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Abstract 

The molecular mechanisms underlying cancer immune escape are a core topic in cancer immunology research. 
Cancer cells can escape T cell-mediated cellular cytotoxicity by exploiting the inhibitory programmed cell-death 
protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1, CD274) immune checkpoint. Studying the PD-L1 regulatory 
pattern of tumor cells will help elucidate the molecular mechanisms of tumor immune evasion and improve cancer 
treatment. Recent studies have found that tumor cells regulate PD-L1 at the transcriptional, post-transcriptional, and 
post-translational levels and influence the anti-tumor immune response by regulating PD-L1. In this review, we focus 
on the regulation of PD-L1 in cancer cells and summarize the underlying mechanisms.
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Introduction
The occurrence of tumors results from gene deletion, 
mutation, or abnormal expression in the presence of 
genetic and environmental factors, which eventually lead 
to abnormal cell proliferation. Tumor cells can be found, 
recognized, and eliminated by the immune system; how-
ever, the interaction between tumor cells and immu-
nological cells is regulated by immune activating and 
inhibitory molecules [1]. Tumor cells inhibit the immune 
response by upregulating immunosuppressive chemi-
cals and downregulating immune-activating molecules, 
allowing them to avoid detection and flourish. Immune 
checkpoints, which consist of various receptors and their 
respective ligands, are essential for the initiation and ter-
mination of an effective immune response [2, 3]. Immune 
checkpoints (ICs), such as programmed cell death pro-
tein 1 (PD-1)/programmed cell death ligand 1 (PD-L1, 
CD274), lymphocyte activating 3 (LAG3), cytotoxic 

T-lymphocyte associated protein 4 (CTLA4), hepatitis 
A virus cellular receptor 2 (HAVCR2, TIM3), and T cell 
immunoreceptor with Ig and ITIM domains (TIGIT), 
serve a vital role in tumor immunoevasion [4–6]. For 
example, high expression of myeloid leukemia cell ICs in 
patients with acute myeloid leukemia is associated with 
poor prognosis [7]. Blocking the suppressive immune 
checkpoint proteins with specific antibodies restores the 
immune system’s ability to distinguish and eliminate can-
cer cells and achieves favorable tumor immunotherapy 
results. Ipilimumab, an FDA-approved ICI, which is a 
monoclonal antibody directed against CTLA4, was used 
to treat melanoma, and since then, new drugs that regu-
late immune checkpoint proteins have emerged. PD-1/
PD-L1 immunotherapy is promising and has recently 
become a hot study area in tumor immunotherapy [8]. 
However, the mechanisms underlying immune check-
point blockade therapy resistance and the regulation of 
PD-L1 are not entirely understood. To develop a more 
effective and durable immune checkpoint blockade 
therapeutic strategy, it is necessary to understand the 
multiple functions and intricate regulatory mechanisms 
of PD-L1 in cancer. In this context, we review present 
knowledge about the regulation of PD-L1 in terms of 
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transcriptional, protein, and epigenetic aspects. Further-
more, we discuss the efficient investigation of the PD-L1 
regulatory mechanism.

The expression and biological function of PD‑L1
PD-L1, a PD-1 ligand, is a cell surface glycoprotein that 
belongs to the B7 co-stimulatory molecule family. Non-
hematopoietic cells such as vascular endothelial cells and 
hepatocytes, in addition to hematopoietic cells, including 
T cells, B cells, and macrophages, constitutively express 
PD-L1 [9, 10]. PD-L1 upregulation occurs across a broad 
spectrum of cell types as a result of stimulation by pro-
inflammatory cytokines and other factors, and PD-L1 is 
highly expressed in many cancer cells such as lung, ovar-
ian, colon, and melanoma [11, 12].

Tumor cells possess abundant PD-L1, which binds to 
the PD-1 receptor on the surface of tumor-infiltrating 
lymphocytes (TILs), subsequently sending immunosup-
pressive signals to TILs and preventing antigen-specific 
CD8 + T lymphocytes from eliminating tumor cells 
[13–16]. Moreover, PD-L1 enables the promotion of 
tumor therapy through non-T cell-mediated immunity. 
For instance, avelumab (MSB0010718C) is a monoclo-
nal antibody that targets PD-L1 and exhibits antibody-
dependent cell-mediated cytotoxicity (ADCC), thereby 
significantly enhancing the killing effects of high-affinity 
natural killer cells in head and neck squamous cell carci-
noma (HNSCC) [17, 18]. Additionally, PD-L1 is capable 
of promoting cancer cell proliferation. Nuclear PD-L1, 
coupled with transcription factor Sp1, activates the 
MERTK signaling pathway by regulating Gas6 mRNA 
synthesis and promoting Gas6 secretion, which pro-
motes cell proliferation in non-small-cell lung cancer 
(NSCLC) [19]. Patients with high PD-L1 expression are 
more likely to have vascular invasion and tumor recur-
rence than those with low PD-L1 expression in rectal 
cancer [20]. In addition to playing a significant role in 
immunotherapy, PD-L1 contributes to the development 
of tumor drug resistance. Gemcitabine and oxaliplatin 
are the main chemotherapeutic agents for gallblad-
der cancer; nevertheless, placenta-specific protein 8 
(PLAC8) can lead to the development of chemotherapy 
resistance through upregulation of PD-L1 expression 
[21]. Likewise, nuclear factor E2-related factor 2 (NRF2) 
promotes PD-L1 expression by inhibiting miR-1 expres-
sion, ultimately increasing the resistance of hepatocel-
lular carcinoma (HCC) cells to sorafenib [22]. Studies 
have shown that radiation therapy induces systemic anti-
tumor responses and enhances the sensitivity of refrac-
tory tumors to immunotherapy; therefore, stereotactic 
body radiation therapy in combination with PD-1/PD-L1 
blockade may improve drug resistance in patients with 
advanced NSCLC [23]. The above studies suggest that 

PD-L1 suppresses T cell function and natural killer cells 
to play a role in tumor immune escape, but also promotes 
tumor development and tumor drug resistance (Fig. 1).

