Melanoma is the deadliest form of skin cancer showing rising incidence over the past years. New insights into the 
mechanisms of melanoma progression contributed to the development of novel treatment options, such as immu-
notherapies. However, acquiring resistance to treatment poses a big problem to therapy success. Therefore, under-
standing the mechanisms underlying resistance could improve therapy efficacy. Correlating expression levels in tissue 
samples of primary melanoma and metastases revealed that secretogranin 2 (SCG2) is highly expressed in advanced 
melanoma patients with poor overall survival (OS) rates. By conducting transcriptional analysis between SCG2-overex-
pressing (OE) and control melanoma cells, we detected a downregulation of components of the antigen presenting 
machinery (APM), which is important for the assembly of the MHC class I complex. Flow cytometry analysis revealed 
a downregulation of surface MHC class I expression on melanoma cells that showed resistance towards the cytotoxic 
activity of melanoma-specific T cells. IFNγ treatment partially reversed these effects. Based on our findings, we suggest 
that SCG2 might stimulate mechanisms of immune evasion and therefore be associated with resistance to checkpoint 
blockade and adoptive immunotherapy.
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To the Editor,
Melanoma is the deadliest skin cancer type and often 
associated with poor prognosis despite a variety of 
treatment options [1, 2]. The major histocompatibility 
complex class I (MHC-I) presents fragments of intra-
cellular peptides on the cell surface to CD8 + T cells 
[3]. MHC-I, the TAP complex (transporter associated 
with antigen processing) and chaperones located in the 
ER constitute the antigen presenting machinery (APM) 
[4–6]. Impairment of MHC-I assembly could affect the 
efficiency of immunotherapies relying on activation of 
CD8 + T cells. SCG2 belongs to the granin family and 
plays an essential role in secretory granule formation 
and biogenesis [7, 8]. We showed recently that high 
SCG2 expression correlates with low survival rate of 
melanoma patients with metastases [9]. Here, we inves-
tigated the role of SCG2 in melanoma and its contribu-
tion to immunotherapy resistance.

Analysis of publicly available data of metastatic mel-
anoma patients from DFCI, Nature Medicine 2019 
(n = 121; Fig.  1A) [10] revealed that high intratumoral 
SCG2 expression (log2 SCG2 ≥ 1) correlated with a ten-
dency towards lower OS compared to low intratumoral 

SCG2 expression (log2 SCG2 < 1; p = 0.0531). Data from 
a GSE database (GSE7553) [11] confirmed higher SCG2 
levels in primary melanoma and metastases compared 
to normal skin (Fig.  1B) and higher levels of SCG2 in 
primary melanoma compared to nevi (Fig. 1C). By uti-
lizing cell cycle analysis comparing empty vector (EV) 
control and ectopically SCG2 OE melanoma cells we 
ascertained no difference in cell cycle phases between 
both groups (Fig. 1E).

Next, microarray gene expression analysis followed 
by Reactome, KEGG, and gene ontology database 
analysis demonstrated that pathways involved in anti-
gen presentation through MHC-I were impaired after 
SCG2 OE (Additional file  1). Additionally, SCG2 OE 
decreased the expression of several APM components 
(Fig. 1F–H).

Hereafter, we analyzed the expression of SCG2 and 
the HLA genes, which encode the heavy chain of the 
MHC-I complex, in melanoma patients (n = 87) from 
a GSE database (GSE7553) and found a highly signifi-
cant negative correlation between SCG2 and HLA-A, 
HLA-B and HLA-C expression (Fig.  1I). Furthermore, 