Transcriptional regulation of PD‑L1
Transcription factors are proteins that bind to DNA-
regulatory sequences to modulate the rate of gene tran-
scription. PD-L1 expression is regulated by a wide range 
of transcription factors, containing MYC, bromodomain 
containing 4 (BRD4), STAT family members, nuclear fac-
tor kappa-B (NF-κB), cyclin-dependent kinase 5 (CDK5), 
hypoxia-inducible factor 1 subunit alpha (HIF-1α), NRF2, 
and cyclic AMP-dependent transcription factor 3 (AFT3) 
[24]. Here, we summarize the critical transcription fac-
tors involved in PD-L1 expression (Fig. 2).

MYC
MYC is a nuclear phosphoprotein involved in prolif-
eration, apoptosis, and differentiation [25]. In a Tet-off 
transgenic mouse model of MYC-induced T cell acute 
lymphoblastic leukemia (T-ALL), PD-L1 and MYC 
expression were significantly correlated. Coupled with 
the promoter of PD-L1, MYC can directly regulate the 
transcription. Both inactivation and knockdown of MYC 
can reduce PD-L1 expression [26]. Moreover, overexpres-
sion of bridging integrator-1 (BIN1) in NSCLC could 
reverse PD-L1-mediated immune escape by inhibiting 
the expression of MYC [27]. Moreover, cell cycle protein-
dependent kinase 7 (CDK7) inhibitor THZ1 could down-
regulate PD-L1 expression by inhibiting MYC activation, 
and when combined with the PD-L1 inhibitor Atezoli-
zumab improves the outcome of NSCLC [28].

BRD4
BRD4, a member of the bromodomain and extra termi-
nal domain (BET) family, directly binds to the PD-L1 
promoter and is significantly connected with PD-L1 
expression [29]. The BET inhibitor JQ1 can inhibit PD-L1 
mRNA and protein expression in lymphomas and leu-
kemia mouse models [26, 30]. Mechanistically, JQ1 can 
reduce the binding of BRD4 to the PD-L1 promoter. In 
contrast, IFN-γ can enhance BRD4 binding to the PD-L1 
promoter in ovarian cancer (OC) cells [31]. Similarly, 
BRD4 and interferon regulatory factor 1 (IRF1) can mod-
ulate the PD-L1 transcription triggered by interferon [30, 
31].

STATs
IFN-γ-induced PD-L1 expression promotes cancer 
immune escape, and this has been found in multiple 
tumor types. IFN-γ binds to the type II interferon recep-
tor and activates janus kinase (JAK)-STAT signaling, fur-
ther activating interferon response factors [32, 33]. For 
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example, in CHL and primary mediastinal large B-cell 
lymphoma (PMBCL), gp24.1 amplification increases 
PD-L1 expression and its induction by the JAK2-STAT1-
IRF1 signaling pathway [33]. Moreover, in melanoma, 
epigallocatechin gallate decreases PD-L1 expression by 
restraining STAT1 gene expression and phosphorylation 
followed by downregulation of IRF1 expression [34]. The 
JAK inhibitor JAKi was used in HNSCC cells to block 
STAT1 phosphorylation, thereby inhibiting the increase 
in PD-L1 mRNA levels induced by combined 5-FU and 
IFN-γ treatment [35]. The expression of inflammatory 
macrophages can be further increased by IFN-γ through 
elevating PD-L1 on these cells in a STAT1-dependent 
manner [36]. The STAT protein family member STAT3 
binds directly to the PD-L1 promoter to activate tran-
scription. Chimeric nucleophosmin (NPM)/anaplastic 
lymphoma kinase (ALK) is significantly associated with 
malignant cell transformation and NPM/ALK-carrying 
T cell lymphoma (ALK + TCL) cells abundantly express 
PD-L1, which is regulated by STAT3, and knocking 
down STAT3 can inhibit this effect. [37]. Under hypoxia, 
p-STAT3 interacts with PD-L1 to promote its nuclear 
translocation and enhances gasdermin C (GSDMC) 
transcription, thereby inducing pyroptosis in breast can-
cer (BC) cells [38]. In Epstein-Barr virus (EBV)-positive 
nasopharyngeal carcinoma cell lines, PD-L1 expression is 
greater, and latent membrane protein 1 (LMP1) activates 
PD-L1 by increasing STAT3 phosphorylation [39]. Con-
versely, water extract from sporoderm-broken spores of 
G. lucidum (BSGWE) can reduce PD-L1 expression in 
osteosarcoma by blocking STAT3 phosphorylation [40]. 
By downregulating CD40 and STAT3 expression, miR-
502-5p can downregulate PD-L1 expression in gastric 
cancer (GC) cells [41].

NF‑κB
NF-κB is a homologous or heterologous dimer formed by 
members of the Rel family, and it plays a key role in cell 
growth, apoptosis, and immune responses through tran-
scriptional regulation. LMP1 may induce PD-L1 expres-
sion in natural killer/T-cell lymphoma cells through 
regulation of the MAPK/NF-KB signaling pathway and 
is associated with poor prognosis [42]. IFN-γ stimu-
lates NF-κB in melanoma cells to induce the expression 
of PD-L1, and inhibiting NF-κB expression lowers IFN-
γ-induced PD-L1 but not constitutive PD-L1 expres-
sion [43]. In prostate cancer, RelB, a major member of 
the NF-κB family, upregulates PD-L1 mainly by binding 
to the NF-κB element located in the promoter of PD-L1 
[44]. Furthermore, knockdown of histone deacetylase 5 
(HDAC5) results in notable activation of NF-κB signal-
ing, thus significantly increasing PD-L1 expression in 
pancreatic cancer (PC) [45].

CDK5
CDK5 is a cyclin-dependent kinase that is widely 
expressed in many malignancies, allowing cancer cells 
to escape immune detection. The CDK5 inhibitor ros-
covitine prevents IFN-induced PD-L1 expression in 
medulloblastoma. Inhibition of CDK5 causes the PD-L1 
transcriptional repressors IRF2 and IRF2BP2 to com-
pete with IRF1 for binding to regions in the promoter of 
PD-L1 [46].

HIF‑1α
HIF-1α is a master regulator of the response to hypoxia 
via its activation of the transcription of many genes. 
Under hypoxic conditions, there was a positive correla-
tion between the HIF-1α and PD-L1 expression levels 
together with the inactivation of T cells. In addition to 
proliferation and inhibition of apoptosis, HIF-1α has an 
immunosuppressive function [47, 48]. HIF-1α and PD-L1 
expression levels were positively correlated with T cell 
inactivation under hypoxic circumstances, and inhibiting 
PD-L1 expression improved bone marrow-derived sup-
pressor cells (MDSCs)-mediated T cell activation [49]. 
The combination of the HIF-1α inhibitor PX-478 and 
an anti-PD-L1 antibody increased dendritic cell (DC) 
and CD8 + T cell activation and dramatically suppressed 
tumor growth in a glioma mouse model. Mechanistically, 
HIF-1α activates PD-L1 transcription by binding to the 
hypoxia response element HRE-4 in the PD-L1 proximal 
promoter [50, 51]. In both acute myeloid leukemia (AML) 
mouse model and AML cell lines including MOLM-13 
and THP1, PD-L1 boosts glycolytic metabolism, which 
enhances cell proliferation and tumor formation via the 
Akt/mTOR/HIF-1α signaling pathway [52].

NRF2
NRF2 is a crucial transcription factor for antioxidant and 
detoxification enzymes that protect cells from damage 
caused by oxidative stress [53]. This protein decreases the 
expression of miR-1, leading to the elevation of PD-L1 
in HCC patients treated with sorafenib [22]. The man-
agement of colon cancer has been transformed by the 
development of ICIs. Nonetheless, aberrant upregulation 
of PD-L1 promotes chemoresistance and results in poor 
prognosis, while NRF2 inhibition remarkably lowers 
PD-L1 mRNA expression in sensitive and resistant cells 
[54].

ATF3
ATF3 is a common stress-inducible transcription fac-
tor that is instrumental in modulating oncogenesis, 
immunity, and metabolism. In melanoma and NSCLC 
cells, adenosine A1 receptor (ADORA1) inhibition pro-
motes PD-L1 gene expression through ATF3 binding to 
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the PD-L1 promoter directly. Similarly, Sophora alope-
curoides Linn impedes PD-L1 expression by enhancing 
ADORA1 activation in NSCLC [55, 56].

In addition to the above-mentioned, directly regulating 
transcription factors, some genes such as phosphatase 
and tensin homolog (PTEN), mTOR, and p53, which 
are closely related to tumor development, can indirectly 
regulate PD-L1 transcription and thus promote tumor 
immune escape [52, 57, 58]. In conclusion, the above 
transcription factors regulate PD-L1 expression, influ-
ence tumor immune escape, and facilitate tumor progres-
sion and the development of drug resistance.

Epigenetic regulation of PD‑L1
DNA methylation, histone modification, non-coding 
RNA–mediated regulation, and N6-methyladenosine are 
the most common epigenetic regulation mechanisms. 
Epigenetic regulation is important for modulating several 
cellular functions, including PD-L1 expression (Fig 2).

DNA methylation
DNA methylation occurs when a methyl group is added 
to the C5 position of a DNA cytosine loop to produce 
5-methylcytosine (5mC), and it regulates gene expression 
by controlling chromatin structure and DNA stability 
and conformation [59]. Recent research has linked DNA 
methylation of the PD-L1 promoter to PD-L1 mRNA 
expression in various malignancies [60–63]. PD-L1 
expression can be controlled by DNA methylation, and 
when its promoter is hypermethylated, it improves the 
overall survival of melanoma patients [62, 64]. Further-
more, the demethylating drug decitabine dose-depend-
ently increases PD-L1 mRNA levels in leukemia cells [39]. 
Thus, inhibitors of epigenetic regulation may improve the 
effectiveness of anti-PD-1/PD-L1 antibodies.

Histone modification
Recently, histone modification, particularly histone acety-
lation, has also been implicated in the transcriptional reg-
ulation of PD-L1. TET2, a ten-eleven translocation (TET) 
family member, recruits histone deacetylases (HDAC1/2) 
to deacetylate the histone modification H3K27ac on the 
PD-L1 promoter and consequently restraining PD-L1 
transcription in BC [53]. HDAC3 overexpression sup-
pressed PD-L1 and inhibited  CD3+ T cell proliferation 
[65]. Suberoylanilide hydroxamic acid (SAHA), an HDAC 
inhibitor, reduced PD-L1 expression in lung cancer cells 
in a dose-dependent manner [66]. These investigations 
suggest combining HDAC inhibitors with PD-1/PD-L1 
inhibitors may improve therapeutic efficacy.

Apart from histone acetylation, histone methylation in 
the PD-L1 promoter can influence PD-L1 transcription. 
The histone methyltransferase EZH2 represses PD-L1 

transcription by histone H3 lysine 27 trimethylation 
(H3K27me3) of the PD-L1 promoter [67]. In contrast, the 
histone methyltransferase lysine methyltransferase 2  A 
(MLL1) promotes PD-L1 transcription through histone 
H3 lysine 4 trimethylation (H3K4me3) of the PD-L1 pro-
moter [68].

MicroRNAs
MicroRNAs (miRNAs) are a type of non-coding, single-
stranded RNA molecules. Some miRNAs can bind to the 
3’UTR of PD-L1 mRNA (shown in Table 1) e.g., miR-34 
and miR-513, to degrade PD-L1 mRNA or inhibit PD-L1 
translation [69–71]. In NSCLC, p53 increases miR-34 
expression to reduce PD-L1 expression. MiR-34 can bind 
directly to the 3’UTR of PD-L1 mRNA to suppress PD-L1 
production and antagonize T cell exhaustion [58]. Unlike 
miR-34, miR-197 indirectly represses PD-L1 expres-
sion via CDC28 protein kinase regulatory subunit 1B 
(CKS1B)/STAT3 in chemotherapy-resistant NSCLC [72].

LncRNA and circRNA
Long non-coding RNA (lncRNA) and circular RNA (cir-
cRNA) are crucial types of ncRNAs that are sensitive to 
the tumor immune response. LncRNAs are involved in 
a variety of cellular processes and molecular signaling 
cascades via their modulation of PD-L1 expression at 
the epigenetic, transcriptional, and post-transcriptional 
levels [73, 74]. Some circRNAs regulate the function of 
miRNAs as microRNA sponges and are essential to tran-
scriptional regulation [75].