Fig. 1  SCG2 is more strongly expressed in melanoma compared to healthy skin and reduces the overall survival (OS) of melanoma patients (A) 
SCG2 expression data from DFCI, Nature Medicine 2019. Kaplan–Meier curve showing OS of patients (n = 121) with metastatic melanoma with 
high intratumoral SCG2 expression (Log2 SCG2 ≥ 1) compared to patients with low intratumoral SCG2 expression (Log2 SCG2 < 1). B Patient data 
obtained from the GSE7553 database showing SCG2 expression levels as log2 in normal skin (n = 5), primary melanoma (n = 14), and melanoma 
metastases (n = 40). Statistical analysis was conducted using one-way ANOVA. C SCG2 immunohistochemistry (IHC) staining of patient samples 
from nevi (n = 16), primary melanoma (n = 37), and melanoma metastases (n = 52). Statistical analysis was conducted using one-way ANOVA. (D) 
Confirmation and quantification of SCG2 overexpression (OE) in WM266-4 and C32 melanoma cells on mRNA (upper panel) and protein (lower 
panel) level. Empty vector (EV) cells were used as a reference. 18S was used as an internal control. GAPDH was used as loading control. Data 
represent mean ± s.e.m. (n ≥ 3) (E) Cell cycle analysis of WM266-4 (left panel) and C32 (right panel) EV and SCG2 OE cells. DNA was stained using 
propidium iodide (PI) and the number of PI-positive cells was determined using flow cytometry (n = 3). F Fold change of mRNA expression levels 
of the ER markers and APM components calreticulin (CALR) and calnexin (CANX) in WM266-4 (left panel) and C32 (right panel) SCG2 OE cells 
compared to EV control (ctrl). Data represent mean ± s.e.m. (n ≥ 3). G Fold change of mRNA expression of the APM components TAP1, TAP2, B2M, 
and TAPBP (tapasin) in SCG2 OE cells (WM266-4, left panel, and C32, right panel) compared to EV control. 18S was used as endogenous control. Data 
represent mean ± s.e.m. (n ≥ 3). H Protein levels of the APM components calnexin, TAP2, TAP1, calreticulin, tapasin, and B2M in WM266-4 (left panel) 
and C32 (right panel) EV and SCG2 OE cells. GAPDH was used as loading control. I Correlation of the expression of SCG2 and HLA-A, HLA-B, and 
HLA-C, respectively, in melanoma patients (n = 87) according to the data from GSE7553. J Mean fluorescence intensity (MFI) of HLA-ABC-positive 
( +) WM266-4 (left panel) and C32 (right panel) cells comparing SCG2 OE to EV control. Data represent mean ± s.e.m. (n ≥ 3). K T cell cytotoxicity 
assay performed with MART-1-specific T cells measured by xCELLigence RTCA impedance assay. The interaction of the WM266-4 (left panel) and 
C32 (right panel) cells with the gold biosensors was measured through the cellular impedance. This impedance value is plotted as normalized 
cell index, which correlates with the cell number. An increase of the normalized cell index indicates cell proliferation while a decrease represents 
the neutralization of melanoma cells through T cell-mediated cytotoxicity. We compared the normalized cell index of WM266-4 (left panel) and 
C32 (right panel) EV (black) and SCG2 OE (red) cells over time. Data represent mean ± s.e.m. of three independent experiments (n = 3). *p < 0.05; 
**p < 0.01; ***p < 0.001; “ns” refers to p ≥ 0.05

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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flow cytometry revealed significantly reduced surface 
presentation of HLA-ABC on SCG2 OE melanoma 
cells (Fig.  1J). However, the percentage of HLA-ABC-
positive cells was not altered (Additional file  2). We 
then performed a T cell cytotoxicity assay using SCG2 
OE cells and cytotoxic T cells specific for melanoma 
antigen recognized by T cells (MART)-1. Our data 
indicate that SCG2 OE cells were more resistant to T 
cell-induced cytotoxicity compared to EV control cells 
(Fig. 1K, Additional file 3).

Next, we treated SCG2 OE cells with IFNγ, which 
enhances MHC-I expression through the activation of 
the Stat1-pathway12. We observed significant upregula-
tion of HLA-ABC expression on SCG2 OE melanoma 
cells (Fig.  2A). The percentage of HLA-ABC-positive 
cells remained unchanged (Additional file  4). Quan-
tification of STAT1 mRNA expression levels showed 
significant downregulation upon SCG2 OE. However, 
IFNγ treatment increased STAT1 mRNA expression 
in EV and SCG2 OE cell lines (Fig.  2B). Western blot 
analysis demonstrated increased total Stat1 and pStat1 
levels after IFNγ treatment in EV and SCG2 OE cells 
(Fig.  2C). Moreover, we observed a decrease of total 
Stat1 and pStat1 in untreated SCG2 OE cells.

IFNγ treatment also increased TAP1, TAP2, and B2M 
mRNA expression in EV and SCG2 OE cells (Fig. 2D). 

Western blot analysis confirmed upregulation of TAP1, 
TAP2, and B2M (Fig. 2E).