The lncRNA HOTTIP stimulates neutrophil IL-6 
secretion to allow STAT3 phosphorylation, which 
increases PD-L1 expression in OC, limiting T cell activ-
ity and eventually accelerating tumor immune escape 
[76]. By interrupting miR-21/IL-6 crosstalk, the lncRNA 
small nucleolar RNA host gene 12 (SNHG12) promotes 
the PD-L1 expression regulated by IL-6R [77]. Com-
pared with SNHG12, inhibition of the lncRNA SNHG20 
downregulates PD-L1 expression through the ATM/
JAK/PD-L1 pathway, affecting the epithelial-mesen-
chymal transition (EMT) and metastasis in esophageal 
cancer [78]. In DLBCL, the lncRNA SNHG14 increases 
the expression of zinc finger E-box binding home-
obox 1 (ZEB1) by sponging miR-5590-3p. Subsequently, 
SNHG14 and PD-L1 are transcriptionally activated by 
ZEB1, thereby promoting tumor immune evasion [79]. 
Through EIF4A3-mediated E2F transcription factor 1 
(E2F1) upregulation, the lncRNA cancer susceptibil-
ity candidate 11 (CASC11) inhibited NF-κB and PI3K/
AKT/mTOR pathway activation to mediate PD-L1 
expression and encourage tumor progression in a mouse 
model of HCC with lung metastasis [80]. In OC, the 
EMX2OS/miR-654/AKT3/PD-L1 axis is associated with 
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aggressiveness, and PD-L1 upregulation reverses the 
anti-cancer functions of miR-654. miR-654 is sponged 
and downregulated by lncRNA EMX2OS, while, in 
contrast, AKT3 and PD-L1 are upregulated. [81]. The 
lncRNA NUTM2A-AS1 directly targets miR-376a, which 
increases TET1 and HIF-1α expression followed by an 
increase in PD-L1 expression, thereby promoting gastric 
carcinogenesis and drug resistance [82]. Similarly, Hoxa-
AS2 binds to miR-519 and results in significant upregula-
tion of HIF-1α and PD-L1, which prominently promotes 
the progression of nasopharyngeal carcinoma including 
its proliferation, migration, and invasive ability [83]. In 
oral squamous carcinoma (OSCC), the lncRNA IFITM4P 
enhances the binding of histone 3 lysine 4 demethylase 

KDM5A to the PTEN promoter to diminish PTEN tran-
scription, boosting PD-L1 expression. It also recruits 
SAM and SH3 domain containing protein 1 (SASH1) in 
the cytoplasm to bind and phosphorylate TAK1 (Thr187), 
increasing NF-κB phosphorylation to stimulate PD-L1 
transcription [84]. Conversely, the expression of PD-L1 is 
extremely hindered by LncMX1-215 through the block-
ing of GCN5-mediated acetylation of H3K27 [85].

Hsa_circ_0000190 enhances PD-L1 mRNA-mediated 
expression of soluble PD-L1 and promotes non-small cell 
lung carcinogenesis and immune evasion [86]. In addi-
tion, HasCircRNA-002178 is capable of enhancing PD-L1 
expression by inducing T cell exhaustion via spong-
ing miR-34 in LUAD cells [87]. CDR1-AS remarkably 

Table 1 MicroRNAs were demonstrated to modulate PD- L1 in cancer cells in recent research

The up and down arrows represent the up- and down-regulation of PD-L1, respectively.

CC colorectal cancer, GC gastric cancer, NSCLC non-small-cell lung cancer, LUAD lung adenocarcinoma, MM malignant mesothelioma, LC lung carcinogenesis, BC breast 
cancer, OC ovarian cancer, PC pancreatic cancer, DLBCL diffuse large B cell lymphoma, HCC hepatocellular carcinoma

microRNA cancer type Efx targets mechanisms Refs.

miR-138-5p CC ↓ PD-L1 [161]

miR-148a-3p ↓ PD-L1 [162]

miR-15a ↓ HOXC4 MiR-15a inhibits PD-L1 expression via binding to homeobox C4 (HOXC4). [163]

miR-20b-21, miR-130b ↑ PTEN MiR-20b, -21, and − 130b promote PD-L1 expression via restraining PTEN. [164]

miR-152 GC ↓ PD-L1 [165, 166]

miR-16-5p ↓ PD-L1 [167]

miR-200b ↓ PD-L1 [166]

miR-140 NSCLC ↓ PD-L1 [168]

miR-377-3p ↓ PD-L1 [169]

miR-34 ↓ PD-L1 [58]

miR-3127-5p ↑ STAT3 MiR-3127-5p induces upregulation of PD-L1 expression by regulating the expres-
sion of p-STAT3.

[170]

miR-197 ↓ CKS1B MiR-197/CKS1B/STAT3 inhibits PD-L1 expression. [171]

miR-155-5p LUAD ↓ PD-L1 [172]

miR-320a MM ↓ PD-L1 [173]

miR-let-7b LC ↓ PD-L1 [174]

miR-4759 BC ↓ PD-L1 [175]

miR-27a-3p ↑ MAGI2 MiR-27 A-3p upregulates PD-L1 via the membrane-associated guanylate kinase 
inverted 2 (MAGI2) /PTEN/PI3K axis and together promotes immune escape from 
BC.

[176]

miR-92 ↑ LATS2 MiR-92 binds to large tumor suppressor kinase 2 (LATS2) which is capable to 
interact with Yes1 associated transcriptional regulator (YAP1) to promote PD-L1 
expression.

[177]

miR-424 OC ↓ PD-L1 [178]

miR-142-5p PC ↓ PD-L1 [179]

miR-129-5P DLBCL ↓ ARID3A MiR-129-5p inhibits AT-rich interaction domain 3 A (ARID3A) and thereby down-
regulates PD-L1 expression.

[180]

miR-329-3p HCC ↓ KDM1A MiR-329-3p inhibits PD-L1 expression and enhances response to T cell-induced 
HCC cytotoxicity by targeting lysine-specific demethylase 1 A (KDM1A).

[181]

miR-155 Multiple cancers ↓ PD-L1 [182]

miR-200 ↓ PD-L1 [71]

miR-let-7a/c/e ↓ PD-L1 [183]
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increases the expression of CMTM4 and CMTM6, the 
pivotal regulators of PD-L1 protein, and concurrently 
upregulates PD-L1 expression [88] (Table 2).

N6‑methyladenosine
N6-methyladenosine (m6A) is a common mRNA modi-
fication that regulates mRNA stability, localization, 
transport, shearing, and translation. METTL3 medi-
ates the RNA methylation modification process and 
functionally catalyzes m6A mRNA methylation [89]. By 
increasing the m6A content in protein arginine methyl-
transferase 5 (PRMT5) and PD-L1, METTL3 promotes 
the metastasis and proliferation of OSCC [90]. Through 

a m6A-dependent mechanism, METTL3 positively regu-
lates IGF2BP3 to increase the stability and expression of 
PD-L1 mRNA in BC [91]. YTH domain family proteins 
(YTHDF) recognize and bind m6A in mRNA, YTHDF1 
mediates translation to promote translation efficiency, 
and YTHDF2 mediates degradation to control the half-
life of target transcripts, ensuring efficient protein pro-
duction from m6A-tagged dynamic transcripts [92]. 
Recent evidence suggests that m6A demethylases fat 
mass and obesity-associated protein (FTO) and ALKBH5 
induce m6A mRNA demethylation [93]. ALKBH5 defi-
ciency enhances m6A modification in the PD-L1 3’UTR 
region, thereby promoting PD-L1 mRNA degradation 

Table 2 Regulators of PD-L1

The up and down arrows represent the up- and down-regulation of PD-L1, respectively.

Type Regulators of PD-L1 Cancer type

Transcription factors MYC ↑T-ALL[26], NSCLC[27]

BRD4 ↑lymphomas and leukemia[26, 30], OC[31]

STAT3 ↑T cell lymphoma[37],
BC[38], osteosarcoma[40], GC[41]

STAT1 ↑CHL and PMBCL[33], melanoma[34], HNSCC[35]

NF-κB ↑prostate cancer [44],
PC [45]

CKD5 ↑medulloblastoma [46], melanoma[32]

HIF-1α ↑multiple cancers[47, 48] [184]

MLL1 ↑PC[134]

NRF2 ↑HCC[22]

ATF3 ↑melanoma and NSCLC[55]

Epigenetic regulation of PD-L1 DNA methylation ↓melanoma[62, 64], leukemia [39]

Histone modification ↓BC and B cell lymphomas[53, 185], lung cancer[66]

MicroRNAs shown in Table 1

N6- methyladenosine ↑OSCC[90], ↑BC[91]

LncRNA
and circRNA

HOTTIP, SNHG12, EMX2OS-
↑OC[76, 77, 81]
SNHG20-↑esophagus cancer[78]
CASC11-↑HCC[80]
SNHG14-↑DLBCL[79]
NUTM2A-AS1-↑GC[82]
Hoxa-AS2-↑nasopharyngeal carcinoma[83]
IFITM4P-↑OSCC[84]
LncMX1-215-↓HNSCC[85]
Hsa_circ_0000190-↑NSCLC[186]
HasCircRNA-002178-↑ LUAD[87]
CDR1-AS-↑CC[88]

PD-L1 regulation at the protein level Ubiquitination ↓ BC[97], NSCLC[98],
CC[99], colon cancer[100], melanoma[101, 102, 106], 
lung cancer[101], esophageal squamous cell carci-
noma[105]

Glycosylation ↑AML[108], TNBC[109, 111],
colon cancer[110], prostate cancer[111], glioma[112]

Phosphorylation ↓ BC[114, 116], HCC[115]

Acetylation ↓ multiple cancers[117]

Palmitoylation ↑ BC and colon cancer[118, 119]

Autophagy ↓ OC[122]
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in a YTHDF2-dependent manner [94]. Conversely, FTO 
promotes PD-L1 expression by inducing m6A demeth-
ylation of mRNA in colon cancer cells; however, whether 
m6A demethylase acts directly on PD-L1 mRNA remains 
uncertain [95] (Table 3).

PD‑L1 regulation at the protein level
The ultimate mechanism regulating PD-L1 expression 
is post-translational regulation, which is influenced by 
ubiquitination, phosphorylation, glycosylation, acetyla-
tion, palmitoylation, autophagy, and other factors (Fig 2).

Ubiquitination
Ubiquitination is a common post-translational modifi-
cation that controls the stability of proteins [96]. TNFα 
secreted by macrophages can positively regulate PD-L1 
protein at the post-translational level without affecting 
its transcription. TNFα activates NF-κB through the 
nuclear translocation and downstream transactivation 
of p65. Subsequently, p65 activates COP9 signalosome 
5 (CSN5) transcription and promotes CSN5 expres-
sion. CSN5 binds PD-L1 and deubiquitinates PD-L1, 
enhancing PD-L1 stability, and evading T cell immune 
surveillance [97]. Additionally, berberine binds to 
CSN5 and diminishes its deubiquitination activity, 
leading to PD-L1 ubiquitination and degradation and 
promoting anti-tumor immunity [98]. LPS or high-
cholesterol diet (HCD)-induced macrophage infiltra-
tion significantly activates the C-C motif chemokine 

ligand 5 (CCL5)-P65/STAT3-CSN5-PD-L1 signaling 
pathway in azoxymethane-induced CC mouse mod-
els and is correlated with poor prognosis [99]. In con-
trast to CSN5, the deubiquitinase USP8 removes TNF 
receptor associated factor 6 (TRAF6)-mediated K63-
linked ubiquitination, thereby promoting PD-L1 deg-
radation in mouse models of lung and colon cancer 
[100]. Ubiquilin 4 (UBQLN4) suppresses PD-L1 ubiq-
uitination and promotes protein stability in melanoma. 
Albendazole stimulates tumor immune function by 
reducing UBQLN4 expression and, as a result, facilitat-
ing PD-L1 protein degradation [101]. Overexpression 
of the E3 ligase ITCH in melanoma cells ubiquitinates 
and suppresses MAPK-induced PD-L1 expression, 
boosts CD8 + cell production, and promotes antitu-
mor effects [102]. The CMTM family has a significant 
impact on the immune system and is involved in the 
occurrence and development of tumors. A quintessen-
tial example is that EMT transcription factor SNAI1 
promotes PD-L1 expression in BC by positively regu-
lating CMTM6 [103]. Two groups used whole-genome 
CRISPR–Cas9 screening and haploid gene screening 
based on the fluorescence-activated cell sorting tech-
nology to jointly discover that CMTM6 is a key protein 
that modulates PD-L1 stability. CMTM6 interacts with 
PD-L1 and co-localizes at endosomes and the plasma 
membrane. CMTM6 protects PD-L1 from lysoso-
mal-mediated degradation, increases its stability, and 
enhances the ability of tumor cells to suppress immune 

Table 3 Drugs associated with PD-L1 regulation

The up and down arrows represent the up- and down-regulation of PD-L1, respectively.