Thereafter, we examined the effect of the IFNγ treat-
ment on the sensitivity of SCG2 OE cells to T cell-
mediated cytotoxicity. We detected a significantly 
higher sensitivity of IFNγ-treated EV and SCG2 OE 
cells compared to untreated cells (Fig.  2F, Additional 
files 5, 6). When comparing IFNγ-treated EV and SCG2 
OE cells we found that SCG2 OE cells were less sensi-
tive towards T cell-mediated cytotoxicity .

We demonstrate here that high intratumoral SCG2 
levels correlated with worse prognosis for melanoma 
patients. SCG2 OE led to downregulation of APM com-
ponents, which resulted in decreased MHC-I expres-
sion and reduced sensitivity of melanoma cells towards 
T cell-induced cytotoxicity. IFNγ treatment partially 
counteracted downregulation of APM components and 
MHC-I. However, IFNγ-treated SCG2 OE cells were 
still more resistant to T cell-induced cytotoxicity. Our 
results contribute to understanding melanoma immune 
evasion and the role of SCG2 in this process. Therefore, 
SCG2 could be a valuable prognostic factor, potentially 
influencing the success of checkpoint blockade and 
adoptive immunotherapy.

(See figure on next page.)
Fig. 2  SCG2 OE influences Stat1-induced MHC class I surface presentation, which can be partially restored by IFNγ treatment (A) Mean fluorescence 
intensity (MFI) of HLA-ABC-positive ( +) WM266-4 (left panel) and C32 (right panel) EV and SCG2 OE cells before and after IFNγ treatment (10 ng/
ml, 48 h). Data represent mean ± s.e.m. (n ≥ 3). B Fold change of Stat1 mRNA expression in WM266-4 (left panel) and C32 (right panel) EV and 
SCG2 OE cells before and after IFNγ treatment (10 ng/ml, 48 h). 18S was used as endogenous control. Data represent mean ± s.e.m. (n ≥ 3). C 
Western blot analysis of the expression of total Stat1 and pStat1 (phosphorylated Stat1) in WM266-4 (left panel) and C32 (right panel) EV and SCG2 
OE cells before and after IFNγ treatment (10 ng/ml, 48 h). GAPDH was used as a loading control. D Fold change of mRNA expression levels of the 
APM components TAP1, TAP2, B2M, and TAPBP (tapasin) in WM266-4 (left panel) and C32 (right panel) EV and SCG2 OE cells before and after IFNγ 
treatment (10 ng/ml, 48 h). 18S was used as an endogenous control. Data represent mean ± s.e.m. (n ≥ 3). E Western blot analysis of the expression 
of the APM components TAP2, TAP1, tapasin, and B2M in WM266-4 (left panel) and C32 (right panel) EV and SCG2 OE cells before and after IFNγ 
treatment (10 ng/ml, 48 h). GAPDH was used as a loading control. F The upper panel shows impedance value plotted as the normalized cell index 
of IFNγ-treated and untreated WM266-4 EV and SCG2 OE cells over time. The lower panel shows the normalized cell index of IFNγ-treated and 
untreated C32 EV and SCG2 OE cells over time. Graphs show comparisons of the normalized cell index between EV and SCG2 OE, EV and EV treated 
with IFNγ, EV and SCG2 OE both treated with IFNγ, as well as SCG2 OE and SCG2 OE treated with IFNγ. An increase of the normalized cell index 
represents cell proliferation and a decrease represents the killing of melanoma cells through T cell-mediated cytotoxicity. EV cells are highlighted in 
black, IFNγ-treated EV cells are highlighted in grey, SCG2 OE cells are highlighted in red, and IFNγ-treated SCG2 OE cells are highlighted in blue. Cells 
were treated with10 ng/ml IFNγ for 48 h. Data represent mean ± s.e.m. of three independent experiments (n = 3). *p < 0.05; **p < 0.01; ***p < 0.001; 
“ns” refers to ≥ 0.05
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Fig. 2  (See legend on previous page.)
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Abbreviations
APM	� Antigen presenting machinery
B2M	� β2-Microglobulin
CALR	� Gene encoding calreticulin
CANX	� Gene encoding calnexin
ER	� Endoplasmic reticulum
EV	� Empty vector
HC	� Heavy chain
HLA	� Human leukocyte antigen
IFN	� Interferon
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