Drug Target Cancer type Model type

Stri-201 STAT3-PD-L1 ↓HNSCC[130] mouse

Nexturastat 
Tubastatin A 

HDAC6-STAT3-PD-L1 ↓melanoma[131] cell

Silvestrol EIF4F-STAT1-PD-L1 ↑melanoma[132] mouse

Verteporfin STAT1-IRF1-TRIM28 ↓multiple cancers[133] cell

Verticillin A MLL1- H3K4me3 ↓PC[134] cell

Cisplatin miR-145- c-MYC-PD-L1 ↑ovarian carcinoma[135] cell

PROTACs PD-L1 ubiquitination and lysosomal 
degradation

↓multiple cancers[138, 139] mouse

PD-LYSO HIP1R-PD-L1 ↓multiple cancers[140] cell

Crcumin CSN5-PD-L1 ↓BC[97] mouse

Decitabine DNA hypomethylation ↑CC, leukemia, HNSCC, NSCLC [60, 142–144] mouse

Temozolomide STAT3-PD-L1 ↑glioblastoma multiforme[145] mouse

Regorafenib RET-Src-JAK1/2-STAT1;
RET-Src- MAPK signaling

↑melanoma[146] mouse

Mifepristone glucocorticoid receptor-PD-L1 ↓PC[147] mouse

Metformin PD-L1 glycosylation ↓breast tumor, melanoma, and colon cancer[109, 148] mouse

Capmatinib MET-PD-L1 ↓PC[149] mouse

Albendazole PD-L1 ubiquitination ↓melanoma[101] mouse
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responses. Inhibiting CMTM6 expression can dimin-
ish PD-L1 expression and greatly limit the tumor cell’s 
ability to block T cell activity, but it has little effect 
on the MHC class I molecules [104]. Mechanistically, 
CMTM6 inhibits the ubiquitination of PD-L1 and pro-
longs its half-life. In tumor cells, CMTM6 is involved 
in BCLAF1-dependent PD-L1 upregulation through 
inhibition of ionizing radiation-induced PD-L1 ubiqui-
tination [105]. Similar to CMTM6, CMTM4 also func-
tions to regulate PD-L1 and is an alternative regulator 
of this protein [106] (Table 4).

Glycosylation
Glycosylation of membrane receptor proteins influences 
not only the interaction of ligands and receptors but also 
protein activity [107]. In human tumor tissues and can-
cer cell lines, PD-L1 is glycosylated. Glycogen synthase 
kinase 3β (GSK3β) is associated with non-glycosylated 
PD-L1 and triggers PD-L1 degradation by β-TrCP. PD-L1 
N192, N200, and N219 glycosylation can antagonize 
GSK3β binding, thereby increasing the stability of PD-L1 
[108]. Similarly, the N-glycosyltransferase subunit STT3 
can increase the glycosylation and stability of PD-L1, 

Table 4 Clinical efficacy of FDA-approved PD-L1 inhibitors 

ORR objective response rate, mPFS median progression-free survival, mOS median overall survival

PD-L1 inhibitors Cancer type Trial (Phase) Patients(n) ORR (%) mPFS (months) mOS (months)

Avelumab Metastatic UC[151] Ib 44 18.2 2.9 13.7

RCC[152] III 886 55.2 13.8 11.6

MCC[153] II 88 33.0 - 12.6

Atezolizumab MUC[155] II 310 26.0 2.1 11.4

NSCLC[154] III 1021 6.3 13.5 -

Durvalumab NSCLC[156] III 713 - 14.5 25.2

TNBC with PD-L1(+)[157] II 199 - - 27.3

Cemiplimab CSCC[158] II 78 44 - -

NSCLC[159] I 20 25.0 - -

Fig. 1   The expression and biological function of PD-L1.  PD-L1 is expressed in hematopoietic cells, including T cells, B cells, DCs, macrophages, 
mast cells, and many non-hematopoietic cell types. PD-1 binds to PD-L1 to induce cancer cell immune escape, proliferation, drug resistance, and 
autophagy, and PD-1/PD-L1 blockade can inhibit these functions
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resulting in cancer cells evading the immune system [109, 
110]. Moreover, a spliced isoform, FKBP51s, and sigma-1 
receptor, SIGMAR1, increased PD-L1 expression by pro-
moting PD-L1 glycosylation and stability [111, 112].

Phosphorylation
Non-glycosylated PD-L1 is an unstable protein whose 
T180 and S184 residues are easily phosphorylated by 
GSK3β and then bound by the E3 ubiquitin ligase β-TrCP, 
resulting in PD-L1 degradation in the cytoplasm [113]. 
For instance, in basal-like breast cancer, suppression 
of GSK3β activity by epidermal growth factor stabilizes 
PD-L1 [114]. IL-6-activated JAK1 phosphorylates PD-L1 
Tyr112 and recruits the N-glycosyltransferase STT3A, 
which catalyzes PD-L1 glycosylation and stabilizes PD-L1 
[115]. Another important player regulating PD-L1 phos-
phorylation is AMP-activated protein kinase (AMPK). By 
directly phosphorylating S195 of PD-L1 in response to 
metformin activation of AMPK, aberrant PD-L1 glyco-
sylation is induced, which causes endoplasmic reticulum 
accumulation and ER-related destruction [116].

Acetylation and palmitoylation
Acetylation is a common post-translational modifica-
tion of proteins. PD-L1 is acetylated by p300 enzyme at 
Lys263 affecting nuclear translocation. HDAC2 enzyme 
catalyzes PD-L1 deacetylation and binds to huntingtin 
interacting protein 1 related (HIP1R), thereby translo-
cating to the nucleus. Accumulation of nuclear PD-L1 
may promote tumor cells to evade immune surveillance 
during metastasis [117]. Palmitoyltransferase ZDHHC3 
(DHHC3) catalyzes PD-L1 palmitoylation in colon and 
breast malignancies and stabilizes PD-L1 by suppressing 
ubiquitination, which prevents lysosomal degradation 
of PD-L1. Using 2-bromopalmitate, the suppression of 
PD-L1 palmitoylation or the silencing of DHHC3 triggers 
anticancer immunity [118, 119].

Autophagy
Autophagy is a membrane transport process involved in 
the metabolism of intracellular component degradation 
that is activated under nutrient or energy deprivation 
conditions. Under adverse conditions, such as hypoxia, 

Fig. 2   Overview of the regulatory mechanisms involved in PD-L1 expression.  By attaching to the PD-L1 promoter, numerous transcription factors 
contribute to the increase of PD-L1 expression. N6-methyladenosine increases PD-L1 expression while DNA methylation, histone modification, 
and autophagy suppress it. MicroRNAs, including miR-138, miR-138-5p, miR-152, and others shown in Table 1, suppress PD-L1 by directly binding 
to the 3’UTR of PD-L1 mRNA. LncRNAs and circRNAs are also relevant to PD-L1 expression and tumor immune escape. PD-L1 is upregulated by 
glycosylation and palmitoylation, which stabilize PD-L1 protein, while ubiquitination, phosphorylation, and acetylation exert the opposite effect
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a shortage of growth hormones, or reactive oxygen spe-
cies (ROS), autophagy also allows cells to survive [120, 
121]. With an in-depth study of autophagy in the tumor 
immune response, the relationship between PD-L1 and 
autophagy in tumors has been explored. PD-L1 upregu-
lates beclin 1 (BECN1), a crucial molecule in autophagy 
regulation, and enhances the autophagy of OC cells 
[122]. Interestingly, IFN-γ promotes PD-L1 expression by 
inhibiting autophagy via p62/ sequestosome 1 (SQSTM1) 
accumulation and NF-κB activation [123] (Table 2).

Targeting PD‑L1 and the PD‑L1 regulatory pathway 
for cancer immunotherapy
Cancer immunotherapy involving PD-1/PD-L1 block-
ing antibodies has brought considerable therapeutic 
advantages to patients with advanced-stage cancer [124]. 
Research on anti-PD-L1 antibodies has been conducted 
in a variety of tumors, including NSCLC, SCLC, mela-
noma, HCC, BC, head and neck squamous cell carci-
noma, gastric and gastroesophageal junction cancer, 
OSCC, urothelial carcinoma (UC), renal cell carcinoma 
(RCC) [125]. FDA-approved anti-PD-1/PD-L1 applica-
tions are quickly expanding across various tumor types. 
The PD-L1 level in tumors is an essential factor influenc-
ing the therapeutic efficacy of anti-PD-1/PD-L1 therapy 
[126, 127]. The combination of PD-L1 and PD-1 results in 
the loss of the killing ability of tumor-infiltrating lympho-
cytes, which leads to uninhibited tumor growth. There-
fore, the destruction of the interaction between PD-L1 
and PD-1 manifests tremendous potential in releasing 
the lethality of the immune system to cancer cells [128, 
129]. Here, we summarize the research progress of small-
molecule agents that target the PD-L1/PD-1 axis and 
PD-L1 inhibitors (Table 3).

Numerous small molecule agents targeting epigenetic 
regulation directly or indirectly downregulate PD-L1 
and increase immunotherapy effects. Notably, The STAT 
family is critical in the control of PD-L1. For instance, 
Stri-201, a small molecule inhibitor targeting STAT3, can 
effectively inhibit the expression of PD-L1 in the human 
tongue squamous cell carcinoma cell line CAL27 cells 
[130]. Nexturastat and tubastatin A inhibited HDAC6-
mediated STAT3 activity in melanoma, leading to PD-L1 
expression reduction [131]. The EIF4F inhibitor silves-
trol enhances IFN-γ-induced PD-L1 transcription and 
elevates anti-tumor immunomodulatory effects in mela-
noma [132]. Contrary to silvestrol, verteporfin blocks the 
STAT1-IRF1- tripartite motif containing 28 (TRIM28) 
signaling cascade and induces autophagy-mediated deg-
radation of the Golgi apparatus, thereby efficiently down-
regulating PD-L1 expression [133]. By impairing MLL1, 
the epipolythiodioxopiperazine metabolite verticillin A 
lowers the amount of H3K4me3 in the PD-L1 promoter, 

transcriptionally hindering PD-L1 expression and 
enhancing the effectiveness of PD-L1/PD-1 immunother-
apy in PC patients [134]. By targeting c-MYC, cisplatin 
inhibits miR-145 expression, which results in upregula-
tion of PD-L1 in OC [135]. Transforming growth factor-
beta (TGF-β) affects PD-L1 inhibitors to some extent 
and induces drug resistance. YM101 can suppress TGF-β 
and PD-L1, which dramatically enhances the anti-tumor 
effect [136]. Furthermore,  Mn2+ acts synergistically with 
YM101 to facilitate the conversion of non-inflammatory 
to immune inflammatory tumors and greatly antagonizes 
PD-1/PD-L1 drug resistance [137].

Post-translational modifications are critical to PD-L1 
stability; therefore, targeting this process may lead to 
irreversible PD-L1 degradation. Proteolysis targeting chi-
meras (PROTACs) induce PD-L1 ubiquitination and sub-
sequent lysosomal degradation by recruiting E3 ligases. 
PROTACs can induce PD-L1 protein degradation in 
various malignant cells in vivo in a proteasome-depend-
ent manner [138, 139]. Similarly, the peptide PD-LYSO, 
which contains the lysosome-sorting signal as well as the 
PD-L1-binding sequence of HIP1R, causes PD-L1 expres-
sion to be reduced in tumor cells [140]. CSN5 is required 
for PD-L1 stabilization owing to its inhibition of the 
ubiquitination of PD-L1. Thus, the CSN5 inhibitor cur-
cumin increases tumor cell susceptibility to CTLA4 ther-
apy by lowering PD-L1 expression [97]. Protein kinase 
AMPK agonists or ketogenic diets promote PD-L1 phos-
phorylation and disrupt its interaction with CMTM4, 
which contributed to inducing PD-L1 degradation and 
enhancing anti-CTLA4 immunotherapy in mouse tumor 
models [141].

Some chemotherapy drugs are closely correlated with 
PD-L1 regulation. For instance, the DNA demethylation 
drug decitabine induced DNA hypomethylation in CC, 
directly upregulated PD-L1 expression, stimulated more 
antitumor effects, and significantly enhanced the immu-
notherapeutic effects of PD-L1 [142]. This phenomenon 
was similarly observed in mouse models of leukemia, 
HNSCC, and NSCLC [60, 143, 144]. Temozolomide 
can trigger STAT3 activation, subsequently increasing 
PD-L1 expression [145]. In melanoma, regorafenib inhib-
its JAK1/2-STAT1 and MAPK signaling by targeting the 
RET-Src axis, consequently attenuating IFN-γ-induced 
PD-L1 expression [146]. A previous study has reported 
that the glucocorticoid receptor inhibitor mifepristone 
and dual ICB act synergistically in PC to inhibit PD-L1 
expression while promoting cytotoxic T cell infiltration 
and activity, enhancing antitumor immunity [147]. Met-
formin activates AMPK, which phosphorylates S195 
of PD-L1, resulting in abnormal PD-L1 glycosylation 
[109]. In contrast, metformin reduces the abundance of 
PD-L1 by disrupting electrostatic interactions, thereby 
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promoting the dissociation of the cytoplasmic structural 
domain membrane of PD-L1 [148]. Aberrant activation 
and expression of receptor tyrosine kinases (RTKs) are 
relevant to numerous human cancers. MET was con-
firmed as a specific RTK in PC, and it is abundant in PC 
tissues and positively correlates with PD-L1 levels. Nota-
bly, the MET inhibitor capmatinib has a pivotal function 
in restraining PD-L1 expression and stopping tumor pro-
gression [149]. By inhibiting UBQLN4 and promoting 
ubiquitination in melanoma cells, Albendazole has an 
anti-tumor immunological impact, culminating in PD-L1 
protein degradation [101].

The majority of the small molecule drugs mentioned 
above target not just PD-L1, but also additional proteins 
that influence tumor survival, proliferation, and metabo-
lism. This gives them advantages over PD-L1 antibodies. 
Small molecule medications, however, may also activate 
alternate pathways or feedback mechanisms that con-
trol PD-L1 expression, producing ineffective anti-tumor 
effects. Consequently, concurrently in-depth compre-
hension of PD-L1 antibodies is still required. There are 
currently four types of PD-L1 inhibitors approved by the 
FDA, including Avelumab, Atezolizumab, Durvalumab, 
and Cemiplimab (Table 4). Avelumab (MSB0010718C) is 
a fully human IgG1 monoclonal antibody that can medi-
ate ADCC by targeting PD-L1 [18]. It is effective in clini-
cal trials for treating metastatic merkel cell carcinoma 
(MCC), metastatic UC, RCC and is well tolerated by 
patients [150–153]. Remarkably, Avelumab was the first 
drug licensed by the FDA for the treatment of MCC. Cur-
rently, atezolizumab (MPDL3208A), a humanized human 
and murine cross-reactive therapeutic PD-L1 antibody, 
is in clinical trials for patients with NSCLC and locally 
advanced and metastatic urothelial carcinoma [154, 155]. 
Durvalumab is a PD-L1-targeting immunosuppressant 
that the European Medicines Agency approved for the 
consolidation of locally advanced PD-L1-positive NSCLC 
following chemoradiotherapy [156]. While maintenance 
chemotherapy is more successful than duvacizumab in 
patients with hormone receptor-positive and HER2-
negative breast cancer, duvacizumab increases overall 
survival (OS) in PD-L1-positive TNBC[157]. Cemipli-
mab is presently approved by the FDA for the treatment 
of patients with metastatic cutaneous squamous cell car-
cinoma (CSCC) or locally advanced unresectable CSCC 
and NSCLC [158, 159].

Conclusions
Cancer immunotherapy with PD-1/PD-L1 blocking anti-
bodies has ushered in a new era of cancer treatment, but 
only a fraction of patients have shown objective clini-
cal responses. Currently, FDA-approved PD-L1 inhibi-
tors are indicated for locally advanced or metastatic UC, 

NSCLC, MCC, and CSSS. PD-L1 expression in tumors, 
microsatellite instability, tumor mutational burden, and 
tumor-infiltrating lymphocytes are biomarkers that indi-
cate how well PD-1/PD-L1 inhibitors work [160]. Treat-
ment with small-molecule drugs that modulate PD-L1 
expression is a favorable strategy for   cancer therapy; 
nevertheless, it can be a double-edged sword. On the one 
hand, induction of PD-L1 expression in tumor cells may 
increase the sensitivity of cancer cells to PD-1/PD-L1 
immune checkpoint blockade, such as Poly-(ADP-ribose) 
polymerase (PARP) inhibitors in breast cancer and MET 
proto-oncogene, receptor tyrosine kinase (MET) inhibi-
tors in HCC. Nevertheless, inducing PD-L1 expression 
artificially may also promote immunosuppression. On 
the other hand, the combination of PD-L1-targeting 
small-molecule drugs with anti-PD-1/PD-L1 antibod-
ies may produce synergistic anticancer activity, but it 
may also render the antibodies ineffective due to loss of 
immune checkpoint expression. As noted in this review, 
the expression of PD-L1 is governed by a number of reg-
ulatory mechanisms. Transcription factors, oncogenes, 
tumor suppressor genes, and microRNAs all regulate 
PD-L1, affecting anti-tumor immune responses. Select-
ing one or the other to alter immune checkpoint expres-
sion may be inefficient, as other regulatory elements 
may compensate and become overactivated. Therefore, 
further preclinical and clinical studies will be needed to 
advance the understanding of tumor immune evasion 
mechanisms and the search for optimal combination 
therapies.

In conclusion, understanding the underlying regula-
tory pathways will improve current immunotherapies by 
manipulating PD-L1 expression.
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